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Abstract

An adaptive Cartesian grid methodology approach is presented to compute two-dimensional high Reynolds
number viscous flows. In this methodology, the immersed boundary approach is developed to deal with the
boundary condition, which performs good ability in the simulation of viscous flows. An Octree data structure
is used for grid information storage, making it convenient to accomplish grid adaptation. The Cartesian mesh
is optimized by the mesh smoothing technology and the virtual layer method with the advantage of the body-
fitted structured mesh. The virtual layers are formed in an increasing distance from the wall with the aim to
obtain a desired ratio between neighboring cells, making sure the cell size changes gradually. Aiming at
overcoming the difficulty of simulating high Reynolds number viscous flow based on Cartesian grid, a wall
function method combined with immersed boundary method is also introduced. The numerical results prove
that it can significantly reduce the dependence of numerical results on grid scale, which reduces the quantity
of grids and enhances the computation efficiency dramatically. Meanwhile, a viscous numerical solver
applicable to the adaptive Cartesian grid is constructed in this paper thanks to an appropriate discretization
procedure. In this study, the methodology and numerical solver above are demonstrated with several typical
cases.
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1. General Introduction

With the deep application of computational fluid dynamics (CFD) in engineering practice, the
geometric shape and flow field are becoming more and more complex, and the generation of high-
quality meshes is becoming more and more difficult, which often takes up a lot of human resources.
Compared with the traditional structured mesh generation method and unstructured mesh
generation method [1-3], the adaptive Cartesian mesh [4-6] has great advantages in automatically
generating high-quality mesh for complex shapes. In addition, the adaptive Cartesian grid also has
the natural multigrid characteristics, which can accelerate the convergence in the calculation. it
does not need to store matrices, and has less operation, which is conducive to the application of
high-precision algorithms. Since the 1980s, the rapid development of computer technology and
performance has promoted the appli-cation and popularization of adaptive Cartesian grid
technology. In view of the above advantages, more and more CFD workers have devoted
themselves to the research and application of this method.

The main disadvantage of adaptive Cartesian mesh generation technology is that the boundary
treatment of viscous surface is complex, which is caused by the non-body-fitted characteristics of
Cartesian mesh. Cartesian grids generally intersect with the surface of the object to produce
cutting elements of different shapes. Some of these cutting elements are small in size, which can
easily cause the non-physical oscillation of the solution near the sur-face. If the difference scheme
used in the numerical simulation is explicit, it will also limit the time step and affect the stability of
the calculation. At present, the main processing methods are hybrid cell method [7,8], cut cell
method [9,10], embedded boundary approach [11] and immersed boundary approach [12-13]. In
these methods, the immersed boundary approach does not need to deal with the complex mesh-
cutting problem. It is relatively simple and feasible. Moreover, the boundary layer characteristics
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can be captured by ghost cell method with the help of adjustable reference points. In this paper,
the method is used to construct the boundary conditions of viscous flows.
When the near-wall body-fitted grid extends outwards, the grid points are generally arranged in a
certain pro-portion. The size of the grid increases gradually and the change is more uniform. This
kind of grid characteristics is in good agreement with the boundary layer characteristics, which is
conducive to capturing the flow characteristics of the boundary layer. However, for Cartesian grids,
the distance of grid points in different sizes of adjacent grids is fixed, even in the boundary layer.
This will affect the accuracy of numerical solution in the boundary layer and reduce the quality of
the flow field simulation. Aiming at the problem of Cartesian grid, Ya'eer Kidron et al. [14] of Israel
CFD Center first introduced the virtual layer method, which lays out some virtual surface layers
near the object surface. The shape of the virtual surface layers are identical but the size are
different, and the distance be-tween each layer is similar to the body-fitted structure grid. Along the
direction perpendicular to the object surface, the number and level of Cartesian grids are
determined by these virtual surface s. This method fully draws on the advantages of body-fitted
grid. Ya'eer Kidron et al. combines it with the adaptive Cartesian grid method. At the same time,
the cut cell method is used to deal with the surface, and good results have been achieved in the
application. At present, there is no research on the combination of virtual layer method and
immersed boundary method, which has space and value for further exploration and development.
This is also one of the research contents to be carried out in this study.
Compared with the body-fitted grid, the Cartesian grid is non-body-fitted, and intersects with the
object surface to form cutting grids with different size and shape. When Cartesian mesh method is
used to deal with viscous flow with high Reynolds number, the grids near the wall need to be very
fine, which results in a large amount of meshes and computation. It limits the application of the
method in complex geometric viscous flow problems and its promotion to three-dimensional flows.
For this reason, in order to reduce the computational grid demand, especially at the boundary of
the object, some scholars [10-13] have studied the application of Cartesian grid method in
turbulent viscous flow. An effective idea is to define turbulent wall boundary conditions by using the
wall function model derived from the boundary layer approximation theory, so as to reduce the
dependence of numerical methods on the scale of the wall mesh, so as to reduce the number of
computational meshes in the boundary layer. The wall function method has been verified that it can
significantly reduce the dependence of numerical results on grid scale. Usually, the height of the
first layer mesh near the wall can be relaxed within the range of 30<y+<200 based on the use of
wall function, which reduces the quantity of grids and enhances the computation efficiency
dramatically.
At present, the numerical simulation of viscous flow based on adaptive Cartesian grid has not yet
been applied in engineering, and there is a need for further development. The purpose of this
paper is to develop a numerical method to simulate two-dimensional high Reynolds number
viscous flow automatically, efficiently and accurately. In this paper, an adaptive Cartesian mesh
generation technique based on Quadtree data structure is developed. The adaptive process is
based on the geometric features of the object surface and the flow field characteristics. It can
guarantee the fidelity of geometric shape information and the detailed simulation of shock, shear
layer and vortices in the flow field. Aiming at the possible cusps and thin bodies in complex shapes,
a Cartesian grid-oriented multi-valued grid processing program is constructed to ensure the
accuracy and stability of the simulation near these structures. For boundary treatment, the
boundary condition of viscous surface is reconstructed by the immersed boundary method to avoid
dealing with complex cut cells and combining virtual mirror symmetry technology. On the basis of
this method, a wall function method is introduced into the Cartesian grid framework to reduce the
requirement of numerical results for the size of grids in the boundary layer. Based on the above
work, a wall boundary treatment method for high Reynolds number viscous flow under adaptive
Cartesian mesh is established. After adapting the grid, for the transition region of coarse and fine
grids, the flow field value of the computational template points needs special treatment, that is, the
hang-grid problem. On this basis, a two-dimensional viscous flow numerical solver based on
Cartesian grid is constructed by using appropriate spatial and temporal discrete schemes. In this
paper, several typical numerical cases of viscous flow with high Reynolds number is simulated to
validate the methodology and numerical solver.
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2. Adaptive Cartesian grid generation

2.1 Octree data structure

In the Quadtree data structure, the parent grid cell is refined to four sub-grid cells, and the parent
cell and the sub-cell are connected by pointers. This data structure has a small storage capacity and
is convenient and efficient for adaptive refinement and coarsening. For example, when the grid is
coarsened, only four sub-pointers need to be empty and set to pointless. When the grid is refined,
only the sub-pointers need to be allocated memory separately and pointed to sub-grids. The
allocation of information storage in grid cells needs to consider both memory occupancy and
computational complexity. Generally speaking, the storage content includes three parts, namely, the
location information of the grid, the data structure information and the flow field information.

2.2 Neighbor finding

In the Cartesian grid methodology developed in this paper, the grid cells in the Octree data
structure do not pre-store the information of neighbor cells, which requires the design of
corresponding algorithms to obtain, that is, neighbor finding algorithm. Whether it is reasonable or
not can greatly affect the computational efficiency, and moreover, the process of neighbor finding
can check the balance and rationality of grid structure. The recursive process is the core part of the
neighbor finding algorithm, which queries the neighbor cell of the parent cell and determines the
sub-cell of the neighbor cell. This requires algorithm design according to the characteristics of
Cartesian grid and Octree data structure. In Figure 1, the process of finding right neighbor cells in
different situations is shown, and the finding algorithm of neighbor cells in other three directions is
similar. Four sub-cells are labeled i1, i2, i3 and i4 according to their positions, and the four sub-
cells of i2 are labeled i21, i22, i23, i24, and so on.
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Figure 1 — Neighbor query diagram for grid of different levels

2.3 Grid type determination

Because the immersed boundary method [15-19] uses grids inside the object surface, it is an
important work to determine the type of grids. Accurate determination of grid type is the
precondition of Cartesian mesh adaptation and subsequent flow field calculation. There are two
main methods to classify Cartesian grid cells. One is to divide them into external grid cells,
intersecting grid cells and internal grid cells according to the position and intersecting relationship
between grid cells and objects. The other is to classify the flow field grid cell outside the object and
the ghost cell inside the object according to the position of the grid center point, which are both
used in this paper. The de-termination of the type of grid cells is based on the determination of grid
point type, and the location of the four vertices of the grid cell needs to be determined respectively.

Based on the ray-casting approach, this paper determines the relationship between grids and
objects, and improves the approach by introducing multiple rays to ensure the accuracy of the type
determination of grids. In the ray-casting approach, any ray intersects the object surface through a
target grid point, and the position relationship between the grid point and the object is determined
by the number of intersections. That is, if the number of intersections is even, the grid point is
outside the object, and if the number of intersections is odd, the grid point is inside the object, as
shown in Figure 2. When using the ray-casting method, we should pay attention to the arbitrariness
of ray direction and avoid the misleading of unreasonable special ray to the determination of cell
type, as shown in 3. This requirement can be met by the multiple rays method presented in this
paper.



Figure 2 — Ray-Casting Approach.

2.4 Grid adaption

The grid adaptation can be divided into geometric feature adaptation and flow field feature
adaptation. Among them, the geometric feature adaptation is based on the geometric
characteristics of the object to carry out adaptive refinement, which requires that the shape and
structure characteristics of the model can be accurately depicted. It is mainly carried out in two
aspects. Firstly, based on the geometric shape of the object, cells intersecting the object surface is
refined for a certain number of times. Then, based on the surface curvature of the object, the cells
where the surface curvature of the object changes greatly is further refined. In addition, the cells
adjacent to the intersecting cells need to be refined a certain number of times to ensure that the
grid transition is uniform.
Then, in the process of flow field calculation, it is necessary to adapt to the characteristics of the
flow field solution. In order to capture the shock wave and shear layer in the flow field better, the
divergence and curl of velocity are combined as the criterion to carry out the flow field solution
adaption [14]. The divergence of velocity is mainly used to capture shock wave, and the curl of
velocity is mainly used to capture the shear layer. The formulas of the velocity divergence Dcer and
the curl Rcen of the cell are as follows:
+1 +1

=l > =1 x| (1)
In the formula, / is the cell's edge length and a is a given value. In the two-dimensional case, a =
2 .and in the three-dimensional case, a = 3.
In the adaptive process of flow field solution, it is necessary to calculate the divergence and curl of
velocity for each cell, so that the total number of grid cells in the computational domain is recorded
as N. After the D¢er and Reen values of N cells are obtained, the standard deviation Sp of velocity
divergence and the standard deviation Sr of velocity curl can be obtained by the following formula:

e

Then the following conditions are used for grid adaption:
1) if > or >, , the cell is to be refined;
2) if <01 and <01 , , the cell is to be coarsened;
For the selection of coefficients 1, >, 1, and », we should consider the flow field characteristics
[4], because the dominant flow phenomena in the flow field may be different under different
conditions:
1) if there is no obvious dominant flow characteristics in the flow field, the above coefficients
canbetakenas 1= ,= 1= ,=10;
2) if the shear layer plays a dominant role in the flow field, the corresponding coefficients can
be takenas 1= ,=20, ;= ,=05;
3) if the shock wave plays a dominant role, it can be takenas ;= ,=05, 1= ,=20.
These coefficients may not be the optimum values, and they need to be adjusted according to the
characteristics of the flow field in order to make the adaptive mesh distribution more reasonable.

2.5 Virtual layer technology



For adaptive Cartesian grid, the ratio of the size of coarse grids to fine grids in adjacent layers is
constant to 2, even in the boundary layer. The large scale variation of grid size will affect the
accuracy and stability of near-wall flow simulation. In order to solve the above problems, this paper
introduces the virtual layer technology [14] to optimize the boundary layer mesh, referring to the
advantages of body-fitted structured mesh in capturing boundary layer flow characteristics, as
shown in Figure 3. Firstly, a series of points N1, N> and N3 are mapped in the boundary layer along
the normal direction of the wall according to a certain rule. The initial virtual layer is generated from
the first layer data points, and then the ratio of the virtual layer to the normal distance of the wall is
set as follows:

+1

1< < ,( =123.), =| -1 | (3)

Using the distribution characteristics of the body-fitted grid in the boundary layer for reference, the
above-mentioned ratio can be set up to obtain a number of virtual surfaces with uniformly varying
distances in the boundary layer, whose distances are similar to those of the body-fitted grid. The
number and level of refinement of Cartesian grid cells are determined by combining these virtual
layers.

Figure 3 — The virtual layer method.

2.6 Mesh smoothing
In the process of Cartesian mesh refinement and coarsening, the meshes in some areas may be
unreasonable, which will generally lead to problems in mesh structure and subsequent flow field
calculation. There are many specific types of these unreasonable features. The Cartesian grid
method developed in this paper may encounter the following situations:
1) the difference between adjacent grid cells in the hierarchy of the Octree data structure is
greater than 1, as shown in Figure 4(a);
2) there are sub-cells in the neighboring cells on both sides of the leaf cell, as shown in Figure
4(b);
3) the cusps are located in the larger grid of leaf cells, and the description of cusp structure is
not clear, as shown in Figure 4(c);

4) when there are minimal gaps or inner corners, the boundary between the two sections is in
the same grid cell, as shown in Figure 4(d).

(a) The level difference between
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Fig. 4 - Unreasonable characteristics of Cartesian grid

Generally speaking, these unreasonable features are mainly unreasonable or complicated data
structure, inaccurate description of object shape or inadequate feature capture, and will affect the
stability, convergence and accuracy of flow field calculation. Therefore, the existence of
unreasonable grid cells can not be ignored. The process of eliminating them and optimizing mesh
is called mesh smoothing. The mesh smoothing process is carried out after the grid adaption, and
needs to be processed repeatedly until all the unreasonable features are eliminated, so that the
distribution of the mesh can be improved as much as possible to improve the accuracy of the
shape description, while meeting the requirements of the balance and efficiency of the Octree data
structure. It lays the foundation for the flow field solution adaption.

3. Boundary treatment methodology

3.1 Immersed boundary approach

For Cartesian grid methodology, when the immersed boundary approach is used to deal with the
object surface boundary, the grid cell inside the object, namely the ghost cell, is used. In this paper,
the flow field information of these cells is obtained by ghost cell method, Figure 5 is taken as an
example. In order to obtain the flow field value of ghost cell A, the image point Ma of A in the flow
field should be determined first, and the flow field value of Ma can be obtained by interpolation of
adjacent cells. Then, according to the boundary conditions of the object surface, i.e. the non-
penetration, non-slip of the wall velocity, the relationship between the flow field values of ghost cell
A and mirror point Ma is determined, and the flow field information at virtual point A is obtained. For

the mirror point Ma of ghost cell A, the interpolation formula of flow field information is as follows:
=l 4+ —l2l 4+ -3l 4+ 14l
- T r °* (4)
1l 4+ —l2l + —l3l & —Ial
In the formula, 7,7, , 7, 7, are the distances from Ma to its four adjacent grid points C, D, E and F

respectively.
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Figure 5 — The Ghost Cell method.

In order to simulate the boundary conditions more accurately, the Ghost Body-Cell Method (GBCM)
proposed by Dadone and Grossman et al. [19] is used in this paper. This method is extended from
the Curvature-Correction Symmetry Technique (CCST) first proposed by Dadone et al. [17-19],
which is suitable for body-fitted grids. The flow field values of ghost cells are obtained by the
fictitious eddy field near the object surface, and the entropy and total enthalpy of the eddy field are
symmetrically distributed in the normal direction. Dadone et al. show that the GBCM method has
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more advantages than the traditional surface boundary treatment method in ensuring the increase
of entropy and the decrease of total enthalpy, and is conducive to the stability and convergence of
the calculation.

In view of the characteristic structure of boundary layer in viscous flow with high Reynolds number,
when using GBCM method to reconstruct wall boundary conditions, the reference points of ghost
cells are adjusted geometrically, which makes it more advantageous to characterize the internal
characteristics of boundary layer. Moreover, the distance between reference point and object
surface can be aligned by position adjustment, which has some characteristics of structured body-
fitted grid and improves the stability of interpolation, as shown in Figure 6. Forrer and Beger et al.
[20] showed that this position adjustment can improve the stability of calculation, and does not
reduce the accuracy of boundary processing. The disadvantage is that the local conservation of
mass and momentum is difficult to guarantee. Based on GBCM and the idea of position adjustment,
the flow field values of ghost cell A and mirror point B in this paper satisfy the following
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Figure 6 — Near wall grid point correction.

3.2 Wall function method

Wall Function Method (WFM) is an empirical model derived from boundary layer theory, which
needs to satisfy a series of simplified assumptions [21,22]. In this paper, the wall function model
proposed by Spalding [21] is used and applied in Cartesian grid. The model is simple and has
been verified by many scholars. It has high reliability. Its definition is as follows:

RUESUsS ©)

y + and u + are defined as dimensionless boundary layer thickness and velocity in boundary layer
respectively. They are defined as follows:

y+ :u++e—kB[eku _l_ku+

u T
P Y = | 7)
A, P
According to the basic assumption of wall function and the Crocco-Busemann relationship, the

pressure and temperature on the wall can be obtained.

+ _ + _
u =v/u,y =

r V7 .
w — e 71w :];e - 8
F,=Fy arwe (8)

According to the basic assumption of wall function, the shear stress near the wall is a constant
9



distribution, so it can be considered that the shear stress between the reference point and the
virtual element should remain unchanged. Combined with Newton's friction stress formula, the
corresponding tangential and normal velocity components of ghost cells, as well as the pressure
and temperature values, can be obtained as follows:

LN Ll
'uﬁn H An
V., =~V %+ 9, tV, = 5gV
Tg ~ 7 Tre _(m) ’ Ng__gr Nref (9)
VvV, -V *?
P =P, T =T, +——" T

g ref>" g ref 2 C
P

For turbulence problems, because of the application of turbulence model, it is necessary to
determine the turbulence viscous coefficient of ghost cell. For Spalding turbulent wall function, the
relationship between turbulent viscous coefficient and laminar viscous coefficient near the wall can
be obtained by deriving y+ to u+:
+32
He e e 1y — KU
H
According to the fact that the total viscous coefficient of the ghost cell is equal to that of the
reference point, the turbulent viscous coefficient of the ghost cell can be obtained as follows:

ﬂtg = luref + Ithref -ﬂg (1 1 )

For different turbulence models, there are other different flow variables. Taking SST turbulence
model as an example, the values of turbulence kand are need to be calculated. The methods of
obtaining the values of other turbulence models are similar.

kzw—w,w=«/@2 +)]
P

ou, e
o, = NORES
" 0.075p, ) [C, ky

] (10)

(12)

4. Viscous flow solver
4.1 Governing equations

The governing equation in this paper is the compressible Reynolds averaged Navier-Stokes
(RANS) equation of the ideal state gas. Its conservative form is as follows:

_ =+ (13)
In the formula, is a conservative variable, , are convective terms, , are viscous terms.
If and are neglected, the above equation will degenerate into Euler equation. The

expressions of the above items are as follows:

2+
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In the formula above, is density, is velocity component in X axis, is velocity component in Y
axis, p is pressure, is total energy, e is internal energy. Since the number of unknowns in the
system of equations is more than the number of equations, the system of equations is not closed,
and the equation of state needs to be supplemented:

= (15)

( -1 -1
The (, = , ) are viscous stress tensors. The expressions are as follows:
=— E (— + —) +2 —
3
__2 (_+_)+2 — (16)
3

- - ()

Among them, is a viscous coefficient, which includes laminar viscous and turbulent viscous
coefficient , namely:

= + (17)
The can be obtained from Sutherland formula:

= o) (18)

The can be calculated by the turbulence model. For turbulent viscous flow, the effect of
turbulence should be taken into account in the heat transfer coefficient.

- )= =

In the formula, is a turbulent Prandtl constant, and for air, =0.9.

4.2 Numerical discretization

The unsteady and multi-scale characteristics of turbulence require high-fidelity numerical
simulation methods, which solves RANS equation of high accuracy. Considering the flow
characteristics of compressible turbulence, spatial and temporal discrete schemes with both
accuracy and robustness are very important for high-precision turbulence simulation in this study.
In the aspect of spatial discretization for the RANS equation, we use the higher order Weighted
Essential Non-Oscillatory (WENO) scheme [23] in the Cartesian grid framework. Among many
high-order schemes, WENO scheme has the advantages of relatively few interpolation template
points, high accuracy and good robustness. It is very suitable for solving high Reynolds number
compressible turbulence problems.

In terms of temporal advance, this paper adopts explicit method to discretize temporal terms. The
explicit method transforms the Partial Differential Equation into Ordinary Differential Equation by
discretizing the space derivative terms rather than the time derivative term. This method has the
advantages of simple form, wide applicability, short single-step time, easy realization of high-order
accuracy and parallel computing, but its shortcoming is that its time step is limited by stability
conditions. Considering the above characteristics, this paper adopts Total Variation Decrease
(TVD) Runge-Kutta method [24]. Taking its third-order accuracy formula as an example:

o _
E_R(Q) (20)
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The WENO scheme for spatial discretization matching by Runge-Kutta method with high precision
has high accuracy and can reduce shock discontinuity as well as oscillation near turbulent
boundary layer, so as to construct a high-accuracy and robust numerical solver for high Reynolds
number turbulent flow problems.

5. Numerical results

Next, numerical simulations are carried out for typical examples to examine the adaptive Cartesian
grid generation technology developed in this paper and the numerical simulation method of high
Reynolds number viscous flow in Cartesian mesh.

5.1 Flat plate

The adiabatic flow on a flat plate is a classic example for studying laminar and turbulent viscous flows.
In this paper, the wall function model and numerical method for high Reynolds number viscous flow
simulation developed in this paper are tested and validated.

Firstly, two-dimensional laminar plate flow is simulated. In this simulation, the Reynolds number based
on the plate length is Re =1.0x10° . The numerical result is compared with the Blasius solution [25] in
Fig. 7. It shows the velocity profile interpolated along the vertical direction at two different axial position,
i.e. x = 0.75, 0.80. It can be seen that the results obtained by the numerical solver constructed in this
paper are in good agreement with the reference solutions.

On the basis of the above work, the wall function method developed in this paper is applied to study
the two-dimensional turbulent plate flow. Referring to literature [26], the parameters are set, in which
the inflow Mach number is Ma = 0.2, and the Reynolds number is Re =1.0927x10’ . In Fig. 8, the

surface friction coefficient calculated based on different grid scale is compared with the experimental

value [27] and result obtained by the Power law.
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Figure 7 — The velocity profile compared with Blasius solution
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In Fig. 8, it can be seen that the numerical results in this paper still show high accuracy when y+ is
large by using the wall function method, the dependence of the numerical results on the grid scale
is greatly reduced. As y+ decreases, the deviation between the calculated friction results and the
reference results decreases, which is caused by insufficient mesh refinement. In the trailing edge
region of the plate, even the results based on coarse mesh are in good agreement with the
experimental and reference values.

Fig. 9 shows the comparison between the calculated average velocity profiles at different positions
and the experimental measurements. It can be seen that the calculated average velocity profiles
and boundary layer thickness are in good agreement with the experimental measurements. At the
three locations in the graph, the predicted boundary layer thickness is slightly larger than the
experimental value, which is due to the insufficient mesh refinement and the inadequate ability to
capture the velocity gradient.

5.2 NACAOQ0012 airfoil

Aiming at the turbulent flow around NACAO0012 airfoil, the method and technology in this paper are
further verified. The calculation condition parameters refer to AGARD experimental report [27] and
are set as follows: Mach number Ma = 0.3, angle of attack a=3.59° and Reynolds number

Re=1.86x10° based on airfoil chord length.

In this paper, based on the adaptive Cartesian grid ghost cell method, the comparative analysis of
the calculation results before and after the introduction of the wall function method is carried out.
Firstly, the effectiveness of the wall function method under the Cartesian grid framework is
evaluated under different grid densification and scale.

It can be seen from Fig. 11 that the experimental results are in good agreement with the three
kinds of refinement times and grid scale, which proves that the wall function method developed in
this paper is also suitable for the adaptive Cartesian grid. Generally speaking, the results of the
three methods are similar to each other. This is because in the wall function method, a unified
simplified analytical function is used. In the relaxed limit of the wall mesh size, the grid point values
are not obtained by the wall mesh through the numerical discrete scheme, but by the approximate
analytical function. Therefore, the larger mesh can still maintain the accuracy of the solution. Of
course, improving the resolution of the grid can improve the accuracy of the analytical function
calculation results. Therefore, the accuracy of the grid refinement 10 times is slightly improved than
that of the grid refinement 8 times and 9 times, which is mainly reflected in the leading edge and
trailing edge positions of the airfoil which are more sensitive to the grid scale.
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6. Conclusions

In this paper, the adaptive Cartesian grid methodology for two-dimensional viscous flow is
developed. The adaptive grid technique and the surface boundary treatment based on immersed
boundary approach are systematically constructed. Aiming at the difficulty of simulating high
Reynolds number viscous flow with Cartesian grid method, the boundary layer mesh optimization
technology based on virtual layer technology and the wall function method to relax the size
limitation of near-wall grids are developed. The numerical solver for high Reynolds number viscous
flow is constructed. On this basis, the assessment and validation of techniques and methods
developed are completed through the simulation of typical examples. By introducing the wall
function model, on the premise of guaranteeing the accuracy of simulation, the requirement of
near-wall grids size can be reduced, and it can get better simulation accuracy on the coarse grid.
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