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Abstract 

To assist fixed-wing aircraft landing, a precise, robust and real time vision-inertial based navigation method is 

proposed. The work presented in this paper focuses on two points: (1) Runway detection. An inertial aided 

runway detection algorithm is improved, which can efficiently extract the corners of the runway contour from 

airborne forward-looking near-infrared images. (2) Pose estimation. Based on geographic coordinates and 

corresponding image features of runway corners, the aircraft pose relative to runway can be calculated by 

EPnP precisely. In order to improve the robustness and the output precision of EPnP in case of rare image 

features, some synthetic image features derived by inertial pose and airport geographic information also be 

considered as EPnP inputs. Experiments on real flight data show that accurate pose estimation for aircraft 

landing can be achieved, and the proposed method demonstrates the superiority in terms of speed, precision 

and robustness. 
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1. Introduction 
Approach and landing of fixed-wing aircraft is one of the most sophisticated flight phases, which is 

highly dependent on navigation precision, weather and surroundings. Precise position and attitude 

are significant to control aircraft land accurately and safely, then navigation method is essential to 

guide aircraft landing.  

Recent years many available landing navigation methods have been used for civil or military aircrafts 

landing. Instrument landing system (ILS) and distance measuring equipment (DME) are widely used, 

but they are vulnerable to several factors, such as radio, bad weather and high-rise buildings. 

Furthermore, Microwave landing system (MLS) is precise, but difficult to keep balance between 

performance, procurement and maintenance costs. Global navigation satellite system (GNSS) is 

lacking in many scenarios and vulnerable to jamming and spoofing[1], which makes it unavailable or 

unreliable. Moreover, Differential GNSS is accurate enough but expensive, which is not available for 

most general airports. Inertial navigation is limited due to its cumulate error and unable to provide 

precise pose information for landing solely. Ground control station is susceptible to man-made 

factors. These above issues could cause catastrophic flight accidents easily.  

Vision-based navigation provides a new perspective in aircrafts landing. Vision sensors acquire 

image by passive sensor then obtain position and attitude by image processing, which has 

advantages of high-precision, non-contact detection, anti-jamming, low cost, small size and low 

power consumption. Owing to independent of land and air devices, it has great superiority in anti-

electronic countermeasures and improvement of autonomy. 

Extensive work has been done in the area of vision-based navigation. Simultaneous localization and 

mapping (SLAM) is the research hotspot at present[2][3][4][5]. State-of-the-art SLAM methods have 

the virtues of self-localization and navigation under unknown circumstances, but it is not employed 

in our system due to the following reasons. (1) Accurate vision-SLAM requires high-quality feature 

tracking, matching and loop closure, high speed and maneuverability of fixed-wing aircraft arise 

critical challenges for finding and recognition of environment features, and it is difficult to ensure 
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pose data of updated real-timely. (2) Current typical SLAM algorithms are only applicable to indoor 

location or relatively small-scale outdoor scenes for robot or small rotorcraft, they are inaccurate in 

large-scale scene of several kilometers. (3) Airport surroundings is flat and lack of texture which 

cannot provide sufficient features for SLAM. Therefore, SLAM has poor adaptability in this case 

which is unable to provide precise, robust and real-time pose information to meet the requirement of 

fixed-wing aircraft landing. 

Beyond that, multifarious methods have been used for fixed-wing aircraft landing. Gui et al.[6] install 

four infrared lamps near the runway, extracting the exact position of lamps by airborne monocular 

camera image, which can be used to calculate the pose of aircraft for landing assistance. 

Nevertheless, the method is not universal due to the additional infrastructure. Besides, 

Ruchanurucks et al.[7] present a robust positioning method for fixed-wing unmanned aerial vehicles 

(UAV). By setting ground markers can be observed during landing, the system can achieve pose 

information with the help of inertial moment unit (IMU) and monocular camera. However, the method 

depends on artificial markers, lacking of autonomy. Besides, it is discussed in this article that the 

rotary matrix can be efficiently solved by high-precision IMU, but it also introduces inertial error. And 

a robust vision-based runway detection and tracking method with an effect energy function is 

proposed in[8]. Nevertheless, its performance is restricted by the high complexity. In addition, it can 

only detect the parallel lines of runway, which cannot provide accurate pose estimation. In addition, 

most of the existing algorithms are carried out under visible image, which is not applicable under the 

complex scenes, including fog, haze, rain. 

Traditional navigation systems (GNSS, INS) work well when cruising. However, aircrafts require 

accurate pose information with sub-meter precision during approach and landing, as shown in 

figure.1. Reliable information of position and attitude can be given by vision-based navigation for 

fixed-wing aircraft landing. Only a minority of scenes and markers can be observable by airborne 

camera in landing, where runway is the most conspicuous and reliable signs of the scene. Therefore, 

it has great practical value and promising prospect of application to research on pose estimation 

based on runway features. 

 
Figure 1 – The available landing scenarios and frame definition of the proposed method 

In this paper, airborne inertial data is used fully to assist monocular forward-looking infrared (FLIR) 

camera to extract runway features from a relatively small region of interest (ROI) rather than an entire 

image. Comparing with tracking algorithms such as KCF[9], it has higher processing efficiency and 

higher reliability without introducing extra inertial errors. Then accurate pose of aircraft can be 

calculated by efficient perspective-n-point (EPnP), which lay a basis for robust, precise and real-time 

navigation for landing assistance system. 

The rest of the paper is structed as follows. In section II, the algorithm frame of visual-inertial pose 

estimation is proposed. Furthermore, inertial aided runway features extraction and pose estimation 

are presented in detail. Section III provides a flight data experiment results and a discussion. In 

section IV, the conclusion is drawn and future work is described. 
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2. System Architecture and Implementation 
In this section, we proposed an algorithm frame for fixed-wing aircraft pose estimation during landing, 

as shown in figure 2. The complete frame includes three blocks. (1) Inertial aided ROI recognition; 

(2) Runway features extraction using inertial parameters; (3) Aircraft position and attitude estimation 

by EPnP Algorithm. 

 
Figure 2 – Vision-Inertial based runway detection and pose estimation algorithm framework 

2.1 ROI recognition 
ROI extraction is essential for the runway detection process. A huge amount of image data is 

acquired by the forward-looking camera mounted on fixed-wing aircraft, in which the runway is only 

a small part. Therefore, appropriate ROI can not only determine runway location in images, but also 

avoid processing entire image with high computational complexity. It is great significant to reduce 

computation consuming and ensure real time. 

In order to improve the detection precision and the robustness, a coarse-to-fine strategy is used in 

the system. At the coarse layer, a vision projection model from the world frame to the image frame 

is built by combining airborne navigation system with image sensor[10], and then a relatively 

accurate runway region of interest (ROI) can be extracted. 

Geodetic coordinates ( ), ,
p p p
L h (longitude, latitude and altitude) of runway corners are 

measurable in prior. Using the inertial information of the flight, we can recognize runway and obtain 

its position in the image roughly.  

2.1.1 Projection model 
According to the inertial navigation parameter, the transformation process from the geodetic frame 

to the pixel frame[11] is shown in figure 3. ( )= , ,
G

p p p p
L hP  represents the position in geodetic frame, 

( ), ,
a a a

G

a
L h=P  is the aircraft position coordinate in geodetic frame. The symbol

T
e e e e

p p p p
x y z=   P  

and 
T

e e e e

a a a a
x y z=   P are the feature point coordinate and the aircraft position coordinate in Earth-

Centered Earth-Fixed (ECEF) frame respectively. The feature point ECEF coordinate is mapped to 

the point  
T

g g g g

p
x y z=P in geography frame through matrix transformation [ ]

g g

e e
R T , and 

equivalent to coordinate 
T

n n n n

p x y z =  P  in navigation frame,
T

b b b b

p x y z =  P and

 =  
T

c c c c

p x y zP  denote the feature point coordinates in the body frame and the camera frame 

through the transformation matrix [ ]
b b

n n
R T , [ ]

c c

b b
R T  individually. Based on pinhole camera model, 

point  1
Timg

p
r c=P  in image coordinate system can be translated from c

pP .This can be obtained 

by off-the shelf toolboxes as for instance. 
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Figure 3 – Vision projection from geodetic frame to pixel frame 

2.1.2 ROI detection 

In this section, we illustrate the projection procedure from runway plane to airborne camera pixel 

plane. Then we can get the coordinates of runway corners in pixel plane. Because of cumulative 

errors, the calculated runway in the image does not coincide with the real runway image. Accordingly, 

we zoom it and obtain a rough contour of runway, and take the contour as the ROI for precise runway 

detection. The ROI detection process is shown in figure 4. 

  

Figure 4 – Inertial aided ROI recognition 

 

2.2 Runway Features Extraction 

Differing from rotorcrafts, fixed-wing aircraft cannot hover, then it demands high efficiency in vision 

navigation. Furthermore, in order to ensure the accuracy and stability of pose estimation, it is 

required that feature points coordinates are accurate enough. Thus, runway features extraction 

requires high accuracy and real-time performance. 

Due to the thermography principle of infrared camera, FLIR images with more details can detect 

distinct runway features in terrible weather. Figure 5 shows the visible and near-infrared images 

taken under the condition of haze. 

    
Figure 5 – Contrast of near-infrared (left) and visible (right) images in the low visibility weather 
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2.2.1 Synthetic Runway Contour  

Although inertial sensors have high refreshing frequency and low measurement delay, IMU is 

insusceptible to exotic environment. Current Visual–Inertial Navigation not only use vision 

information to correct the cumulative error of IMU unidirectionally, but also optimize inertial 

information. We utilize inertial parameters of aircraft to calculate ROI of camera images, and take 

IMU information as a constraint to detect edges of runway, which overcome most existing algorithms’ 

shortcomings of blind traversal. 

The outlier inertial aided runway features extraction scheme is as follow: 

•Compute ROI of images and inertial runway contour; 

•Preprocess the ROI; 

•Detect lines of ROI by LSD; 

•Make full use of inertial runway’s line angle and distance constraint to eliminate interference 

lines; 

•Eliminate non-edged lines by color variance. 

2.2.2 Line Segments Detection 

Generally, shooting distance of airborne camera is relative far away runway. Moreover, the weather 

is usually undesirable. Thus, the line segments are hard to be extracted. We preprocess the ROI 

images with guided filtering algorithm[12], then detect line segments by Line Segments Detection 

(LSD) algorithm[13]. 

Comparing with the line segment detection algorithm based on the Hough Transform[14] and 

Freeman chain code line extraction[15], there are three advantages for LSD: (1) Less time-

consuming to obtain a sub-pixel level result. (2) Strong robustness. It can detect line segments in 

images with texture and much noise. (3) Independent detection without toning parameters. The LSD 

algorithm is to merge pixels and control error. Bases on gradient features, a structure called Line 

Support Region (LSR) are used to model line edges. Traversing rectangle regions of image, the 

edges of region are conformed by angle tolerance and contrario[16][17].The false detection ratio can 

be automatically regulated by this approach, without toning parameters manually. 

2.2.3 Line Fitting 

The line fitting is based on the M-estimator[18] technique that iteratively fits the line using the 

weighted least-squares algorithm. Compared with least square estimation, the method is more 

robust, besides, abnormal points will have less impact for line fitting. Distance function of fitting is as 

following: 
2

2( ) 1 exp( ( ) )
2

C r
r

C
 

 
= − − 

 
                                                                  (1) 

where 2.9846=C . 

We dynamically detect ROI by attitude, filter line segments by color and inertial information, and fit line with 

endpoints, improving detection efficiency greatly. The work flow of runway detection is shown in figure 6. 
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Figure 6 – Inertia aided runway features extraction scheme 

2.3 Relative Pose Estimation 

Position and attitude solution algorithm is the core of visual-inertial pose estimation. The accurate 

and efficient measurement of the position and attitude is premise to land successfully. Precise pose 

estimation has great effects upon (1) Autonomous landing for fixed-wing UAV. (2) Rotorcraft landing. 

(3) Landing assistance system of manned fixed-wing aircraft. 

2.3.1 EPnP Principle 

There is now a general consensus that EPnP algorithm is one of the most efficient way for camera 

pose estimation, as shown in figure 7. 

 
Figure 7 – EPnP principle 

cF  stands for camera frame, and 
wF  stands for world frame. So, for every point p , we define control 

point 
w

ip ,
c

ip  as the world coordinate and camera coordinate, respectively. 

4 4

1 1

= =1w w

i ij j ij

j j

witha a
= =

 p c ， ,
4 4

1 1

= =1c c

i ij j ij

j j

witha a
= =

 p c，                                 (2) 

where the ija  is homogeneous barycentric coordinate. Because the equations are underdetermined, 

a solution exists. 

Theoretically, any control point is acceptable. Considering the stability of algorithm, we choose 

central point of control points, other points are main axis’ unit length points, derived from principal 

component analysis (PCA). So, we can translate camera coordinates into image coordinates by 

pinhole camera model. 

0
4

0

1

0

, 0

0 0 11

c

i x j

c

i i y ij j

j c

j

u f u x

i w v f v a y

z
=

 =

    
    
    
         

                                                     (3) 
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The last row of (3) implies 
4

1

=
=


w c

i ij j j

j

w a c z , substituting this expression in the first two rows yields two 

linear equations for each control point: 

4

1

( ) 0
c c

ij x j ij c i j

j

a f x a u u z
=

+ − =                                                        (4) 

4

1

( ) 0
c c

ij y j ij c i j

j

a f y a v v z
=

+ − =                                                        (5) 

We rewrite Eq. (4) and (5) in matrix form. 

1 2 3 40 with , , ,，   = =  
T

cT cT cT cT
Mx x c c c c                                                (6) 

where M is a 2n×12 matrix, generated by arranging the coefficients of (4) and (5) for each control 

point, and x is a 12-vector made of the unknowns, consisting of coordinates of control points, which 

can be calculated by solving the zero-space eigen value of
T

M M  with computational complexity of 

( )O n . 

1

=

N

i i

i


=

x v                                                                         (7) 

where 
iv are the columns of the right-singular vectors of M corresponding to the null singular values 

of M. 

Specifically, finding optimal /R t  is implemented through Gauss-Newton algorithm to minimize 

 
1 2 3 4

= , , ,   
T

β , objective function is 

( )
2 2

( , ) . .

( )=
c c w w

i j i j

i j s t i j

Error


− − −β c c c c                                               (8) 

In the preceding step, we get zero-space errors of different dimension and choose minimum error of 

β , then calculate x accordingly. Therefore, we can recovery 3D points in camera coordinate, and 

figure out control points’ camera coordinates according to the homogeneous barycentric coordinates. 

Furthermore, coordinate transformation from world coordinate frame to camera coordinate frame 

can be calculated by known coordinates in two coordinate systems. 

The method has the attractive property of efficiency, but a small number of reference points in the 

algorithm has a direct impact on the accuracy for pose estimation. Therefore, we calculate deviation 

of runway corners between real image pixel and project position increase the reference points to 

improve accuracy and stability by using offset information, and it has a little impact on efficiency. 

2.3.2 Aircraft Pose Estimation by EPnP 

According to the projection model, camera coordinate of point D is: 

( )

c e e

O O I

c f m b t e e f m m

O m b n e I O I m IMU camera

c e e

O O I

x x x

y y y

z z z

−

=     − + 

−

   
   
   
      

R R R R R t - t                                 (9) 

0

0 = ( )

0

c e e

O O I

c f m b t e e f m m

O m b n e I O I m IMU camera

c e e

O O I

x x x

y y y

z z z

−

=  + =     − + 

−

    
    
    
        

R t t R R R R R t - t
                             (10) 

where
t

e I
R  is coordinate transformation with IMU’s center as origin from the ECEF frame to the 

tangent plane frame.  

( )

−

=     − + 

−

   
   
   
      

c e e

D D I

c f m b t c e f m m

D m b n e I D I m IMU camera

c e e

D D I

x x x

y y y

z z z

R R R R R t - t                                      (11) 

Equally, camera coordinate of point D can be expressed by R and t : 
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c e e t

D D O D

c t e e t

D eO D O D

c e e t

D D O D

x x x x

y y y y

z z z z

−

=  − + =  +

−

     
     
     
          

R R t R t                                                 (12) 

where 
t

eOR  is coordinate transformation with point O as origin from ECEF coordinate system to 

tangent plane coordinate system. 

( )

− −

=  − +    − + 

− −

     
     
     
          

c e e e e

D D O O I

c t e e f m b t c e f m m

D eO D O m b n e I O I m IMU camera

c e e e e

D D O O I

x x x x x

y y y y y

z z z z z

R R R R R R R t - t                                (13) 

(12) and (13) are physically equivalent, so 

=

− − −

 − +    −    −

− − −

     
     
     
     
     

e e e e e e

D O O I D I

t e e f m b t c e f m b t c e

eO D O m b n e I O I m b n e I D I

e e e e e e

D O O I D I

x x x x x x

y y y y y y

z z z z z z

R R R R R R R R R R
                                     (14) 

where = 
f m b f

m b n n
R R R R , and 

=

     − − −
     

 − +  −  −     
     − − −     

e e e e e e

D O O I D I

t e e f t c e f t c e

eO D O n eI O I n eI D I

e e e e e e

D O O I D I

x x x x x x

y y y y y y

z z z z z z

R R R R R R
                                         (15) 

-

- - =

-

e e

D O

t f t e c

eO n eI D O

e e

D O

x x

y y

z z

 
 

   
 
 

R R R R 0（ ）                                                           (16) 

The equality (16) follows in condition of - = 
t f t

eO n e I
R R R R 0 .There is some difference in longitude and 

latitude between point O and center of IMU. Approximately, we assume that =
t t

eO e I
R R . 

= =  
f f m b

n m b n
R R R R R , attitude matrix ( ) ( )=  

b m T f T

n b m
R R R R ,therefore, angles of roll, pitch and yaw can be 

calculated by decomposing matrix
b

n
R . The position of IMU in tangent plane coordinate system is: 

( ) ( ( ))

   −
   

  − =  − +    
   −   

t e e

I I O

t g e e f T f m m

I e I I O n n IMU camera

t e e

I I O

x x x

y y y

z z z

R R t R t - t                                (17) 

3. Experiments and Result 

Flight test data acquired by a modified Y12 (a general aviation fixed-wing aircraft) from Pucheng 

airport is used to verify our method for precise pose estimation. All experiments are performed on a 

computer with Intel Core i7-8550U processor clocked at 2.00GHz and 16.0 GB memory. All codes 

are run in Visual Studio 2010 with OpenCV 3.40. 

 
Figure 8 – Instruments mounted byY12 and runway for data acquisition 
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It is discussed in articles[19][20] that small number of reference points will cause large deviation for 

pose estimation. The effect of number of reference points on accuracy in our system is show in table 

1. To improve the stability and precision of EPnP, 16 points in Pucheng airport have been measured 

precisely. 

Table 1 The estimation error for different number of reference points 

Estimation error(%) 8 points 10 points 13 points 16 points 

Distance error (200ft) 0.05 0.03 0.03 0.03 

Distance error (100ft) 0.48 0.42 0.42 0.39 

Distance error (60ft) 1.75 2.16 1.98 2.65 

Rotation error (200ft) 0.14 0.14 0.14 0.14 

Rotation error (100ft) 0.47 0.42 0.42 0.40 

Rotation error (60ft) 1.49 1.49 1.48 1.48 

 

We obtain pixel coordinates of measured points by calculating offset of runway corners between 

detected corners and projective corner points by inertial parameters, then accurate position and 

attitude of aircraft is achieved.  
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Figure 9 – Runway detection result and pose estimation error in Local East-North-Up (ENU) frame 

 

As shown in figure 9, the experimental result indicates that the proposed method has advantages in 

both runway detection and pose estimation, errors of translation and distance are within 1.0 m at the 

altitude of 40m-90m.But the accuracy of the pose estimation has fluctuated below 40m due to runway 

detection error. Although line segments detection is more precise at a lower elevation, interferences 

also occur increasingly, which have brought on difficulty in runway corner detection. And the errors 

are amplified in small-scale, any minimal disturbance leads to inaccuracy of pose estimation. By 

contraries, features change is marginal on larger scales. 

 

Figure 10 – Time consume 



LANDING POSE ESTIMATION 
 

11  

In addition, comparison of time consume with 16 feature points between EPnP and DLS PnP[21] 

leads to the conclusion that accuracies of two method are equivalent, but EPnP algorithm can save 

more than 25.08%computation time on average. Besides, total time of runway detection and pose 

estimation shown in figure 13, which is related to the size of ROI. The ROI size arises with the altitude 

decreased, and features of ROI increase resulting in more time consume for line segments detection 

and line fitting. 

4. Conclusions and Future Work 

In this paper, a real-time and accurate visual-inertial pose estimation for fixed-wing aircraft landing 

is proposed. The improved algorithm implements runway detection in real time by adjusting ROI with 

altitude, optimizing line segments filter and line fitting with endpoints. Furthermore, Increasing the 

number of reference points artificially compensates weakness that EPnP is inaccurate with less 

feature points. The experimental results indicate that the proposed method has advantages in both 

the real-time and the robustness, which takes full advantages of the airborne navigation information 

to estimate aircraft pose. 

In future works, the authors will use deep learning methods to extract runway feature. Besides, 

projection error can be calculated, further reducing the ROI size and reducing computation time. 

Furthermore, the proposed method will be applied to multithreading and run on the embedded 

computer to test its efficiency. 
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