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Abstract 

New design problem – design to cost – can be solved by combining exact models and modern computer 

technologies. Aircraft composite structure design in the field of production technology is the outlook 

research trend. New mathematical model relations for the stress-strain state investigation of structurally-

anisotropic panels comprising composite materials are presented in this study. The mathematical model 

of a stiffening rib being torsioned under one-sided contact with the skin is refined. The primary scientific 

novelty of this research is the further development of the theory of thin-walled elastic ribs. The resolved 

equation with an eight order differential operator and natural boundary conditions are obtained with the 

variation procedure of Lagrange. Exact analytical solutions for edge problems are considered according 

to the general treatment of physical boundary conditions for structure components. The solution in closed 

form is designed by a single trigonometric series. For arbitrary boundary conditions at the contour the 

method of uniform solutions is employed. The new method algorithm for solutions as a series with a non-

orthogonal system of general proper functions and analytically defined constants is given. The 

mathematical model relations for the pre-critical stress state investigation of structurally-anisotropic 

panels made of composite materials are presented. Furthermore, the mathematical model relations for 

the buckling problem investigation of structurally-anisotropic panels made of composite materials are 

presented in view of the pre-critical stressed state. The critical force definition of the general bending 

form of the thin-walled system buckling and the critical force definition of the many-waved torsion 

buckling are of the most interest in accordance with traditional design practices. In both cases, bending is 

integral with the plane stress state. Thus, the buckling problem results in the boundary value problem 

when solving for the eighth order partial derivative equation in the rectangular field. A computer program 

package is developed using the MATLAB operating environment. The computer program package has 

been utilized for multi-criteria optimization of the design of structurally-anisotropic aircraft composite 

panels. The influence of the structure parameters on the level of stresses and   displacements, of critical 

buckling forces for bending and for torsion modes has been analyzed. The results of testing series are 

presented. 

Keywords: composite panels, stress-strain state, buckling  

1. Introduction

This paper discusses the stress-strain state and buckling problems of flat rectangular multilayer panels 

made of composite materials, the casing of which is eccentrically supported by the longitudinal-lateral 
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stiffening set. The panel is subjected to transverse loading arbitrarily distributed in the stationary 

temperature field and to distribute loading applied to the edges in casing plane. The boundary conditions 

at the contour are assumed to be general. 

One considers the residual thermal stresses arising during cooling after hardening and the pre-stressed 

tension of the reinforcing fibers with respect to panel production technology. 

The theory of thin-walled elastic ribs is used without the hypothesis of the zero shear deformation for the 

reinforcing elements which are in the complex resistance with respect to two-plane bending and limited 

torsion. The primary scientific novelty of this study is the further development of the theory of thin-walled 

elastic ribs related to the contact problem for the skin and rib with an improved rib model.  

The schematization of the panel as structurally anisotropic has been proposed as a design model when 

the stress-strain state and the critical forces of total bending form of buckling were determined. For many-

waved torsion buckling study one should use the generalized functions set.  

The problem of determining stress-strain state of structurally anisotropic panels is reduced to the solution 

of the boundary value problem for an equation of the eighth order in the partial derivatives in a 

rectangular field. The eight-order differential equations are resolved for the pre-critical stress-strain state 

and for the buckling problem. The closed-form solution is designed by a unitary trigonometric series for 

the particular case of conformable boundary conditions on two opposite sides and by the method of 

uniform solutions for arbitrary non-conformable boundary conditions at the contour. One examines all 

possible variants of the boundary edge restrictions in relation to the connecting plane and bending 

problems. 

A computer program package in MATLAB was performed for the multi-criteria optimization of the design 

of structurally-anisotropic composite panels of FA. 
 

2. Main relations of mathematical model 

Several studies (e.g. Adumitroaie and Barbero 2015; Auricchio et al. 2014; Boutin and Viverge 2016; 

Cerracchio et al. 2015; Celkovic 2015; Fernandes et al. 2010; Goodsell et al. 2013; Kant and Shiyekar 

2013; Le et al. 2015; Li et al. 2015; Luan et al. 2011; Mantan and Guedes 2014; Nath and Afsar 2009; 

Petrolo and Lamberti 2016; Tran et al. 2015) [1, 2, 3, 6, 7, 9, 13, 15, 18, 19, 21, 22, 24, 25, 27] describe 

the static problems of structurally-anisotropic composite panels, but the following mathematical model is 

novel (e.g. Introduction). The classification and survey of the main directions of the stress-strain state 

theory development of the structurally-anisotropic composite panels demonstrates the need and scope 

for the refined theory paying due attention to the features of the composite panel deformation behavior. 

The geometrical and physical relations are assumed at each k-ply on the macro-level for the skin 

according to the Kirchhoff hypothesis. 

The stress-strain state components of each k-ply of composite stringers are calculated within the contact 

problem for the skin and rib with an improved rib model considering the plate and rib displacement and 

rotation angle equalities. The cross-section warping is considered free here. Shear strain occurring 

because of the thin-walled bar torsion is connected with its rotation relative to the chosen pole and also 

relative to the bending center in view of «pure» torsion theory additives (e.g. Boytsov and Gavva 2017) 

[4] 

    

(1) 
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(2) 

The cross-section warping - u4(x),  ( )

1

k s  is designed by the sector square epure for the open contour. 

 ( )

1

k s ,  
1

( )k s  - the perpendicular length from the contact point for the stringer and skin and from the 

bending center to the contour point,  0

1 s  is for «pure» torsion theory. 

 

,

k

i j
Q , i, j = 1, 2, 6 – the k-ply stiffness, 

 k

j , j = 1, 2, 6 – the temperature extension coefficients of each k-ply, 
 k

Нj , j 

= 1, 2, 6 – the tension deformation of each k-ply, ΔT – the difference between the common temperature and 

hardening temperature for the residual thermal stress calculation or the  external temperature field 

intensity. 

The stress-strain state components of each k-ply of composite stiffness ribs along y axis are calculated 

with the analogue expressions.  

The problem consists of finding the base surface displacements u0(x,y), v0(x,y), w(x,y).     

The ribs are considered operating in tension-compression, out-of-plane plate bending, in-plane plate 

bending and torsion. 

The equilibrium equations relative to the five unknown functions, namely, the longitudinal and tangential 

displacements, the deflection, the axis displacements due to cross section warping, and corresponding 

natural boundary conditions are obtained with the variation procedure of Lagrange.  

An equilibrium differential equation system is written in operator form with the linear differential operators. 

By using the symbol integration method, when four from five expressions are identically satisfied, the 

system can be reduced to a single eighteenth order linear non-uniform resolving partial differential 

equation for the potential function Ф(x,у),  with the help of which all accounting values are expressed 

The cross partial derivatives are of an eighteenth order, the derivatives by each coordinate are of twelfth 

order with respect to the linear differential operator of the resolved equation comprising the edge effects  

The natural boundary conditions help determine internal force factor relations. Forces and moments both 

depend on the longitudinal and tangential skin plane displacement functions u0(x,y), v0(x,y), and on the 

deflection function w(x,y). Thus, this shows that the problem is integral; in other words, it cannot be 

divided into a plane part and a bending part. 

If the structurally-anisotropic composite panel structure derived as a result of energy averaging becomes 

orthotropic, the linear differential operator of the resolving equation and linear differential operators of the 

relations between symmetrical stress-strain state components and potential function Ф(x, у)  will contain 

only even numbered derivatives with respect to x and y.  The  oblique symmetrical components are 

determined with odd numbered derivatives as follows: 

 

 18 ФL q  
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(3) 

 

The constants ,12 , 0,2,4,6,...,12i iK i  – in (3) depend on geometrical and stiffness structure 

characteristics; x = x/a, y = y/b are– non-dimensional coordinates with reference to the panel half-length 

a and to its width b. 

The resolved equation (3) comprises the main stress-strain state and edge effects. 

The general boundary value problem in the rectangular field is specified by elastic fixity conditions  

 

       
       
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(4) 
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where , , , ,  1,2,...,6i i i i i     are changed from 0 to 1 and 

, , , , , , , , , , ,x y xy yx x y x y x y xy yxN N N N M M Q Q C C B B  -- inner force factors. 

Equations (4) can be used to examine all possible boundary restraint combinations for connected plane 

and bending problems: free edge, simply supported edge, sliding fixation and constraining. In other 

words edge conditions may be cinematic, static or mixed.  

One further discusses the mathematical model with the proposal of the infinitesimal normal stresses 

caused by bar bending in the panel plane and bar cross-section warping. One considers the ribs 

operating in tension-compression, out-of-plane plate bending and torsion. 

The edge effects are neglected owing to the asymptotic aspects and the problem of main stress-strain 

state determination of structurally anisotropic panels is reduced to the solution of the boundary value 
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problem for the equation of the eighth order in the partial derivatives in a rectangular field. The edge 

effects are considered if the stress-strain state of the boundary field is determined 

Composite panel equilibrium equations and natural boundary conditions are formed by the variation 

method using the Lagrange concept as a result of the minimization of the entire potential energy of the 

system. This case the cross section warping is proportioned to the distributed torsion angle. 

An equilibrium differential equation system is written in operator form with linear differential operators. By 

using the symbol integration method, when the first and second expressions are identically satisfied, the 

system can be reduced to a single eighth order linear non-uniform resolving partial differential equation 

for the potential function Ф(x,у) ,  with the help of which all accounting values are expressed. 

If the structurally-anisotropic composite panel structure derived as a result of energy averaging becomes 

orthotropic, the linear differential operator of the resolving equation and linear differential operators of the 

relations between symmetrical stress-strain state components and potential function Ф(x, у)  [5] will 

contain only even numbered derivatives with respect to x and y.  The  oblique symmetrical components 

are determined with odd numbered derivatives as follows: 

 

 , 
  (5) 

 
 

The constants K8-i,i, i=0,2,4,6,8 – in (5) depend on geometrical and stiffness structure characteristics;  x = x/a, 

y = y/b – non-dimensional coordinates with reference to the panel half-length a and to its width b. 

The general boundary value problem in the rectangular field is specified by elastic fixity conditions 

  

                , 

 

  , 

(6) 

 

where γ i, δ i, αi,  βi , i = 1, 2, 3, 4   are from 0 to 1. 

The equations (6) can be used to examine all possible boundary restraint combinations for connected 

plane and bending problems: free edge, simply supported edge, sliding fixation and constraining. In other 

words edge conditions may be cinematic, static or mixed.  

The closed form boundary value problems solution for (5) is constructed by a single Fourier series 

 
(7) 

for particular boundary conditions along two opposite sides. These restrictions are called conformable 

and they satisfy the hinging condition of bending. However, the sliding fixation condition is in the 

tangential direction for the plane problem when the panel is loaded by shear force flows along its 

longitudinal edges. Face conditions are arbitrary and may be in a state of elastic fixity for symmetric or 

asymmetric boundary value problems. 

For an example, we accounted the static displacements and stresses in the flat angle aluminum panel 

eccentrically stiffened in the longitudinally-lateral directions and comprising composite bundles with 

the
bundE module, kg/mm2, as the stringer panel. The deflections and normal stresses are presented in 



KINEMATIC MODEL OF REFINED THEORY AND EXACT ANALYTICAL SOLUTIONS  

 

 

6 

 

Table 1. Obviously, it is possible to neglect the edge effects, as the difference in calculating of the stress-

strain state components is less than 3%. 

Table 1 Deflections, inner force factors and normal stresses for the panel  

with different composite bundle stiffness 
 

x     0 1,0 1,0 1,0 0 

Δ y     0,5 0,5 0,5 0,5 0,5 

z  mm ___ ___ ___ -0,5 -0,5 

bundE  N w/q  Nx/q Mx/q xσ /q  yσ /q  Δw  ΔNx ΔMx Δσ x  Δ yσ  

kg/mm
2    mm

3
/kg Mm mm

2       % 

0 
8 33,761 -136,82 -12612 367,30 -265,15 

0,18 1,36 0,02 0,35 0,23 
12 33,701 -134,98 -12609 368,59 -264,53 

18000 
8 19,232 -116,57 -12241 334,38 -219,69 

0,34 1,26 0,16 0,13 0,43 
12 19,167 -115,12 -12221 334,81 -218,76 

30000 
8 15,789 -108,68 -11997 324,10 -203,06 

0,42 1,06 0,01 0,06 0,51 
12 15,723 -107,54 -11996 323,91 -202,03 

 

The boundary value problems solution for (5) is constructed in a closed form by the method of uniform 

solutions for arbitrary non-conformable boundary conditions at the contour. A new method algorithm for 

solution as a series with a non-orthogonal system of general proper functions and analytically defined 

constants is proposed.  

The regular part of general integral is designed as a series by uniform proper functions  k y   

         01 02

1

, , , k k k

k

x y x y x y B y ch x




      
(8) 

                                                                                                                                            
The uniform boundary value problem for proper functions by one of the coordinates is formulated with 

partial solutions -  01 ,x y ,  02 ,x y . 

The condition of general orthogonality for uniform functions of the primary and adjoint problems under a 

vector space contains a weight matrix R  
   

 
1

1

0,

,

k i

k i

i k i

R dy
H

 
 

 





 
 




,

 (9) 
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iH  is the generalized proper function norm. 

 

The formula for unknown constants is constructed in closed form 

 

(10) 

 

The exact analytical solutions for edge problems recording the general treatment of the structure 

elements’ physical boundary conditions may be considered.  

One can estimate the influence of the production technology factors on the bearing strength of 

structurally-anisotropic composite panels if the boundary value problem is considered [5, 11] and 

boundary conditions are non-conformable as (6), the solution is designed by a single trigonometric series 

or uniform solution method.  

 

3. Static problem results and discussion 

As an example, we calculated the displacements on the laminate macro-level in the flat angle panel from 

carbon-plastic eccentrically stiffened in the longitudinally-lateral directions (Figure 1). The edge 

conditions are asymmetric about the x coordinate. The normal loading q(x, y) = const.  
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Figure 1 - Panel, stiffened in longitudinally-lateral direction 

Asymmetric boundary value problem 

Deflections with different edge restrictions 

Boundary conditions at lateral edges: plane problem – bending 

1 – constraining, 2 – sliding fixation, 3 – simply supported edge, 4 – free edge 

The deflections depend on the plane boundary conditions while the lateral edges are simply supported 

for bending. When these edges are constrained for bending the deflection curves coincide practically 

while the restriction conditions for the plane problem are varied.  

As the next example, one calculated the stresses on the laminate macro- level in the flat angle panel 

from carbon-plastic eccentrically stiffened in the longitudinal direction (Figure 2). The edge conditions are 

symmetric about the x coordinate, and the normal loading q(x, y) = const.   
 

 

 

Figure 2 - Panel, stiffened in longitudinal direction 

The normal stresses in the skin layers.  

The normal stresses in the stringer flange layers  

 

The conclusion for the deflection is similar to the previous one: the deflections substantially depend on 

the plane boundary conditions while lateral edges are simply supported for bending. When these edges 

are constrained for bending the deflection curves coincide practically while the restriction conditions of 

the plane problem are varied. 

As the next example, one has calculated the residual thermal stresses induced by cooling after hardening 

to the flat angle panel made of carbon-epoxy having asymmetric structure along its thickness (Figure 3). 

The panel contour is simply supported with respect to bending, and the longitudinal side restrictions 

correspond to the sliding fixation in the tangential direction. However, the lateral edges are free from 

forces and moments relative to the plane and bending problems  
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Figure 3 - Panel with asymmetric package structure. 

Influence of the reinforcing fibers preliminary tension  

on the residual temperature stresses 
 

The estimation of the influence of the reinforcing fibers’ preliminary tension on the residual thermal 

stresses level has been performed. For the composite panel comprising longitudinal, lateral and oblique 

plies (Figure 3), the equivalent residual thermal stresses decrease while the reinforcing fiber pre-stressed 

tension increases. The optimum level of allowable k-ply fiber deformation is 0, 35 (35%), where the whole 

package stresses are equal and minimum. 

 

4. Buckling problems 

Several studies (e.g. Chen et al. 2011; Huang et al. 2015; Kazemi 2016; Kim et al. 2002; Lindgaard et al. 

2010; Mittelstedt and Schroder 2010; Shafei and Kabir 2011; Vescovini and Dozio 2015; Yeter et al. 

2014) [8, 14, 16, 17, 20, 23, 26, 28, 29] describe the buckling problems of structurally-anisotropic 

composite panels, however, the presented mathematical model is new.  

The eighth order differential equations are resolved for the pre-critical stress-strained state and for the 
buckling problems (e.g. Firsanov and Gavva 2017) [10] 
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 (11) 
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The deflection function w(x,y) is coupled with the potential function Ф(x,y). The coefficients Rij , i=4,3,…,0 , 

j=0,1,…,4  in the relation formulas and the coefficients Kij , i=8,7,…,0 , j=0,1,…,8  in the resolving equation (11) are the 

constant values, which depend on the elastic characteristics of the material and geometrical structure 

parameters. All components of the stress-strain state including the inner force factors are related with the 

potential function Ф(x, y). 

The critical force definitions of both the general bending form of the thin-walled system buckling and that 

of the many-waved torsion buckling are of the interest in accordance with traditional design practices. In 

both the cases bending is integral with plane stress state. Thus, the buckling problem results in the 

solution of the boundary value problem for the eighth order equation with the partial derivatives in the 

rectangular field. 

The solution is designed in closed form by a double Fourier series for particular conformable boundary 

conditions along the panel contour.  

 
(12) 

 

The critical force calculated with the main uniform pre-buckling stress state (e.g. Firsanov and Gavva 

2017) for the general bending mode of buckling 

        
                            c = a/b 

(13) 

The formula for the critical loading P of the multi-wave torsion buckling problem coincides to this formula 

within the coefficients Kij and Rij. The coefficients ijK̂ , i,j = 0, 2, 4, 6, 8 and ijR̂ , i,j = 0, 2, 4  are determined by 

generalized stiffness characteristics while stiffness averaging for the elements of longitudinal set up to 

the skin is replaced with the discrete characteristics 
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2
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


  , 

c1 is the stringer distance; yi is the coordinate y of the discrete stringer. 

The mathematical model relations for the investigation of pre-critical stress-strain state of structurally-

anisotropic panels composed of composite materials are presented. The pre-critical stressed state of 

plane angle laminated panels made from polymer fiber composite materials with eccentric longitudinally-

lateral stiffening set is considered for the further development of refined buckling problems. 

The normal forces Nx, corresponding to the pre-critical stress state of the stiffened composite panel 

compressed along the x axis are distributed as [12] 

   
   

 
4

1,3,5... 1

sin

T H

x xi i
x x iL

i L iL

N N
N P N ch x i y

P P
 



 

   
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   
   (14) 

 x iL
N are the coefficients of single trigonometric series for the normal forces xN , known after the 
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determination of the constants of single trigonometric series,    ,T H

x xi i
N N  are the coefficients of single 

trigonometric series for the thermal and tension forces. 

Here
iL L iyz а  , iy

i

b


  ,  

Lz are the roots of the corresponding characteristic polynomial and are 

calculated using the MATLAB operating environment. 

The variations of the transverse forces yN  and shear forces xyN , yxN are obtained analog to (3).      

The critical force formula is designed with the orthogonalization procedure of the general differential 

equation of the curved surface. The expression 

 
 

 

   
2 2

4

2 2
1,3,5... 1

2 1 1

2 2

T H
iL x xiL i i

x iL
i L iLiL

P P

m N Nsh
N

i n i n i P Pm



  

 





 

 
 
 
 

  
                            

 

 (15) 

provides the range of values P for additional possible deformation of the base surface at m = 1, 2, 3,…, n 

= 1, 2, 3,…, m and  n are the wave parameters. 

The P with «*» is the critical force calculated with the main uniform pre-buckling stress state (13), the 

panel side ratio c = 2a/b, a, b are the panel half-length and width, correspondingly. 

The step by step method is used to determine the critical forces. The critical force P with «*»  calculated 

with the uniform pre-buckling stress state is proposed as an initial first approach. 

One can estimate the influence of production technology factors on the bearing strength of structurally-

anisotropic composite panels if the pre-critical stressed state is considered, or boundary conditions are 

non-conformable, and the solution is formed by a unitary trigonometric series or with the help of a uniform 

solution method. 

 

5. Buckling problem results and discussion   

Figure 4 shows the influence of the composite panel size on the force level corresponding to the general 

bending stability loss form and many-waved torsion buckling. The conditions for the existence of these 
buckling forms are revealed. 
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Figure 4 - Panel with longitudinally-lateral stiffening set. 

Influence of panel sizes on critical force level. Structurally-anisotropic model. Discrete ribs 
 

For a short panel, if c < 0,75, the many-waved torsion buckling occurs: n = 6, m = 8. If c = 0,75, the panel 

is equally buckled. The buckling for panels with 0,75 < c < 2,0 has the general bending form n = 1, m = 1. 

When c > 2,0, the buckling also exhibits the general bending form, but n = 1 and m = 2.   

Figure 5 shows the distribution of inner normal forces Nx for flat angle panes from carbon-plastic 

eccentrically stiffened in the longitudinal direction. The edge conditions are symmetric about the x 

coordinate. Compression loading is constant under in-plane bending.  

 
Figure 5 - Panel with longitudinal stiffening set. 

Influence of panel sizes on inner normal force distribution under in-plane bending 

 

Only for short panels, if the side ratio c < 1,0, the inner normal forces are distributed along the panel 

length almost uniformly 

The testing series of uniform compressed stiffened composite panels for carrying the objects  to the 

moment of stability loss (Figure 6) have been made using the special fixture. 
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Figure 6 - Experimental specimen 

 

The refined theoretical results and the experimental data are in agreement qualitatively with respect to 

buckling forms and quantitatively with respect to critical stresses, and they reveal a precision of 12% - 

13%. It confirms the authenticity of the mathematical model. 

The refined theoretical results and the experimental data are in agreement qualitatively with respect to 

buckling modes and quantitatively with respect to critical stresses within 12 - 13% if pre-buckling stress 

state is considered uniform. And they reveal a higher precision of 8 - 10% in view of non-uniform main 

pre-buckling stress state. Thus, it confirms the authenticity of the presented mathematical model. 

The testing series of uniform compressed stiffened panels comprising composite bundles for carrying the 

objects to the moment of stability loss (Figure 3) have been made using the special fixture for the 

proposed mathematical model verification. 

 

                                 
 

Figure 7 - Stringer panels compressed in the longitudinal direction  

   

The refined theoretical results and the experimental data are in agreement qualitatively with respect to 

buckling modes and quantitatively with respect to critical forces within 19 - 20% if pre-buckling stress 

state is considered uniform. The stringer cross section of the panel specimen is non-symmetric, but the 

numerical results were obtained for the panels with the symmetric cross section of the stringer. Thus, it 

also confirms the authenticity of the presented mathematical model. 

  

6. Conclusion 

Because the solution is obtained by analytical methods, the calculation time is minimal. This is of interest 

from the perspective of practical design using parametric analysis. The results of the stress analysis 
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calculations, as well as the results of the buckling analysis calculations, offer opportunities for reducing 

and optimizing the weight characteristics of aircraft elements. 
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