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Abstract: This paper combines the latest machine learning techniques to develop an effective and reliable 

supervised learning model for transition judgment. Firstly, the variable-interval time average (VITA) method 

is used to transform the fluctuating pressure signal into a sequence of states in the Markov state space. Then 

we describe it using Markov chain model, and obtain its feature vectors. Then the hidden Markov model is 

used to pre-classify the feature vectors labeled using the traditional RMS criteria. And finally a classification 

model based on probability density distribution is established. The research shows that the model developed 

in this paper is effective and reliable and possesses a generalization ability. Compared with the traditional 

RMS criterion, a reasonable ‘transition zone’ can be obtained using the developed classification model 

without comparing the signals at multiple locations. 

Keywords: supervised learning, transition judgment, classification model, Markov chain model, hidden 

Markov model 

1 Introduction 

Judging the transition has always been a frontier issue in the field of aerodynamics. It is hoped to 

develop an effective and reliable supervised learning model for the judgment or prediction on transition in 

this paper. 

Presently, most of the research on transition is still based on experimental method. The commonly used 

transition detection methods in experiment are hot wire method[1],[2]，temperature sensitive paints method[3]，

infrared thermography[4]，hot-film techniques[5] and flow visualization methods[6] and so on. These methods 

have their own defects. Hot wire anemometry is intrusive and provides only point-wise flow information. 

Temperature sensitive paints should coat the model before experiment. Infrared thermography and hot film 

sensors seem too complicated. But above all, these techniques are not convenient for flight test or practical 

flow control. Therefore, it is still necessary to seek convenient, effective and practical transition detection 

method for unsteady aerodynamics. 

Compared with the above experimental techniques, it is more convenient and practical for pressure 

transducers to detect boundary layer characteristics. Early in 1970s, Helle[7] using acoustic technique 

detected flow transition on hypersonic re-entry vehicles. Lews and Banner[8] using surface pressure 

fluctuation measurements investigated the boundary layer transition on the X-15 vertical fin. With the 

progress of technology of pressure transducer manufacture, the transducer rapid response and 

miniaturization have been improved greatly. The pressure transducer measurement technique for steady flow 

transition detection has now applied to wide velocity range from low-speed flow to hypersonic in wind 

tunnel experiment. 

In this paper, a supervised learning model for transition judgment is established by using fluctuating 

pressure signals on airfoil surface. It is hoped that the model can calculate the transition zone to a certain 



 

 

extent rather than a ‘transition point’ obtained by traditional transition criterion. 

Firstly, the variable-interval time average (VITA) method[10]-[12] is used to convert the fluctuating 

pressure signal on the airfoil surface into the state sequence in Markov state space. Then, the Markov chain 

model is used to describe it, and the feature vectors are obtained. Then the hidden Markov model[13]-[16] is 

used to pre-classify the feature vectors labeled using the traditional root mean square (RMS) criteria. 

Finally, a classification model based on probability density distribution is established. 

The results show that the classification model developed in this paper is reliable and effective. The 

experimental data of different Reynolds numbers can be reliably predicted by using the same Reynolds 

number experimental data for model training. Compared with the traditional RMS criterion, a reasonable 

‘transition zone’ can be obtained using the developed model and it does not require signals from multiple 

locations for comparison. 

2 Mathematical method 

The mathematical methods used in this paper which are VITA method, Markov chain model and 

Hidden Markov model are introduced in this section. 

2.1 Variable-Interval Time Average method[10] 

In the time series of fluctuating pressure, the VITA variance of fluctuating pressure is defined as: 
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where T is the average time interval.  

When T  , the second item of the right side of Equ. 1 is 0 and the Var (t,T) is equal to the 

mean-square value in general sense. So the VITA method essentially plays the role of low-pass filtering. 

The detection function is defined as: 
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where K is the threshold and 
rmsP  is the RMS value. 

The fluctuating pressure time sequence can be finally converted into a state sequence D using the VITA 

method which can be regarded as a Markov state space. 

2.2 Markov chain model 

The Markov chain model is a random sequence model which corresponds to a state of a system. 

Considering the random process  ( ), 0,1,2,nX n  … , which takes a value of a valid or countable set M, 

the state space is assumed to be  0,1,2,M  … , and the elements in M are called the state of the random 

process. 

Definition 1  Assuming that there is a fixed probability Pij independent of time, making 
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where 0 1 1, , , , , ni j i i i M … , the random process is called a Markov chain. 

The probability Pij represents the probability of transitioning from a given current state j to state i, 

obviously with 
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Definition 2  A matrix consisting of transition probability matrices 
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is called a one-step transition probability matrix. And nP  is called a n-step transition probability matrix. 

Definition 3  The vector  0 1 1, , ,
T

k      is called the stationary distribution of a finite Markov 

chain if it satisfies 
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2.3 Hidden Markov model 

There are two states in the hidden Markov model: the observable state and hidden state. Let's have m 

hidden states and n observable states. The stationary distribution of these hidden states is assumed to be 

 1 2, , , m    . And the stationary distribution of the observable states is  1 2, , ,k k knp p p  when the 

hidden state is k ( 1,2, ,k m ). 

The stationary distribution of the hidden states and the observable states satisfies the formula as 

follows. 
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In the case of ignoring the hidden state, the observable state obeys the following single-step transition 

probability matrix. 
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If a distribution q  is observed, the transition probability of the hidden state can be obtained by solving 

the following problem. 
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This problem is a constrained minimum quadratic problem whose solution method is very mature. The 

SUMT outer point penalty method was used in this paper. 

3 Establishment of a supervised learning model 

The airfoil wind tunnel experiment was carried out in the NF-3 wind tunnel. The experimental model 

chord length was c=600mm and the experimental Reynolds number was 6Re 0.8 10  , 6Re 1.1 10   and 



 

 

6Re 2.0 10  . 

3.1 Establishment of state space 

The VITA method is used to convert the fluctuating pressure of the airfoil into a state in the state space. 

The fluctuating pressure data in the case of 6Re 1.1 10  , 2    is taking as an example. 

 

(a) Fluctuating pressure waveform 

 

(b) Detection function of the VITA method 
Fig.1  Fluctuating feature and detection function at the typical location of 2    

The fluctuating pressure and its corresponding detection function calculated by the VITA method are 

shown in Fig.1 and the parameters of the threshold K and T was set to K=1.0 and T=0.00025s. It can be seen 

that the detection function of the transition position is significantly different from the laminar and turbulence 

flow that the detection function of the transition zone is mostly D=0. 

The number of data whose detection function is D=1 in Fig.1 is calculated, and the cumulative time Δt 

is calculated as shown in Fig.2. 

 

Fig.2  Comparison of the RMS and VITA result 

The comparison of the fluctuating pressure RMS value with the cumulative time Δt calculated by the 

VITA method in the case of 6Re 1.1 10   is shown in Fig.2 where the open circle is the dimensionless 

RMS result and the solid square is the cumulative time. It can be seen that the minimum cumulative time 

position corresponds to the RMS peak position. 

3.2 Establishment of Markov chain model 

The state space calculated using the VITA method (K=1.0, T=0.00025s) at x/c=0.65 position (transition) 

in Fig.1 was analyzed. 

Its transition probability matrix is: 
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Its steady state probability distribution can be calculated by nP  and it is  0.917 0.083
T

  . So the 

Markov chain model of the data at this location is 
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The model is uniquely identified by the transition probability matrix P and its steady-state probability 

distribution  , so the data can be characterized by P and  . A vector composed of components of P and 

  was used as a feature vector of the signal, namely 00 10 01 11 1 2
, , , , ,

T

v P P P P   
 

. After normalization, 

the feature vector is  0.309,0.024,0.268,0.065,0.306,0.028
T

V  . 

The feature attributes of all hidden attributes (transition and non-transition) in the sampled data were 

averaged and were used as a stationary distribution of the observable state in the hidden Markov model. 

3.3 Solution of hidden Markov model 

The experimental data in the case of 6Re 1.1 10   is used to solve the hidden Markov model. The 

parameter is selected as K=1.0, T=0.00025s. 

After solving the least quadratic problem, the smooth distribution of hidden attributes is obtained as 

shown in Fig.3(a). Since there are only two hidden attributes, the distribution can also be described as shown 

in Fig.3(b). 

 

(a) 2-D distribution 

 

(b) 1-D distribution 
Fig.3  Distribution of the hidden state 

As can be seen from Fig.3, the distribution of the two hidden attributes (transition and non-transition) 

overlaps in some areas, which results in unclear classification boundaries. And we proposed a classification 

model based on probability density distribution in order to improve this situation. 

3.4 Establishment and verification of classification model 

Considering the distribution of Fig.3, we consider that the two hidden attributes are subject to different 

probability density distributions. Let's assumed that it follows a Gaussian distribution within the interval 

[0,1], and the probability outside the interval is zero, which is 
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where   is the mean value,   is the standard deviation, and c is a constant satisfying 1yd
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The probability density distributions of two hidden attributes are shown in Fig.4, and the solid line is 

the probability density distribution of the transition, and the dotted line is the non-transition probability 

density distribution. 

 

Fig.4 Probability density distribution 

Let the   value of a signal be 
0  and its distance from the mean value of the distance probability 

density distribution is 0     and calculate its confidence 1  . 
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The   value of transition and non-transition could be calculated through Equ. (12) in the case of 

0  . And we can calculate the probability of transition or non-transition through the following formula. 
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where 
1  is the   value of transition, 

2  is the   value of non-transition, 
1p  is the probability of 

transition, 
2p  is the probability of non-transition. 

4 Analysis and discussions 

The experimental data with the Reynolds number of 6Re 1.1 10   at 0 ~ 7     are used to train 

the model in this section. The prediction results of 6Re 1.1 10   are shown, and the results of 

generalization of the model to other Reynolds numbers are discussed. 

4.1 Prediction results of training data 



 

 

Model training and prediction are performed using experimental data of 6Re 1.1 10  , and the model 

parameters are selected as K=1.0, T=0.00025s. 

 

(a) 1    

 

(b) 2    
Fig.5 Prediction results of the training data itself ( 6Re 1.1 10  ) 

Fig.5 is a prediction result of the training data itself ( 6Re 1.1 10  ), where (a) is a case of 1   , and 

(b) is a case of 2   . The open circle is a normalized RMS result, and the cross is the predicted result of 

the developed model. A ‘transition point’ can be only judged using the traditional RMS criterion, while a 

reasonable ‘transition zone’ can the obtained using the developed method. And the ‘transition point’ judged 

by the traditional criterion is located in the ‘transition zone’. To some extent, the reliability of the two 

methods is demonstrated. 

In this paper, the traditional RMS criterion is used to label the data. In Fig.5, only one transition 

position can be labeled for each angle of attack. It is worth noting that when using the developed model for 

prediction, it is possible to predict multiple transition positions at one angle of attack. 

4.2 Generalization results of other Reynolds numbers 

The model trained in Section 4.1 is generalized to the case of 6Re 0.8 10   and 6Re 2.0 10   in 

this section. 

 

(a) 1    

 

(b) 2    
Fig.6 Generalization result of 6Re 0.8 10   



 

 

 

(a) 1    

 

(b) 2    
Fig.7 Generalization result of 6Re 2.0 10   

Fig.6 and Fig.7 are the generalization results for 6Re 0.8 10   and 6Re 2.0 10   respectively, 

where (a) is the case of 1   , and (b) is the case of 2   . The open circle is a dimensionless RMS 

result, and the cross is the predicted result of the model. Same as in Fig.5, a ‘transition point’ can be only 

judged using the traditional RMS criterion, while a reasonable ‘transition zone’ can the obtained using the 

developed method.. 

It can be seen from Fig.5 to Fig.7 that, using the experimental data of the same Reynolds number for 

model training, we can predict the transition results under different Reynolds numbers, which indicates that 

the classification model developed in this paper possesses strong generalization ability. Compared with the 

traditional RMS criterion, a reasonable ‘transition zone’ correspond to the ‘transition point’ determined by 

the RMS criterion can be obtained using the developed prediction model, indicating that the classification 

model developed in this paper is reliable and effective. 

5 Conclusions 

In this paper, the VITA method is used to transform the fluctuating pressure signal into a state sequence 

in the Markov state space. Then, it is described by Markov chain model, and its feature vector is obtained. 

Then the hidden Markov model is used to pre-classify the feature vectors labeled using the traditional RMS 

criteria, and finally a classification model based on probability density distribution is established. The model 

is trained using the experimental data in the case of same Reynolds number, and it is generalized to different 

Reynolds numbers, and the results show that the developed model possesses strong generalization ability. 

Compared with the traditional RMS criterion, a reasonable ‘transition zone’ can be obtained using the 

developed classification model and it does not require signals from multiple locations for comparison. 

Acknowledgement 

Thanks to all the experimental staff of NF-3 wind tunnel for their hard work. 

Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the 

original material included in this paper. The authors also confirm that they have obtained permission, from 

the copyright holder of any third party material included in this paper, to publish it as part of their paper. The 

authors confirm that they give permission, or have obtained permission from the copyright holder of this 



 

 

paper, for the publication and distribution of this paper as part of the ICAS proceedings or as individual 

off-prints from the proceedings. 

References 

[1] Knapp CF, Roache PJ (1968) A combined visual and hot-wire anemometer investigation of 

boundary-layer transition. AIAA Journal 6:29-36 DOI 10.2514/3.4437 

[2] Lagraff JE (1972) Observations of Hypersonic Boundary-Layer Transition Using Hot Wire 

Anemometry. AIAA Journal 10:762-769 DOI 10.2514/3.50208 

[3] Costantini M, Fey U, Henne U, Klein C (2015) Nonadiabatic Surface Effects on Transition 

Measurements Using Temperature-Sensitive Paints. AIAA Journal 53:1172-1187 DOI 

10.2514/1.J053155 

[4] Giepman RHM, Schrijer FFJ, van Oudheusden BW (2015) Infrared Thermography Measurements on 

a Moving Boundary-Layer Transition Front in Supersonic Flow. AIAA Journal:1-5 DOI 

10.2514/1.J053910 

[5] Richter K, Koch S, Gardner A, Mai H, Klein A, Rohardt C (2014) Experimental Investigation of 

Unsteady Transition on a Pitching Rotor Blade Airfoil. Journal of the American Helicopter Society 

59:1-12 

[6] Schülein E, Rosemann H, Schaber S (2012) Transition detection and skin friction measurements on 

rotating propeller blades. Paper AIAA-2012-3202, 28th AIAA aerodynamic measurement technology, 

ground testing and flight testing conference, New Orleans, Louisiana, 25–28 June 2012. doi: 

10.2514/6.2012-3202 

[7] Heller HH (1969) Acoustic technique for detection of flow transition on hypersonic re-entry vehicles. 

AIAA Journal 7:2227-2232 DOI 10.2514/3.5520 

[8] Lewis TL, Banner RD (1971) Boundary layer transition detection on the X-15 vertical fin using 

surface-pressure-fluctuation measurements. NASA TM X-2466 

[9] Gao Y, Zhu Q, Wang L. Measurement of unsteady transition on a pitching airfoil using dynamic 

pressure sensors[J]. Journal of Mechanical Science & Technology, 2016, 30(10):4571-4578. 

[10] R. F. Blackwelder, R. E. Kaplan. On the Wall Structure of the Turbulent Boundary Layer[J]. Journal 

of Fluid Mechanics, 1976, 76(1):89-112. 

[11] Ferrier M , Chokani N . Hypersonic Transition Detection with Single Point Hot-Wire Measurements[C]// 

Aerospace Sciences Meeting & Exhibit. 2003. 

[12] Chokani N . VITA measurements of transition in transitional hypersonic boundary layer flows[J]. 

Experiments in Fluids, 2005, 38(4):440-448. 

[13] Ching W K , Ng M K . Building simple hidden Markov models.[J]. International Journal of 

Mathematical Education in Science & Technology, 2004, 35(2):296-299. 

[14] Koski T . Hidden Markov models for bioinformatics[J]. Journal of the Royal Statistical Society, 2001, 

167(1):194-195. 

[15] Rabiner L R . A Tutorial on Hidden Markov Models and Selected Applications in Speech 

Recognition[J]. proc.IEEE, 1989, 77. 

[16] Pederson S P . Hidden Markov and Other Models for Discrete valued Time Series[J]. International 

Journal of Forecasting, 1997, 40(3):263-263. 

 


	1 Introduction
	2 Mathematical method
	2.1 Variable-Interval Time Average method[10]
	2.2 Markov chain model
	2.3 Hidden Markov model

	3 Establishment of a supervised learning model
	3.1 Establishment of state space
	3.2 Establishment of Markov chain model
	3.3 Solution of hidden Markov model
	3.4 Establishment and verification of classification model

	4 Analysis and discussions
	4.1 Prediction results of training data
	4.2 Generalization results of other Reynolds numbers

	5 Conclusions
	Acknowledgement
	Copyright Statement
	References

