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Abstract

Aircraft inflight icing is one of the most serious threats to flight safety. Although the devices of detectors and
sensors for ice probing is widely used, there still has a strong demand to develop mathematical detection
algorithms as an auxiliary means for the insufficient or incapable usage of the devices. This paper focuses on
the issue of aircraft inflight icing detection by algorithms. First the icing research airbus and the aircraft dynamic
model with wing ice are introduced. Second the time-varying parameter identification method and the statistical
diagnosis method are presented and evaluated respectively by the simulation data of a steady-level flight
scenario with wing ice. Based on the conclusion of the research, the diagnosis residual, window size and
identification parameters are chosen. Last a scheme of combining the two methods for aircraft inflight icing
detection is proposed. The same flight scenario is utilized to assess the effectiveness of the detection strategy.
The results show the icing alarm and the changing information of aerodynamic parameters all can be detected
by the scheme. The stability derivatives can be identified from the excited output in a relatively high accuracy
with the help of superposing a small disturbance signal to the input after the icing alarm. The results of the
strategy indicate the feasibility of applying the combining algorithm in real flight tests.

Keywords: aircraft ice detection, aerodynamic parameter identification, statistical diagnosis, H- filter, GLRT
method

1. Introduction

Aircraft inflight icing is one of the most severe threats to flight safety, sometimes it even leads to fatal
accidents and casualties. Based on statistic data given by the American Safety Advisor, from 1990
to 2000, there are 12% of all the flight accidents which resulted from adverse weather conditions that
occurred in icing and 92% of the ice induced accidents that took place in inflight icing [". Thus, the
icing detection and protection technologies become more and more important in the aviation industry.
The ice protection system usually needs the ice alarm signal to actuate the de-ice or anti-ice devices.
There are two main means to detect the alarm signal: the direct detection using detectors or sensors
-3 and the indirect detection using mathematical algorithms. Although many aircrafts have utilized
the direct detection technology successfully, there still is a strong demand to develop detection
algorithms as an auxiliary means for the insufficient or incapable usage of the direct detection method.
Since the concept of Smart Icing System “l presented by NASA icing research group, the studies on
indirect detection methods have been developed rapidly. There are three main types of algorithms
for aircraft inflight icing detection: the parameter identification method, the data-based modelling
method, and the observer-based detection method. The parameter identification method estimates
the flight status and the changing aerodynamic parameters jointly by filtering algorithms, such as
Extended Kalman Filter (EKF) 561, He filter [6-81 and Multiple Model Adaptive Estimator (MMAE) [®-19,
The parameterized ice accretion process can be estimated by these filters or estimators, then the
changing information of the ice influenced parameter can be used for reconfiguring the flight control



AIRCRAFT INFLIGHT ICING DETECTION&DIAGNOSIS METHODS

law ""-131 and maintaining the aircraft stability in icing conditions. The data-based modelling method
models the correlations between the aircraft flight status and the ice information, including ice
influenced parameters, icing severity factor, position and time, etc. Caliskan '3l designed a Neural
Network (NN) to identify the ice influenced parameters from the measured data, Schuchard 4! also
developed an artificial NN method to detect the presence of ice and classify its severity, Dong [15-16]
utilized a probabilistic NN to decide the ice location. For ice detection, data-based modelling methods
can obtain as many icing details as parameter identification methods, but the problems of the two
approaches, like the over-fitting and generalization problems of data-based modelling methods and
the parameter identifiability and accuracy problems of identification methods, limit the usages of the
two methods in some circumstances. The observer-based detection method is more effective in
giving an icing alarm. There are two applications of this method: the model-based fault diagnosis
technique and the statistical diagnosis technique. The model-based fault diagnosis technique models
the aircraft failure (including actuator '], sensor '8, structure and icing ['%-2"l) and then detects this
failure by estimators. The statistical diagnosis technique uses hypothesis testing theory to detect the
changes in the observed flight data. This diagnosis approach does not require a priori statistical
characteristics of the faults and has low computational cost. The innovation approach [1222-231 gnd the
Neyman Pearson based statistical change detection approach 4 are the commonly used statistical
diagnosis techniques for aircraft icing detection, the former one directly uses the hypothesis testing
on the innovation sequence to determine the changes of the aircraft flight status, its performance
relies on the predetermined confidence coefficient. While the NP based diagnosis technique has a
predictable performance under the NP theory, and is proved to be the optimal test subject to a
constant probability of false alarm. However, the statistical diagnosis method can only be acting as
the ice alarm and cannot be able to track the ice accretion information as other two methods.

This paper focuses on the issue of developing the effective aircraft inflight icing detection method.
The H. parameter identification method and the NP based statistical diagnosis method are discussed
and assessed. The researches validate the parameter change tracking capability of the identification
method and the alarm trigger capability of the statistical diagnosis method. Then a strategy of
combining the two methods is proposed to remedy their own defects. The parameter identifiability
and accuracy problem of the identification method and the insufficient information acquisition problem
of the diagnosis method all can be resolved by this strategy. The results indicate this integrated
algorithm is an effective and feasible strategy for aircraft inflight icing detection.

2. Aircraft inflight icing dynamics model

2.1 Icing Research Airbus

An airbus model is specifically presented for the aircraft icing research by the research group. The
prototype has the similar aerodynamic and flight dynamic characteristics as Boeing 737 and Airbus
A320. Figure 1 shows the configuration structure of the airbus, and Table 1 lists its physical
parameters.

Figure 1 — Icing research airbus 3D structure.
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Table 1 — Parameters of icing research airbus.

Aircraft Parameters Values
Mass m 72000 kg

Wing reference area S 124 m?

Wing span / 34.1m

Mean aerodynamic chord b4 4.15m
Moment of inertia Iy, 1658755 kgxm?
Moment of inertia /,, 2392630 kgxm?
Moment of inertia .. 3846326 kgxm?

2.2 Aerodynamic Characteristics of Airbus

The aerodynamic characteristics of the airbus is calculated by computational fluid dynamics (CFD)
tool. RANS and multi-block structured grid are used to obtain the longitudinal aerodynamic
characteristics with clean and severe wing ice configuration (Figure 2). Then a polynomial equation
(1) is used to fit the longitudinal characteristics, where Cp, C., and Cy represent drag, lift and pitch
moment coefficients respectively, a is the angle of attack (AOA), q is the pitch rate, & is the elevator
angle. The aircraft’s stability and control derivatives in two configurations are compared in Table 2.
Because the influence of wing ice on Cpo, Cio, and Cuwo is relatively small, here only the derivatives
that are more affected by wing ice are fitted in this table. The results indicate wing icing increases
drag derivatives, and decreases lift, pitch moment derivatives and control surface efficiency.

Figure 2 — Severe wing ice.
Cp =Cp +Cpua
Cp=C+Caa+Cus0, (1)

Cy =Cuo +Cipa+Cypo+ Cqu +Chyrs60.,

e

Table 2 — Longitudinal derivatives of icing research airbus in clean and severe iced configurations.

Longitudinal Derivatives Clean Severe Iced
Cpo 0.0277 0.0277
Cpy 0.1069 0.7701
Chse 0 0.0149
Cro 0.1415 0.1415
C, 6.2326 3.0637
Croe 0.448 0.2848
Curo 0.0353 0.0353
Cia -1.7873 -1.2762
Cua -13.7477 -13.0491
Cisg -41.513 -39.4878
Chrse -1.9035 -1.3476
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2.3 Aircraft icing flight dynamics model
The longitudinal flight dynamics considering ice accretion process for aircraft is modelled. The motion
and rotation equations (2) are established in the velocity and the body coordinate respectively.
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where V is the aircraft velocity, 8 is the angle of sideslip, p, q, and r represents roll, pitch and yaw
rates respectively, 6 is pitch angle, ¢ is roll angle, h is aircraft height, g~ is dynamic pressure, S is
wing reference area, ba is the mean aerodynamic chord, m is the aircraft mass, Px and P, represent
engine thrusts, M, is the thrust moment, gx and g, are the gravitational acceleration components.
The change of drag, lift and pitch moment coefficients during ice accretion process needs to be
modelled for analyzing the icing influence on aircraft flight dynamics. Bragg  of lllinois University
presented a mathematical model to describe the icing influence on aerodynamic derivatives. It has
already been utilized in the development of Ice Management System (IMS) and aircraft icing online
detection 7%, This model is not an accurate icing influence model, but it can indicate the variation
trend of the aerodynamic derivatives during ice accretion. The ice influence on aerodynamic
derivatives can be expressed by:

CI = O (14 K e ) 3)

C. represents arbitrary aerodynamic derivative, the superscript “iced” indicates the iced derivative,
and “clean” indicates the clean derivative. K. represents the coefficient slope which depends on the
modified parameter. nic is the icing severity factor, with ni..=0 denoting a clean configuration, and
nice=1 denoting wing iced configuration. The curve of nicc represents the ice influence on aerodynamic
derivative. Melody [’ gave a continuous accretion model of ice over time. The ice accretion rate is
considered as a function of both atmospheric conditions and the amount of ice already accreted. The
differential equation is given by:

ﬁice = Nl (1 + N277ice )dn (4)
1 2t
dl] (t) = E|:1_COS [Ej:l (5)
2
N, = N ln|:1+N277icc (Tcld )]
2+ cld (6)
_ Mhce (Tcld ) —27ice (Tcld /2)
=
’712ce (Tcld/z)

Taq is the ice accretion time. When Taq, Nice(Tcis/2) and nice(Tea) are given, the curve of arbitrary
aerodynamic derivative varying over time can be described by equations (3)~(6). The parameters of
Nice(Taia/2) and nice(Teid) denote the different ice accretion rates.

3. Time-Varying Aerodynamic Parameter Identification method
3.1 Ho Filter
The dynamic model can be parameterized as:
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x=A(y.u)x+b(y.u)+d,
(7)
y=x+d,
where x is the system state, y is the system unknown parameters, y is the system output, u is the
input, d, and dn, represent the process and measurement noises respectively. The time-varying
parameters are formulated by a linear model

Z=Hy+Kd, x(0)=yx (8)

where d, represents uncertainty in the parameters. H and K are the matrixes related to unknown
parameters and uncertainty. j denotes the aerodynamic derivatives in clean configuration, y
denotes the derivatives with wing ice. Considering the aircraft inflight icing model (3) is driftless, which
means the inherent dynamic parameter ydoes not enter the evolution differentials in (8), hence H=0.
Assuming the unknown terms of d, and d, are equivalent, then the uncertainty weight K is given by
K =xKc Ny (€]

Based on the identification algorithm developed by Didinsky et al %], the H.. time-varying parameter
estimation algorithm for the wing ice problem is

s DL s

ZZ_ZB A(;M)HA(E”)T ;T}E{g _yZQO(y,u)}ZLI) KZ’T}E

where the initial conditions are 7(0)=z,, 2 (0)=diag(P,,0,)- If we use the partition of &
21 22
R
Then y*=1 could be achieved by specifying P, =1 and Q=x737x, forany @, >0.
3.2 Algorithm Performance Assessment

A steady-level cruise scenario with ice accreting on the leading edge of wings is studied to analyze
the algorithm’s performance. Assuming the aircraft maintains a steady-level cruise on the trimmed
status, the engine thrusts are used to keep the aircraft stable in the absence of a control system. The
trimmed flight status of this scenario is shown in Table 3. The measurement noise is considered and
assumed to be white Gaussian noise. Its standard deviation is listed in Table 4 by referring to the
measurement noises of A340 ['?. The wing ice occurs at the beginning time, the accretion time is
200s, the accretion rates are nice(Ted)=1.0 and nice(Tcia/2)=0.7 respectively. A sinusoidal disturbance
signal is added to the trimmed elevator angle with amplitude of 3° and period of 40s to improve the
estimation accuracy.

(10)

Table 3 — Trimmed flight status of steady-level cruise.

Flight States Values

Height H 5000 m

Velocity V' 0.3 Ma

Trimmed elevator angle dJ. 1.06 deg
Angle of attack a 0 deg
Pitch angle 8 0 deg

Pitch rate ¢ 0 deg/s

Table 4 — Standard deviations of measurement noises.

Standard Deviation oy O o4 09 on

Values 0.8464m/s 0.0056° 0.0069°/s 0.0289° Im
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Then the dynamic behavior of this scenario is simulated. Based on the flight data, H. algorithm is
utilized to estimate the three stability derivatives which are mainly influenced by wing ice. The
algorithm performance for this wing ice problem is assessed by analyzing the estimation results.
Figure 3 gives the estimation results and the real values of Cpa+ Crs and Cua. The results show the
estimation results of C.q and Cuy are smoother than Cp,, this consequence is related to the poor
resistance capability to noise or disturbance for estimating the axial aerodynamic parameter. The
estimation results all converge to their real values after the ice accretion process ended. In the
accretion process, the estimation results have some time delays to the real values. We find the time
delay of Cp, is bigger than the other two derivatives, and the time delay of C,, is the smallest.

Three indicators are defined to quantitatively assess the accuracy of Hoo algorithm, including root
mean square error (RMSE), maximum absolute error (MAE) and time delays of a given icing severity
factor. The comparability of these data is guaranteed by transforming the aerodynamic derivatives to
their icing severity factors through equation (3). Errors and time delays are all based on the real
values, and we use the smoothed results to calculate the time delays. The errors and time delays of
the three stability derivatives are given in Table 5. The data show the estimation accuracy of C.4 is
the highest, the accuracy of Cuq is lower than C.q but higher than Cp,. The RMSE of the three
derivatives are all relatively small, even the RMSE of the most inaccurate derivative Cp, is only about
11%, while the most accurate parameter C., is about 1.4%. The time delays of the three derivatives
are different, the delay of Cp, is about 20s, the delay of Cuq is below 10s, and the delay of Cyq is
below 3s.

The results in the figure and table indicate the Hoo algorithm is suitable for identifying the time-varying
aerodynamic parameters with wing ice. The icing detection based on C, 4 has relatively high accuracy
and low time delay.
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Figure 3 — Comparison of aerodynamic stability derivates results using H~ method.

Table 5 — Error and time delay of identification results.

Errors and Delay Cpa ClLa Cwma
RMSE 0.1127 0.0141 0.0361
MAE 0.415 0.0781 0.1643
Nice=0.25 22.3199 2.8974 8.4664

Forecast Delays s
Niee=0.5 17.7057 1.6608 9.4182
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Niee=0.75 10.6653 1.6171 7.5930
Nice=0.95 5.2884 24171 8.1784

4. Icing Statistical Diagnosis Method
4.1 Generalized Likelihood Ratio Test

For the realistic problem, the probability density function (PDF) of a signal will be partly unknown due
to some unknown parameters. The GLRT method estimates the unknown parameters by Maximum
Likelihood estimators (MLEs) to solve these problems [8. The detection problem can be
mathematically expressed as:

72, :x[n] = w[n], n=0,1,---,N—1

11
711:x[n]=A+w[n], n=0,1,---,N—1 (ih

where x denotes the testing signal, A is unknown with -~o<A<e and w[n] is white Gaussian noise with
unknown variance o?. N is the window size. The Ho hypothesis describes the case where the
unknown parameter A equals zero, whereas the alternative hypothesis H1 describes the case where
the unknown parameter has an offset from zero. Meanwhile, the signal contains noise with unknown
statistical characteristics in both hypotheses.

The GLRT can be used to distinguish between the two hypotheses. Based on the likelihood ratio
between the probability of the two hypotheses, the test statistic for the problem in equation (11)
decides H1 in a given window size of data if
p(xA.68.74)
Lo(x)=—F————">7 (12)

‘ p(x67.74)
where (4,62) is the MLE of the parameters (A,o—z) under H and &Zis the MLE of the parameter o2
under Ho. y denotes the threshold. With the MLEs the following test statistic can be derived and its
asymptotic PDF is

¥’ * under 7
T(x)=Nn| 1+ |0 A SO (13)
6i 21 (4) under 7

where the MLE of the unknown parameters can be written as

A=%x

R u _\2 (14)

67 =(/N) > (x[n]-%)

n=0

The noncentrality parameter 1 = N4%/c? . Then the threshold can be determined according to the NP
theorem, that is for a given Pra=a, the threshold y is found from equation (15) and maximizes the
probability of detection Pp under H.

Fra = J'{x:L(,-(x)>7}p(x;7Z/0)dx (15)

where p(-) is the probability distribution function of a given test statistic.

4.2 Residual Analysis

Ice accretion on the leading edge of wings changes the aircraft structure and causes the variation of
the aerodynamic parameters. Although the ice accretion causes the obviously periodic vibration of
the aircraft flight states, it doesn’t mean the flight states are suitable for the statistical diagnosis.
Because the state variables are the integral or multiple integral results of the changing aerodynamic
parameters, which means the bias existing in state signals is not only related to the variation of the
aerodynamic parameters, but also related to the noises and accumulative errors. Thus, the signal
directly related to the changing aerodynamic parameters is needed for statistical diagnosis, such as
the axial and normal overloads presented by Sorensen 24, As same as the overloads, the angular
accelerations are also directly affected by aerodynamic parameters, their changes indicate the
changing of forces and moments. If the engine forces and moments are all known, the overloads and
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angular accelerations are the perfect observing objects for ice detection. The estimation of overloads
and angular accelerations is directly based on the dynamic equations, and for the problem in this
paper, it can be calculated by equation (16).

[—qu (Cge"” cos o — C5" sin a) + Px]

N(,’St —
' mgy
[—qu (Cg’“” sina + C§“" cos a) +P, J
N = s (16)
0
clean
i @SBCH" + M,

1

Yy
where go is the gravitational constant. If the ice accretion causes the aerodynamic coefficients
displaying unexpected changes, a bias will be introduced into the residuals, and then the statistical
diagnosis method can be used to detect the changes in the residual signals and trigger an icing alarm.

4.3 Diagnosis Algorithm Assessment

The same steady-level cruise scenario with wing ice in section 3.2 is utilized to assess the GLRT
algorithm. Additionally, process and measurement noises are considered for assessing the
performance of GLRT. We assume the process noises are independent vertical and horizontal
acceleration perturbations. White Gaussian noise with the intensity of [0.1m/s, 0.1/Vo]" is used for
both V and a, and the other flight statuses are assumed to have zero process noises. Addition to the
variables in Table 4, the overloads measurement noises are given for using the diagnosis algorithm.
The standard deviations of the two overloads are both set to 0.01g. The wing ice is assumed to occur
at 200s, the ice accretion time Tqq and the two accretion rates are the same as the scenario in section
3.2.

The GLRT method is utilized to detect the aircraft wing ice and give an inflight icing alarm. The three
generated residuals are used to monitor the icing situation. The residual data segments within a given
window size are successively taken out for statistical diagnosis. When the test statistic exceeds the
threshold, then the wing ice is detected.

The three residuals generated by the flight scenario are used to assess the performance of GLRT
method. The trade-off between a high probability of detection Pp and a low probability of false alarm
Pea needs to be concerned for GLRT diagnosis. In this paper a small Pra of 1e-6 is used, then the
right-tail probability of 4} distribution under Ho is used to calculate the threshold. For this problem,
the threshold is constant and equals 23.93. The influence of window size is discussed. Long-time
intervals are not good for alarming timely. Here the window size between 1s to 40s and sampling
frequency of 100Hz are chosen. The results of alarming time and probability of detection Pp under
different window sizes by the three residuals are shown in Figure 4. The results indicate small window
size will degrade the detection performance with the longer alarming time delay and the lower
probability of detection. Detecting by the residual of Ny has the longer time delay than by the other
two residuals. Diagnosing by the residual of N, has higher probability of detection Pp than by the
other two residuals. Increasing the window size reduces the alarming time to the range of [270, 290]s
by the residuals of N; and dq/dt. The results also show that diagnosing by residual N, is more reliable
than by the other two residuals, it is probably because the aircraft wing ice causes the more obvious
normal offset.
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Figure 4 — Icing alarming time and probability of detection under different window sizes.

5. Inflight Icing Detection Strategy

An inflight icing detection strategy is proposed by combining the parameter identification method with
the statistical diagnosis method to remedy their own defects. Figure 5 gives a scheme of combining
the two methods for icing detection. First, the statistical diagnosis method is used to detect the
changing of system outputs, if the obvious varying of output is detected then the wing ice is decided.
The diagnosis method gives the ice occurring time and the disturbance signal is generated and
superposed to the trimmed input signal to enhance the performance of the parameter identification
method. Last, the time-varying aerodynamic parameters are identified by the disturbed system input
and output. The problem of improving parameter inflight identifiability is resolved by this detection
strategy. The capability of ice detection algorithm is augmented by this strategy of giving the icing
occurring time and the changing information of aerodynamic parameters in one scheme.

Parameter Identification
Methad

Trimmed Tnput . & Flight Dynamics C“f.'-"-lf.".' ® | Statistical Diagnosis
Midoel i r Mehtod Time-Varying
3 l Aerodvnamic Parameters
=

Icing
Diatection

1

x:
=
=

L]
Generate -
Disturbance Signal

Figure 5 — A scheme of aircraft inflight icing detection.
The flight scenario presented above is utilized to assess this detection strategy. The flight time is
500s, wing ice occurs at 100s, the ice accretion time and the two accretion rates are the same as the
scenario in section 3.2. Based on the conclusion in section 4.3, the normal overload N, is chosen as
the diagnosis signal, the window size of 5s (500 samples) is taken for GLRT method. Before the wing
ice is detected by GLRT method, we recognize that the aerodynamic derivatives have not influenced
by wing ice yet. If the icing alarm is triggered, the H~ method is utilized to filter the output and identify
the three stability derivatives. For the steady-level cruise scenario, the wing ice is found at 169.99s
by the detection algorithm, the probability of detection Pp is 66.96% for a small Pra of 1e-6. Meanwhile,
the sixty “3211” disturbance signals each with amplitude of 5° and bandwidth of 5s successively
added to the trimmed input. The three time-varying stability aerodynamic derivatives are identified by
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He method. Figure 6 shows the comparison of the identified results of three derivatives with their real
values. Because of the oscillation of the identified result of Cpq, the Y-axis of Cpq is shrunk to the
range of [-0.5, 1.5] for better display. The results indicate the measurement noises seriously affect
the identified result of Cp, and cause a wide range oscillation after the wing ice is detected, but the
identified results of C.s and Cue are barely influenced by the noises. Even with the measurement
noises, the three derivatives all converge to their real values. Although the alarming time delay (about
70s for this scenario) of the statistical diagnosis method is difficult to eliminate, the high accuracy of
Crs and Cuq results validates the effectiveness of the detection algorithm.

--1.4r b
UE
16 b
—real value - - -identified value
1-8 1 1 1
0 100 200 300 400 500
t(s)

Figure 6 — Aerodynamic stability derivates identified by ice detection strategy.

6. Conclusion

The aircraft inflight icing detection methods are discussed in this paper. First, the time-varying
parameter identification method and statistical diagnosis method are presented respectively. The
aircraft inflight icing dynamics is modelled for an icing research airbus with ice accreting on the
leading edge of wings. The simulation data based on the dynamic model is used to verify performance
of the two methods. Based on the researches, a strategy of combining these two methods is proposed
to monitor the ice occurring time and identify the time-varying aerodynamic derivatives. The flight
scenario of the icing research airbus is utilized to assess this strategy. The results indicate the wing
ice can be detected by the diagnosis method and the three stability derivatives can be identified in a
relatively high accuracy by superposing a small disturbance signal to the trimmed input. The research
in this paper preliminarily demonstrates the feasibility of the inflight icing detection strategy. The
combination of different icing detection methods enhances the capability of the single method and
will expand the application of ice detection by algorithm technique in aviation industry.

The future research on aircraft inflight icing detection needs to focus on the further application of the
algorithm detection method in real flight tests. For doing that, there are several points need to be
issued, such as the inevitable time delay of statistical decision theory-based methods normally
reaches tens or hundreds of seconds; the identifiability and accuracy of parameter estimation method
seriously depends on the excited system dynamic characteristics; the difficulty in detecting the ice
accretion finish time might influence the identifiability of the time-varying aerodynamic parameters
because of the uncertainty of the time coverage of the disturbance signal; the mechanism of noises

10
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affecting the accuracy of parameter identification results is also needed to be recognized in the future
work.
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