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Abstract

With the continuous increase in the number of commercial flights, environmental and economic concerns are key drivers
towards the reduction of aircraft operational cost and emission of greenhouse gasses. The use of aerodynamic shape
optimization, regularly carried out in a deterministic fashion, plays a key role in reducing aerodynamic drag and the overall
carbon footprint. However, the sensitivity of the optimum shape to operational and environmental uncertainties can affect
the real aircraft performance. A possible solution to increase the robustness of existing aircraft is the development of retrofits
that are tailored to the current airliner’s operations. Shock control bumps are attractive retrofit for aircraft flying in routes at
considerably higher speeds than the design point. The objective of this paper is the robust design of a 3D array of shock
control bumps that can be retrofitted to the XRF1 transport aircraft configuration. Realistic uncertainties in Mach number,
lift coefficient and altitude are extracted following aircraft surveillance data using the OpenSky Network for a selected flight
route. A tailored Gradient-Based Robust Design methodology that combines the adjoint method with Gaussian Processes is
used for the optimization under these uncertainties. The robust optimum array of bumps is able to mitigate the normal shock
wave over the upper surface of the wing, reducing the average drag by 3.2% compared to the clean wing. More importantly,
its performance is superior compared to the configurations obtained at single-point and multi-point optimization, showcasing
the benefits of a probabilistic formulation for the retrofit of 3D shock control bumps.

Keywords: Gradient-Based Robust Optimization, Shock Control Bumps, Aerodynamics, Uncertainty Quantification, Ro-
bust Design

1. Introduction
With the continuous growth of commercial aviation, environmental and economic concerns are key drivers to-
wards the reduction of operational costs and emission of greenhouse gasses [1]. The aerodynamic design of
transonic wings is already a mature field, and the use of aerodynamic shape optimization is a well established
discipline in industrial setting [2]. However, aircraft manufacturers design configurations taking into account a
representative but limited set of flight conditions. The cruise point is chosen to simplify and have more control
of the design process. Even a multi-point approach [3, 4] does not truly represent reality, as still, only a discrete
combination of flight conditions are looked upon. State of the art work focuses on the optimization under a large
number of discrete mission points such as [5], with focus on payload and range, or by the minimization of the
average value [6], where the flight conditions (in this case Mach and lift coefficient) are approximated to normal
distributions according to quadrature methods.
In practice, airlines do not always fly at the conditions they were designed to operate. They are affected by
operational requirements and environmental uncertainties. The cost index, the ratio between time and fuel-
related costs [7], also plays a key role in determining the aircraft speed. As a result, Reynolds number '4, Mach
number " and lift coefficient �! , three of the most important parameters when performing aerodynamic design,
can not be treated as single deterministic values in the optimization process. A full probabilistic approach is
required to better simulate the real performance of the aircraft. On the one hand, the aircraft true airspeed (and
consequently the Mach number) is affected by several factors such as scheduling, wind and other environmental
uncertainties. Pilots may decide to fly at (slightly) higher Mach numbers if they are late or under unexpected
headwind (and thus a reduced ground speed), or at reduced speeds it in case they have tail wind or decide
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to save fuel, in relation with the cost index [7]. On the other hand, the aircraft operational weight is one of the
most difficult parameters to predict. Despite an initial estimation can be given for the take-off weight according
to the aircraft empty weight and fuel, several factors can strongly influence it such as passengers and cargo
weight or estimation of fuel density (even a small shift can lead towards a big change in weight). In addition,
weight is constantly changing during the flight, as is dependent of the aircraft aerodynamic efficiency and specific
fuel consumption of the engines. As a result, when flying at constant altitude the lift coefficient is continuously
decreasing. Aircraft can not always fly at the optimal altitude for a given weight, and sometimes need to wait
more than expected to get ATC clearance to climb at higher flight levels, influencing fuel consumption.
These changes in operational conditions leads towards the deterioration of the average performance compared
to the predicted when it was designed using deterministic methods. The ideal solution would be to robustly design
the whole aircraft taking into account a probabilistic approach of these uncertainties beforehand. However, this
is not always possible. OEM’s can not predict how a new aircraft will be operated, as ATC regulations and
airliners requirements are constantly changing. Following the same reasoning, airlines may decide to change
their operations according to the improved performance of a novel configuration. As a result, a chicken-egg
situation is created in which OEM’s are unable to anticipate the operational behaviour of their costumers, and
airliners can not adapt beforehand their operations.
A possible solution to increase robustness of existing aircraft is the development of retrofits that are tailored to
the current airliner’s operations. These devices in theory could be added to a current fleet at relatively low cost,
improving the average performance compared to situations in which no retrofit is added. An attractive retrofit
would be the addition of shock control bumps for aircraft flying in routes at considerably higher speeds than the
ones they were designed from. When aircraft fly faster or with a higher lift coefficient, stronger shock waves are
present over the upper surface of the wing, increasing wave drag. This increase in drag can be mitigated by
robustly designing tailored shock control bumps that could isentropically decelerate the flow [8]. For simplicity,
the shock control bumps can be fixed devices placed over the upper surface of the wing [9]. As these would be
tailored for the aircraft operations (e.g. designed specifically for given route), an adaptation of the bump in flight
would not be necessary saving in installation costs and complexity of a moving mechanism. In overall, a wing
with a robustly designed array of shock control bumps would outperform the average performance of the same
clean wing at cruise conditions.
Shock Control bumps were first introduced in 1992 for the mitigation of wave drag [10]. Further studies took place
in Europe within the EUROSHOCK II project [11] and in the USA [12] to investigate its full potential. From the
2000s, the focus has been on understanding the flow physics [13] and the realization of optimization studies [14],
[15]. A complete overview of Shock Control Bumps is given in [16]. A crucial aspect that is gaining more attention
recently is the need for a robust SCB configuration for industrial applications [17], [18]. The robustness of shock
control bumps, i.e., its ability to effectively reduce wave drag at different flight conditions, is of primary concern as
they are highly sensitive to the shock wave location [16]. At freestream velocities or lift coefficients different from
their design point, SCBs suffer from adverse effects as the shock wave is not located in the designed location [8].
For example, when the shock wave moves upstream (due to a decrease in flight speed or lift coefficient), the flow
is re-accelerated due to the curvature of the bump, leading to a second supersonic region behind the first shock.
On the contrary, if the shock is located downstream of the SCB, no lambda shock structure is generated and the
flow is further, leading to an increased shock strength and possibly causing flow separation. As a result, efficient
robust optimization techniques can cope with the realistic design of SCBs by accounting for the uncertainties
during the design stage [19].
The objective of this paper is the efficient robust design of shock control bumps for a transonic aircraft in order
to improve the average performance of a fleet under realistic operational uncertainties. Up to now, three main
limitations made not possible the robust design and retrofit of aerodynamic components: the lack of efficient
robust design frameworks able to deal with expensive CFD simulations, the lack of public data regarding aircraft
operations to characterize uncertainties and the lack of realistic test cases and applications that could be used
for the robust formulation. Each of this limitations will be overcomed in the present paper. A robust design frame-
work that uses and adjoint formulation in combination with Gaussian Processes will be introduced in Section 2.
. In Section 3., the XRF1 research aircraft configuration will be introduced, together with novel parametrization of
an array of shock control bumps to be retrofitted over the upper surface of the wing. In Section 4.aircraft surveil-
lance data will be used to investigate operational uncertainties, with special focus on flight speed. Finally, the
robust optimization results will be introduced in Section 5.and compared with those obtained using deterministic
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optimization, demonstrating the need of a probabilistic approach.

2. Robust Design Framework
This section presents the optimization under uncertainty framework used to efficiently obtain the optimum con-
figuration. The exact details of the framework can be found in [20].

2.1 Problem Definition
The classical deterministic optimization problem is defined through the optimization of the aircraft drag coefficient
�� , depending on the design variables GGG at given operational conditions, ���

�∗(GGG∗) = min
GGG
{�� (GGG, ���)} (1)

To reduce the sensitivity of the drag against the operating conditions, the multi-point optimization can be chosen.
The minimization consists on a weighted average of the �� evaluated at =< flight conditions:

�∗(G∗) = min
GGG


=<∑
9=1
F 9�� (GGG, ��� 999)

 (2)

However, the weights are usually selected according to expert knowledge and the optimum configuration is
strongly dependent on the selected flight conditions.
The robust optimization involves the presence of uncertainties bbb either in operational conditions, geometry, or
both. As a result, the �� becomes a random variable and the problem is shifted towards the optimization of
an statistic of the �� . In this case, a robust design approach is defined by minimizing the average drag, `��
(mean) and variability f�� (standard deviation).

�∗(GGG∗, bbb) = min
GGG

{
F``�� (GGG, bbb) +Fff�� (GGG, bbb)

}
(3)

By changing the weights, it is possible to come upwith different configurations with focus on variability, expectation
or both.

2.2 Gradient-Based Optimization
Gradient-based aerodynamic shape optimization is a mature technology [21, 22] as it is able to handle hundreds
of design parameters, the relatively fast convergence towards an optima and the possibility of obtaining gradients
through an adjoint formulation. Following equation (1), from an initial sample GGG888 , the optimum solution can be
found through an iterative process where the next step GGGi+1 is found by:

GGGi+1 = GGG888 + ℎ∇� (4)

where ∇ is the gradient (search direction) of the objective function �, and ℎ is the step size along the search
dimension. The use of an adjoint formulation [23] enables the calculation of sensitivities at a cost independent
on the number of design parameters, in opposition to finite differences. This is especially suitable when the
number of cost functions is relatively small compared to the number of design parameters. However, gradient-
based optimization can only lead to a local optimum and its solution is dependent on the initial starting location,
GGG111.
Under uncertainty, the objective function becomes a random variable. Following the minimization of mean and
standard deviation in equation (3), from a given sample GGG888 , the next one GGGi+1, is found by:

GGGi+1 = GGG888 + ℎ∇� (GGG888) = GGG888 + ℎ
[
F`∇`�� (GGG888) +Ff∇f�� (GGG888)

]
(5)

The statistical moments of the �� , `�� (GGG), f�� (GGG) and its derivatives, ∇`�� (GGG), ∇f�� (GGG), are required for
the gradient based optimization.
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2.3 Obtaining the Gradients of the Statistics
At a given design point, GGG888 , the deterministic gradients of the �� with respect to the design parameters at real-
izations bbb 999 , 9 = 1 . . . =b are usually available using an adjoint formulation: ∇.

(
GGG888 , bbb 999

)
. From these, the gradient

of the mean value at the design point ∇`. (GGG888) =
{
3`

3G1

���
GGG888
,
3`

3G2

���
GGG888
...

3`

3G3G

���
GGG888

})
are derived. The derivative of the

mean value of the �� with respect to a given design parameter G: at any given design point GGG8 ,
3`��
3G:

���
GGG8
, is

obtained from:

3`��

3G:

���
GGG8
=

1
=b

=b∑
9=1

3��

3G:

���
GGG888 , bbb 999

(6)

Where 3��
3G:

���
GGG888 , bbb 999

are realizations of the derivative at =b different uncertain locations bbb 999 at the design point GGG888 .

These derivatives are computed non-intrusively using an adjoint computation.
The derivative of the standard deviation of the�� respect to each design parameter also is also found analytically:

3f��

3G:

���
GGG888

=
1

=b f�� (GGG888)

=b∑
9=1

(
.

(
GGG8 , bbb 999

)
− `�� (GGG8)

) (
3��

3G:

���
GGG888 , bbb 999

−
3`��

3G:

���
GGG8

)2
(7)

This formulation is generic and only requires a large number of samples, =b , evaluated in the full order model.

2.4 Surrogate Based Uncertainty Quantification
The main problem of uncertainty quantification is the large number of function evaluations required to propagate
the uncertainty of the input parameters (in this case operational conditions) to the�� at any given design, GGG 9 [24].
To directly perform Monte Carlo Simulations is prohibitive when using CFD solvers. A typical approach is then
the use of surrogates of the stochastic space for example, through Polynomial Chaos Expansion or Gaussian
Processes Regression (GPR).
GPR models have been traditionally used in aerodynamic shape optimization as surrogate models for global
optimization [25]. However, these have been recently used as non-intrusive approach to perform uncertainty
quantification due to its good capability to globally represent the stochastic space [19, 26].
The main idea of UQ in Gaussian Processes is as follows: at a given configuration, GGG888 , an initial design of
experiments (DoE) sampling in the stochastic space (in this case random operating conditions), is evaluated in
the full order model. Based on this sampling, the GP is built. Then, a large number (=b ) of Quasi Monte Carlo
samples can be cheaply evaluated in the surrogate to obtain the statistic, such as the mean or standard deviation
of the drag, following equation 8,

`�� (GGG888) =
1
=b

=b∑
:=1

�̂�
(
GGG 9 , bbb:

)
f�� (GGG888) =

√√√
1
=b

=b∑
:=1

[
�̂�

(
GGG 9 , bbb:

)
− `��

]2 (8)

where �̂�
(
GGG 9 , bbb:

)
is obtained by prediction of the surrogate built in the stochastic space bbb. TheGaussian Process

model consists of Universal Kriging with a Gaussian Kernel (exponent fixed to 2). They hyperparameters of the
correlation model are tuned according to the maximization of the model likelihood through Differential Evolution.
The Surrogate-Modelling for Aero-Data Toolbox (SMARTy) developed by DLR is used for the initial Design of
Experiments sampling and for the creation of the Kriging surrogate [27].
To increase the accuracy of the statistics, after the DoE, an active infill criteria that deals with sampling evenly in
the stochastic space [28] is used. Gaussian Processes provide the estimation of the surrogate error at any given
point in the stochastic space, B̂(bbb) [25]. Then, new samples are added in the location bbb∗: where the product
of the probability distribution function of the input parameters, PDF- times the error estimation of the error is
maximized. The optimum location is found in the surrogate through Differential Evolution. Additional details of
the methodology can be found in [19]
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2.5 Optimization Architecture
The optimization framework, firstly introduced in [20], combines the gradients obtained by the adjoint formulation
with the uncertainty quantification using GPR. As shown in Figure 1, this consists of two levels: the gradient based
optimizer in the outer level, and the SBUQ framework in the inner one. A Sequential Least SQuares Programming
(SLSQP) [29] is selected as optimizer. At any given design point, GGG8 , the optimizer requires both the statistic (blue
dot), such as the mean, `(GGG), and its gradients (green arrows) ∇`(GGG888) w.r.t. the design parameters. The SBUQ
is not only used to obtain the statistics, but also the gradients. As a result, a surrogate model of the gradients is
constructed per each design parameter G: to accurately obtain the gradients of the statistics.
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Figure 1 – Robust Design Framework using the Adjoint and Gaussian Process [20]: a) Gradient
Based Optimization of the mean; b) Uncertainty Quantification through Gaussian Processes of the

�� and each of its gradients; c) Evaluation of each deterministic solution in full order model

3. Definition of Test Case
The following section introduces the configuration used as test case, the numerical model and a suitable parametriza-
tion for the retrofit of shock control bumps.

3.1 XRF1 Configuration
For a realistic representation of commercial transport aircraft, the Airbus XRF1 research aircraft is selected as
test case. Resembling the Airbus A330, the XRF1 is a generic wide-body, twin-engine configuration for long-
range missions that is designed to carry around 350 passengers. The configuration is provided by Airbus as a
platform for research with external partners on the development and demonstration of relevant capabilities. It has
been used in the past in several European and DLR projects. For the demonstration of the capabilities of shock
control bumps, only the wing-body configuration is considered as it is representative enough of the aerodynamic
features of transonic flow. The mesh and surface pressure coefficient are shown in Figure 2.
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Figure 2 – Numerical mesh(left) and pressure coefficient distribution (right) of XRF1 configuration

3.2 Numerical Model
To obtain the aerodynamic performance of the XRF1, the high-fidelity DLR flow solver TAU [30] is executed on
an HPC cluster system using DLR’s FlowSimulator Data Manager (FSDM) environment. The Reynolds Average
Navier Stokes (RANS) equations are solved using the Spalart-Allmaras turbulence model. The solution is con-
verged when the density residual is lower than 1e-7. A mesh deformation tool developed by DLR using linear
elasticity theory [31] is used to change the geometry at any given design vector.

3.3 Parametrization of Shock Control Bumps
Two different alternatives can be chosen for the design of shock control bumps: a continuous extruded 3D bump
and a set of multiple bumps. The later is preferred as ease of manufacture and integration, despite the former
can eventually lead to better performance due to the possibility of increasing the parametrization.
An array of individual shock control bumps is placed over the upper surface of the wing as shown in Figure 3.
The cross section at the center of each bump is defined by means of a Hicks-Henne Sinusoidal Function with 5
design parameters for each bump, following the 2D parametrization of Mazaheri [32] and Tian [33].

I (G) = ℎ1D<?
[
sin

(
c

(
G− GBC0AC
;1D<?

)<)] C1D<?
, GBC0AC ≤ G ≤ GBC0AC + ;1D<? (9)

where m is used to modify the asymmetry of the bump:

< =
log (0.5)

log
(
Gℎ1D<?

) (10)

The slope of the curvature of this function is zero at both ends. As a result, no discontinuities are present between
the bump and the airfoil. A second advantage with respect to other parametrization such as NURBS curves is that
the Hicks-Henne parameters represent the physical geometry of the bump, allowing for a straightforward definition
of the design space as shown in Table 1. The parameters are normalized according to the airfoil chord length,
2. The 3D geometry is achieved by extruding the 2D bump spanwise along the wingspan, allowing for a smooth
bump. As a result, the width, F8 and the lateral location H of each bump are also design parameters, with the
constraint that no overlapping bumps can exist. This flexible parametrization is able to handle an arbitrary number
of bumps. However, to avoid dealing with a mixed-integer problem, the number of bumps is fixed beforehand for
each optimization.
The bounds of the parameters have been chosen according to physical constraints in order to reach a realistic
design. For example, a bump height of 0 is equivalent to the baseline configuration of the wing with no bump.
The upper limit of 0.0152 is chosen having into account that the order of magnitude of the bump height is strongly
related to the boundary layer displacement thickness. The location of the bump is centred along the shock wave
location of the initial wing.
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Figure 3 – Parametrization of an array of shock control bumps over a 3D wing

Table 1 – Design parameters for each shock control bump

Parameter Description Lower Bound Upper Bound
ℎ1D<?/2 Bump maximum height 0 0.015
Gℎ1D<?/2 Bump maximum height location 0.4 0.85
;1D<?/2 Bump length 0.15 0.45
GBC0AC/2 Bump starting location 0.3 0.54
C1D<? Bump slope factor 0.2 0

F1D<?/F1D<?,<0G Bump width 0.0 1
H1D<?/H1D<?,0 Bump Lateral displacement 0. 1

3.4 Deterministic Cruise Point
The cruise point is referred as the "deterministic" flight condition as no uncertainties are present. In this case, the
XRF1 operating point is chosen as freestream Mach number " = 0.83, flight level FL=380, and lift coefficient
�! = 0.5, following [34]. The angle of attach is changed iteratively during the flow solution in order to match the
required lift. Assuming a standard atmosphere [35], the freestream pressure, density, and Reynolds number can
be obtained.

4. Parametrization of Uncertainties: OpenSky Data
The main objective of this section is to come up with a representative dataset of operational uncertainties for the
XRF1 configuration, that can be directly used when performing CFD simulations. The freestream Mach number,
the lift coefficient and the aircraft altitude are the chosen parameters.
To understand the variability in operating conditions of a representative fleet of aircraft, data from the OpenSky
network is gathered. The OpenSky Network is a community-based receiver network that collects real-world air
traffic data through the Automatic Dependent Surveillance Broadcast ADS-B and Mode S technologies [36].
These provide detailed aircraft information over the publicly accessible 1090 MHz radio frequency channel. In
opposition to commercial services available in the Internet that include radar visualization, OpenSky gathers the
raw data and makes it accessible to researchers.
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4.1 Gathering and Analysing Operational Data
The key indicators in this analysis are the aircraft true speed (TAS), Mach number and aircraft altitude. These
datasets are provided almost at every second by the interrogation of the Mode S secondary surveillance radar.
In particular, the Comm-B Data selection (BDS) codes, provides information to ATC regarding callsign, commu-
nication capabilities and aircraft flight states. The raw data can be received with a simple ground receiver, and is
stored by OpenSky in a database. This can be easily decoded to obtain not only aircraft speeds, but also mete-
orological information, turn rates and aircraft intent among others. For more information regarding the extraction
and translation of Mode S raw data, [37] offers a detailed overview. In this work, the Python library pymodes-
opensky [38] is used to automatically extract the data from the Impalla Shell of OpenSky. The necessary inputs
are the given aircraft (identified by the ICAO 24-bit address code) and the period of time in UTC in which the
information wants to be extracted. If the aircraft was flying during that time, the required dataset is obtained.
Specific flights can be found by callsigns combining the information of and additional database that includes the
callsign, ICAO 24-bit address code, departure airport, departure time, landing airport and landing time for all the
flights for a given day. The acquisition of each of the quantities of interest is explained with more detail below:

1. Mach Number: For the aircraft speed, the Mach number is directly obtained from the BDS-60 codes for
approximately each second of flight. It provides a more accurate vision of the aircraft speed than by using
the TAS.

2. Altitude: Regarding the aircraft altitude, this is directly provided by the ADS-B data. The change in altitude
during cruise is strongly conditioned by ATC, as aircraft do not always follow the optimum altitude required
for maximum performance. Eastbound flights follow odd flight levels, while westbound flights follow even
flight levels. From the altitude, using standard atmosphere asusmptions [35], the freestream pressure,
density and viscosity are found. As a result, in combination with the Mach number, the Reynolds number
of the aircraft can be directly obtained.

3. Lift Coefficient: The most difficult calculation is the determination of the aircraft weight in flight. This takes
into account many assumptions as well as engineering knowledge from the designers. First, aircraft weight
can be assumed to exponentially decrease following Breguet equation between take-off and landing. Take
off weight includes empty weight (publicly available), fuel weight and payload, which entails an assumption
in the number of passengers and cargo. Required fuel weight is obtained for a given mission according
aircraft type, departure and destination airports, accounting as well for reserve weight. Landing weight
is equal to take-off weight minus the consumed fuel. Assuming level flight in cruise, the lift is equal to
the current weight, and can be then directly obtained at each instant according to the Mach number and
altitude (air density).

�!,8 =
,86

0.5d+2(A4 5
=

,86

0.5W"2%(A4 5
(11)

As a result, the required operational conditions for all flights for a given flight route and airliner can be automatically
obtained for a period of time. The process is summarized in Figure 4. In that example, the flight data for A320 for
the same flight route (callsign) operated in Europe is extracted for a month. Figure 4a shows the Mach number
vs time, where the difference in colours correspond to different days. The Mach number is recorded from take-off
to landing. Note the variability in the flight duration and in the landing time. From the data, cruise information is
filtered according to constant flight level taking into account the altitude, as shown in Figure 4b. For each individual
flight, a Kernel Density Estimator is performed to obtain the individual probability density functions (PDFs) of the
Mach, as shown in Figure 4c. This already shows how there is a considerable change in speed from flight to
flight. Finally, all individual PDFs can be combined into a single PDF which characterizes the distribution of the
Mach for a given callsign and airliner (flight number) as it appears in Figure 4d. In that case, the PDF is centred
around Mach 0.78, the official cruise point of A320.

4.2 Proposed Approach
For our study, the interested lies in the performance of A330 aircraft, which strongly resemble the characteristics
of the XRF1 configuration. In particular, the performance of all the A330 flights operated by five major European
carriers is extracted and analyzed for the months of July and August of 2019. Only flights covering continental
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(a) Mach vs time for several flights (b) Filtered cruise Mach vs time for several flights

(c) PDF of Mach for individual flights (d) Combined PDF of Mach for given flight route

Figure 4 – Different steps to obtain the PDF of Mach number for a given flight route

Europe and middle East are selected, as these are the locations with most receivers. An additional table provides
for any given day information for the flights for each of the aircraft of interest: callsign (flight number), first seen,
last seen, departure airport and origin airport. This provides some clarity and filtering in the large database, and
make sure that the flight data belongs only to the desired aircraft and flight route.
A total of 2692 flights are gathered and analysed, corresponding to 165 different callsigns (flight routes), leading
to an average of 16 flights per call signs. The data can be summarized in Figure 5. For each individual flight,
its average cruise lift coefficient is represented vs its average cruise Mach number. The colours correspond to
the different airliners (in this case A, B, C, D and E). Both lift coefficient and Mach number data lies within the
expected operating bounds. The cloud of points is centred around the cruise point of the A330, as shown by the
red start. From here, it is clear that only a multi-point representation (blue stars) is not enough to characterize
the performance of the aircraft.
As in this case the interest lies in the specific retrofit of an array of SCB for a given flight route, the individual
flights are collapsed by callsigns. The focus is primarily shifted to the Mach number, as this is the main parameter
that influences the shock wave location. Figure 6 shows standard deviation of the cruise Mach vs the average
cruise Mach for the individual callsigns. There is a correlation in the flight speed with the airline type by looking
at the cluster of points. According to operational and cost requirements, some airliners may decide to fly faster
or slower. In addition, two regions can be observed: routes operated at lower speed but with a high variability,
and another where the average speed is larger than the cruise point with a lower variability. The later case is
of special interest when retrofitting shock control bumps. As a result, the callsign (flight route) R2-R1 of airliner
A, as well as its corresponding return flight, R1-R2, are selected as test cases for the design of shock control
bumps. This route is operated at considerable higher freestream velocities than the original cruise point, and in
this case, the retrofit of a fixed SCB would be attractive.
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Figure 5 – Average cruise lift coefficient vs average cruise Mach number for A330 flights from 5
different airliners gathered through the OpenSky network
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Figure 6 – Standard deviation of cruise Mach number vs average cruise Mach number for A330
callsigns gathered through the OpenSky network

The probability density function (PDF) of the operational uncertainties for the return route is shown in Figure 7.
As the operating point of the XRF1 (" = 0.83) is not exactly the one of the A330 (" = 0.82), this PDF is non-
dimensionalized and centered along the XRF1 cruise point. This enables the transfer of uncertainties from the
A330 to the XRF1. Uncertainties in lift coefficient and altitude are kept the same. As shown, the lift is centered
in �! = 0.5, the cruise lift coefficient of the XRF1, and deviations follow from operational requirements in flight.
Regarding altitude, most of the flights occur between FL 370 (for eastbound flights), and FL 400 (for westbound
flights).
Based on these uncertainties, the flight conditions for the multi-point optimization represent a five-point stencil in
Mach and lift coefficient, centred in cruise point, following state-of-the-art formulations [39]. These are shown in
Table 2. In this case, the altitude is kept constant.
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(a) Mach number (b) Lift coefficient (c) Flight altitude

Figure 7 – Parametrization of operational uncertainties for the XRF1 configuration according to
R2-R1/ R1-R2 return route

Table 2 – Multi-point flight conditions for the XRF1 configuration

Flight Condition
Number Mach, M Lift coefficient, �! Altitude, [FL] Weight, F8

1 0.83 0.5 380 0.3
2 0.83 0.48 380 0.15
3 0.83 0.52 380 0.15
4 0.81 0.5 380 0.15
5 0.83 0.5 380 0.15

4.3 Strengths and Limitations of current approach
The use of surveillance data is the best approach to model realistic operational uncertainties for robust optimiza-
tion. However, this new approach comes with limitations. First, the data is limited to areas with ground stations,
as there is a lack of data from the middle of the oceans or unpopulated areas. Second, the Mach number is pro-
vided with limited decimal points, and some postprocessing is necessary to obtain smooth PDFs. The choice of
the proper bandwidth for the kernel density estimation is also not trivial. However, the level of accuracy is enough
for the present analysis. Third, as previously explained, the lift coefficient is obtained taking into consideration
some assumptions in the weight of the aircraft. Fourth, the lift coefficient is assumed to be independent of Mach
number and Altitude. Based on initial estimates, a weak correlation may exist, but in practice the independence
can be maintained. This is still a better approach than considering uncertainties in the angle of attack. Finally,
the addition of more data and the combination with other sources such as flight data recorder will improve the
model accuracy.

5. Results
In this section the optimization results are introduced. First the deterministic optimum is found through gradient-
based optimization. Then the UQ methods are validated in the baseline wing. Finally, the different optimal robust
configurations are presented and analysed with more detail.

5.1 Deterministic Optimization
The deterministic problem is based on the retrofit of a shock control bump at cruise conditions (" = 0.83, �! =
0.5, �! = 380) under no uncertainty. Represents the state of the art in (deterministic) aerodynamic shape
optimization. To investigate the influence in the number of the shock control bumps, three different arrays are
optimized with 9, 12 and 15 bumps.
The optimization history of the gradient-based optimization for the three cases is shown in Figure 8a. The objec-
tive function is normalized by the drag of the clean wing, ��,0. At each iteration, a full CFD solution and 2 adjoint
evaluations are required to obtain the drag and gradients with respect to the design parameters. The starting
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point corresponds to the middle of the bounds of table 1, leading to ��/��,0 = 1.2 (outside of the chart). From
this arbitrary configuration, the optimizer is able to quickly find the optimum array of shock control bumps that
minimizes the drag, compared to the clean wing. For the three cases the optimizer needs 28 to 32 iterations to
converge. It can be appreciated that the number of bumps has a small influence in the final reduction in drag.
The difference is less than 0.5% in drag reduction between the best configuration (12 bumps) and the worst (15
bumps). The array of 12 bumps is able to decrease the drag of the baseline wing by 6.94%. For the robust
optimization, 12 bumps (84 design parameters) will also be optimized. The distribution and height of shock con-
trol bumps is shown in Figure 8b for the three optimum configurations. In the three cases, the highest bumps
originate near the wing root. It appears that there is an optimum spanwise height distribution that is independent
on the number of bumps. This is only function of the shock strength

(a) Optimization convergence for the configuration with
9, 12 and 15 bumps

𝛥𝑍

9 Bumps

12 Bumps

15 Bumps

0.06
0.05
0.04
0.03
0.02
0.01
0

𝛥𝑍

(b) Optimum array for 9, 12 and 15 bumps. The
contour represents the bump height w.r.t. clean wing

Figure 8 – Comparison between configurations with 9, 12 and 15 bumps

The configuration with 12 bumps is analysed with more detail. In this case, as shown in Figure 9, the array of
bumps is able to mitigate the normal shock wave over the upper surface of the wing, compared to the clean
wing, decreasing wave drag. Instead of a sudden change in pressure, the array of shock control bumps has a
smoother (more isentropic) pressure change. Looking at different cross section in Figure 10, the normal shock
wave present in the clean wing is replaced by an isentropic compression wave at 20%, 40% and 60% of the
wingspan for the wing with the retrofitted bumps. In the outboard wing, at 80% of the wing, a double shock is
present, phenomena commonly seen when retrofitting shock control bumps [19] to airfoils. As a result, the wave
drag is reduced.
The change in the shock wave strength can be qualitatively visualized in Figure 11 for the clean and optimized
wing. The shock wave contours have been obtained according to the normal Mach number-based shock detection
method [40]. While the baseline wing presents a continuous shock across its upper surface, the wing with the
array of shock control bumps is able to mitigate in the chord and the tip, and completely remove it through the
mid-span.
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Figure 9 – Contours of pressure coefficient distribution over the upper surface of the wing for the
baseline (clean) wing and the optimum retrofitted with 12 bumps
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Figure 10 – Pressure coefficient for baseline and optimum configurations at different longitudinal
cross-sections
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A       B 

Figure 11 – Shock wave contours according to the normal Mach number shock detection method for
baseline wing (A) and wing with optimum SCB array (B)

5.2 Uncertainty Quantification
For validation of the UQ approach, the baseline wing (no bumps) is evaluated under the uncertainties previously
introduced in Figure 7. Reference statistics are obtained building the surrogate model with 200 quasi Monte
Carlo samples. Using 22 DoE samples and 3 additional samples following the infill criteria, the mean can be
obtained within a relative error of 0.1%, while the standard deviation (a much smaller quantity), is obtained within
a 0.7% error. These estimations are accurate enough to perform robust optimization and come upwith meaningful
comparisons.
The mean and standard deviation of the pressure field over the wing is shown in Figure 12. These are obtained by
combining 80 random snapshots of the solution field, and computing the mean/standard deviation for each mesh
point. The mean field provides an estimate of the expected pressure field under random operational conditions.
On average, a strong shock wave is present over the upper surface of the wing. The standard deviation field
indicates the variability of the shock wave, as well as its strength. The variability is larger in the wing tip than at
the wing root.

Input Operational Uncertainties 

Mean pressure field Standard deviation pressure field 

Surface Pressure Realizations  

y/𝑏 = 0.4     

y/𝑏 = 0.8     

Figure 12 – Mean and standard deviation pressure field under operational uncertainties

For a more detailed understanding of the flow field, realizations of the pressure distribution over the wing are
shown in Figure 13 for two cross sections of the wingspan: H/2 = 0.4 and H/2 = 0.8. In these two locations the
displacement of the shock wave location over the upper surface of the wing can be appreciated as highlighted
in red. This justifies the need of robust optimization. A robustly designed array of shock control bumps should
be able to better deal with the variability of the shock location than one optimized taking into account only one
realization (the design point).
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Surface Pressure Realizations  (a) y/b = 0.4

Surface Pressure Realizations  

(b) y/b = 0.8

Figure 13 – Realizations of surface pressure coefficient at two different cross sections for the clean
wing. In red, the variability in the shock over the upper surface is highlighted

5.3 Robust Optimization
The robust optimization is performed through the gradient-based robust optimization framework. Figure 14 shows
the optimization convergence history for the optimization of the mean, Figure 14a, and for the optimization of
mean and standard deviation with equal weights, Figure 14b. In both cases the objective function has been
normalized by the performance of the clean wing. The optimum solutions are found after 27 and 30 iterations
respectively. At each iteration, 23 to 25 CFD and adjoint evaluations are required to accurately obtain the statistics
and its gradients. As a result, to find a robust optimum, and order of 600 to 700 CFD + adjoint evaluations are
required. It can be appreciated that the statistics of the gradients are accurately obtained, as the optimizer is
able to decrease the objective function at each iteration of the optimization. In the case of the optimization of
the mean, the average drag is decreased by 3.22%. This is significant from an operational point of view and
motivates both the increase in computational cost w.r.t. deterministic optimization, as well as the attractiveness
of robustly retrofitted shock control bumps to existing aircraft.
The results of the configurations of interests are summarized in the Pareto front of the mean and standard de-
viation of drag in the Figure 15. The figure should be read together with table 3. A deterministic optimization
of an array of shock control bumps is able to decrease both mean and standard deviation of the drag (1.23%
and 14.99% respectively), when realistic uncertainties are present, compared to the clean wing. As expected,
a multi-point formulation is able to further decrease the average drag by 2.04%, as different flight conditions
were considered during the optimization. However, an extra one percent reduction in the average drag can be
achieved with a fully robust formulation compared to the multi-point. This leads towards a 3.22% reduction in
average drag when choosing the robust optimization. The ability of evaluating statistical measures directly during
the optimization provides a key advantage in this case. Another interesting option is to equally weight mean and
standard deviation. The resulting configuration (purple triangle), is able to decrease the standard deviation by
31.4% instead of the 12.5% decrease of obtained by the configuration that only minimized the mean. This is a
reduction of the variability by a factor of two. The price to pay is a slight increase in average performance. Still,
this configuration is able to improve both mean and standard deviation w.r.t. the multi-point optimum.
The violin plot of Figure 16 shows the symmetric PDF of the normalized drag coefficient for each configuration.
The mean value is shown in a white circle, the performance at nominal conditions is represented by the red star,
and different quantiles are shown by the superimposed box plot. The violin plot can be used to compare the
performance between different configurations. The geometry for each array of SCB is also shown at the top of
the Figure. The clean wing (blue PDF), has the largest variability and average drag. The deterministic optimum
(orange), reduces the variability and average performance, but also has a thinner tail towards the lowest values
of drag. This is not desired as it means that flight conditions that led towards lower values of drag in the clean
wing, are being now penalized by the shock control bumps, as these were designed only for a flight condition.
The multi-point optimum (green PDF) behaves similarly as the deterministic optimum, although it further reduces
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(a) �∗ = `�� (b) �∗ = 0.5`�� +0.5f��

Figure 14 – Robust optimization convergence history
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Figure 15 – Pareto front of mean vs standard deviation of dimensionless drag coefficient for different
configurations

the average drag. The bump height is similar to the deterministic configuration, although these bumps are closer
together. The robust optimum with focus on the mean (red PDF) presents the lowest average drag. The lower tail
of the PDF is thicker and extends more towards the lower values of the drag compared to the other configurations.
The bump geometry is differentiated, clearly showing the differences between deterministic and robust optimum.
The configuration with same weighting in mean and standard deviation (purple PDF) leads to the lowest 95%
quantile of the drag. This is achieved by mitigating the stronger shock waves at freestream velocities and lift
coefficients higher than the cruise point. As a result, all the shock control bumps are higher (the highest the SCB,
the most effective against stronger shocks). Finally, the configuration with more weighting in standard deviation
(brown PDF), is able to decrease the standard deviation by an excessive increase in average performance.
This configuration is not competitive enough compared to the two previous configurations. Indirectly, for the
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deterministic optimum, there is a difference between nominal conditions (star) and the average performance
(white dot). This difference is reduced for the robust optimum with focus on the mean (red PDF). In this case,
the drag at nominal conditions and the average drag are close together. This could be another interpretation of
robustness: under uncertainties, nominal and average performance are similar.

25-75% quantile

5-95% quantile

Mean

Nominal Conditions

Figure 16 – Violin Plot of the drag coefficient for the configurations of interest. Corresponding bump
geometries on top

Table 3 – Decrease in average and standard deviation of the drag w.r.t. clean wing

Decrease in
average drag, `��

Decrease in
std. deviation of drag, f��

Deterministic Opt. 1.23% 14.99%
Multi-Point Opt. 2.04% 14.94%
Robust Opt., ` = 1,f = 0 3.22% 12.52%
Robust Opt., F` = 0.5,Ff = 0.5 2.5% 31.42%

6. Conclusions
The robust design of 3D shock control bumps to the XRF1 is a challenging test case not only due to the non-
linearity of the problem involving shock waves, but also due to the high-dimensionality of the design space (in
this case 84 design parameters were optimized). In addition, the optimum solution must be achieved within a
reasonable CPU time due to the expensive computational cost associated to each CFD and adjoint simulation.
The retrofit of an array of fixed shock control bumps to current aircraft is a feasible solution to reducewave drag. As
shown in the deterministic, single-point optimization, the optimizer is able to find from an arbitrary configuration,
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the optimum array of shock control bumps that minimizes the drag of the XRF1 by 6.94% compared to the clean
wing. The exact number of bumps has a small influence in the final performance. The optimized arrays of shock
control bumps are able to decrease the strength of the shock wave over the upper surface of the wing reducing
wave drag.
Realistic uncertainties in theMach number, lift coefficient and aircraft altitude can be obtained from aircraft surveil-
lance data using the OpenSky Network. The presented approach can effectively characterize PDF of the Mach
number, lift coefficient and Altitude at different levels: individual flights, flight routes, airliners and aircraft type.
These can be used together with an efficient gradient-based robust design methodology to come up with more
robust aircraft. This framework is able to find the robust optimum array of shock control bumps within a realistic
number of function evaluations. In overall, a reduction in average drag of 3.2% is achieved compared to the
clean wing. The robust optimum configurations outperform those obtained through single-point and multi-point
optimization techniques, showcasing the benefits of a probabilistic formulation for the retrofit of shock control
bumps.
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