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Abstract

An accurate model of propulsion system is important to high altitude aircraft design. However, traditional
approaches predicting propeller performance are often time-consuming. In this paper, a surrogate modeling
method using infill criterion samples was chosen to refine the design process and reduce the time consumption.
The results of this study show that the combination of infill criteria based surrogate model method and low-
fidelity simulation can achieve comparable accuracy (average error of 5%) in prediction with the traditional
approaches.
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1. Introduction
High Altitude Long Endurance(HALE) aircraft such as solar powered stratospheric airships and Un-
manned Aerial Vehicle(UAV) have been the focused area for years and electric propulsion system is
one of the most important issue.
Aircraft overall design schemes are strongly related to the accuracy of propeller performance solving
process. A variety of methods are used to calculate propeller performances, most of which are time-
consuming and computationally expensive.
In view of improving performance and reducing research and development time, surrogate model
technology emerges as the requirement of the present time and has gradually become an important
branch and key technology of aircraft overall design [1, 2].The surrogate model method deals with
the relationship between input parameters and response of complex structures of systems [3]. Gen-
erally speaking, larger number of samples often lead to higher fidelity of surrogate models. Thus,
determination of the number of samples are important.
In recent years, there are many studies on surrogate models investigating methods to reach higher
fidelity with less samples.
Leifur Leifsson and Slawomir Koziel developed an optimization procedure based on kriging interpo-
lation of the low-fidelity model data enhanced by space-mapping correction exploiting a few high-
fidelity training points [4]. Han and Gortz6 proposed a Hierarchical Kriging (HK) method, using
Mean-Squared-Error (MSE) estimation to refine the sample points scheme [5]. They also combined
direct Gradient-Enhanced Kriging (GEK) and a newly developed Generalized Hybrid Bridge Func-
tion (GHBF) to improve the efficiency and accuracy of the existing Variable-Fidelity Modeling (VFM)
approach [6]. Multi-fidelity samples based surrogate modeling methods using infill criterion are ex-
tensively applied in optimal design work [7–9].
This paper applied infill criterion to propeller modeling process. Two sets of different fidelity samples
are acquired for propeller model construction and evaluation. The low-fidelity sample set is applied
to construction of the initial surrogate model. And the high-fidelity sample set is utilized in evaluation
the accuracy of surrogate models. When the surrogate models’ accuracy cannot reach the demand,
a new set of low- fidelity samples are generated by infill criterion and added to the surrogate model.
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2. Surrogate model iteration based on sequential design
An ordinary surrogate model is constructed with a one-shot approach in which the samples are
generated at once. Due to the lack of prior information, it is often hard to determine the size of the
sample set. To avoid the case that too few samples are evaluated to obtain an accurate model(under-
sampling), an easier way of generating and evaluating more samples than required(over-sampling)
is often applied, which means wasting computational resources [10, 11]. Thus, sequential design
approach is applied to turn the surrogate model construction into an iterative process. The acquired
samples and the constructed model from previous iterations are analyzed in order to intelligently
select locations for new samples using infill criteria. As a result, the risk of over- or under-sampling is
avoided [12–17].

2.1 Overview
This paper uses SUMO toolbox to conduct the modeling iteration process. The flow chart is shown in
Figure 1. Step 1, two sets of samples are chosen. One is the initial sample set, generated by design
of experiment method, for model construction and the other is manually picked for model evaluation.
Step 2, low-fidelity sample response value is acquired through low-fidelity simulator (scripts based
on blade-element momentum theory). For every sample, the chord and torsion angle distribution
are optimized to obtain the best efficiency as the response value. And kriging surrogate model is
constructed after acquiring the response value. Step 3, high-fidelity sample response value is ac-
quired through high-fidelity simulator (high-accuracy computational fluid dynamics tools). Some of
these samples’ high-fidelity response value is validated by experiments. Step 4, error of the surro-
gate model is evaluated by comparing the high-fidelity samples and the surrogate model prediction.
If the termination condition (model average error 5%) is reached, the current surrogate model is ac-
cepted. If not, go to step5, and repeat the updating cycle of sample infill(step5)-construction(step2)-
evaluation(step4). Step 5, apply infill criterion to the surrogate model. The infill criterion would gener-
ate and add extra samples to the low-fidelity sample set by exploring the design space and exploiting
the existed samples.

Figure 1 – Flow chart of surrogate model iteration

2



RESEARCH OF PROPULSION SURROGATE MODELING METHOD

2.2 Design of experiments
Design of experiments (DoE) is a technique for planning samples and analyzing the information ob-
tained. The technique allows using a minimum number of samples, in which several design variables
are varied systematically and simultaneously, to obtain sufficient information. A sampling plan that is
well-distributed but not regular across the design space is essential for building a surrogate model [3].
In this paper, Latin hypercube sampling method is applied to propeller surrogate model and full fac-
torial sampling is applied to motor surrogate model.
Latin hypercube sampling is a method of sampling that can spread samples uniform in all of the
design space. Building a Latin hypercube can be done by splitting the design space into equal size
bins. Samples are placed in the bins in a way that no other sample should exist in any direction of
bins axis [18,19].
Design variables of propeller are the input power Pp, the rotation speed Np and diameter D.The range
of design variables are shown in Table 1: Propeller input power varies from 10 to 30kW, rotational
speed varies from 200 to 500 r/min, and diameter varies from 4 to 6m. The range of design variables
is narrow due to the constraint relationship among design variables. For example, a propeller of high
input power and high rotational speed would be too thin and slender; and a propeller of high input
power and low rotational speed would be too thick [20]. Thus, this paper chose a narrow range of
design variables to guarantee the surrogate model construction.

Table 1 – Range of variables of propeller surrogate model

Design variable
Value

Lower boundary Upper boundary
Pp [kW] 10 30
Np [r/min] 200 500
D [m] 4 6

The design space was stratificated and the Latin Hypercube Sampling (LHS) method was imple-
mented within each layer to generate the initial sampling scheme as shown in Figure 2. This initial
sampling scheme includes 20 points generated by LHS method and 8 corner points.

Figure 2 – Initial propeller sample scheme

Generally speaking, full factorial design is often applied in motor design work. Thus, infill criterion is
not needed. Range of motor design variables and sampling scheme are shown in Table 2 and Figure
3.
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Table 2 – Range of variables of motor surrogate model

Design variable
Value

Lower boundary Upper boundary
Pp [kW] 5 30
Np [r/min] 300 1500

Figure 3 – Motor sample scheme

Besides, this paper manually picked some typical cases as extra propeller samples instead of using
sampling algorithm to generate them randomly. High fidelity Computational Fluid Dynamics(CFD)
method is applied to these samples and experiments are carried out to verify the fidelity.

2.3 Infill criteria
Infill criteria must find the balance between exploration and exploitation [21]. Exploration is not only
the act of filling the design space as evenly as possible but also the exploration of the design space
to identify and mark the most important areas like steep slopes and optima. On the other hand,
exploitation is the act using existed samples and their evaluations to guide the sampling process.
Exploitation method would prefer to sample near optima, possible discontinuities and other identified
key areas in design space. LOLA-Voronoi method [22] is a hybrid infill criterion which balances
exploration and exploitation.
The Local Linear Approximation (LOLA) sampling algorithm estimates and the gradient measures the
nonlinearity around the existed samples [23]. Take a n-dimensional case as example, the gradient of
a function f : Rd → R is defined as:

∇ f =
(

∂ f
∂x1

,
∂ f
∂x2

, · · · , ∂ f
∂xn

)
(1)

The gradient of the function at a given point p0 ∈ Rd in the design space has the property of repre-
senting the beat local linear approximation for f at p0:

f (p) = f (p0)+∇ fp0 (p− p0) (2)

Because the gradient of the given point p0 is often unknown, the LOLA algorithm estimates the
gradient of the nearby region around the given point p0. For those region that are highly nonlinear,
new samples are selected in them.
The Voronoi algorithm uses Voronoi diagram to describe sampling density and suggests adding sam-
ples in interesting regions which were previously discovered. Take a 2-dimensional (Euclidean plane
Q) case as example, a distance function d and a finite set of points {p1, p2, · · · , pn} is given. For a
point pk, its corresponding Voronoi cell Rk consists every point q in Euclidean plane whose distance
d (q, pk) is less than or equal to any other p j.

Rk =
{

q ∈ Q
∣∣d (q, pk)≤ d (q, p j) , j 6= k

}
(3)
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Each such cell is obtained from the intersection of half-spaces, and hence it is a (convex) polyhedron
[24], as shown in Figure 4 .
The line segments of the Voronoi diagram are all the points in the plane that are equidistant to the
two nearest sites. The Voronoi vertices (nodes) are the points equidistant to three (or more) sites.
The Voronoi algorithm would select new samples in the larger Voronoi cells in order to achieve equal
distribution of samples.

Figure 4 – Voronoi Diagram [25]

3. Propeller surrogate model iteration
The LOLA-Voronoi method generates 10 new samples at every updating cycle until the termination
condition(model average error 5%) is reached. The final propeller sample diagram is shown in Figure
5, red points are the initial samples generated by DoE method and the green ones are generated by
LOLA-Voronoi method. The efficiency surrogate model of the propeller is shown in Figure 6. It should
be noted that the z axis of propeller samples (Figure 5) and propeller model (Figure 6) are different.
The z axis of the model is the propeller sample response value (efficiency), and the design variable
input power is represented as three slices.
It’s easy to see that the added samples are centered around the optima, which is the combination of
proper diameter, rotational speed and input power parameter.

Figure 5 – Final propeller sample scheme
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Figure 6 – Propeller model

4. High-fidelity simulator verification
To evaluate the surrogate model with high-fidelity sample response value, the high-fidelity simulator
itself must be validated at first. Thus, experiments were carried out to verify the accuracy of high-
fidelity simulator.
A scaled propeller model has been tested in wind tunnel, the photo and experiment results are shown
in Figure 7and Figure 8.The maximum error of the high-fidelity simulation is 7.6% and average error
is 3.7%.
After validation, the high-fidelity samples are used to evaluate the surrogate model. Surrogate model
prediction and high-fidelity response value are compared and the average error is calculated. If the
termination condition(model average error 5%) is reached, the surrogate model would be accepted.

Figure 7 – Scaled propeller wind tunnel experiment

Figure 8 – Experiment results and error
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5. Conclusions
In this paper, surrogate model method is applied to propeller performance evaluation to avoid large
amount of time-consuming and computationally expensive calculation. Besides, infill criterion is ap-
plied to the modeling process to further reduce the calculation cost.
The results of this study show that the combination of infill criterion based surrogate model method
and low-fidelity simulation can achieve comparable accuracy (average error of 5%) in prediction with
the traditional approaches. Only a few high-fidelity simulations are needed for evaluation, after being
validated by experiments.
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