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Abstract 

Adaptive infilling is a key element for Surrogate-based optimization (SBO) in its efficiency and convergence. 
For complex system optimization problems with expensive black-box functions, the SBO with common 
adaptive infilling shows imperfection in local exploitation, especially for problems with large design space and 
many design variables. An efficient adaptive SBO using fuzzy clustering algorithm for the infilling procedure is 
proposed in the paper.  In each refinement cycle during SBO process, a Kriging model is constructed using 
the high-fidelity samples in current design space; then the current design space is divided into several 
subspaces using the fuzzy clustering algorithm with respect to the features of the objective function; hence 
new infilling samples are selected within each subspace and parallelly solved; thereafter, the current design 
space is updated by merging the subspaces. The proposed method is validated and assessed by several 
benchmark tests with bound constraints, further it is used for solving a beam optimization problem and an 
interstage-section optimization of a rocket. The results indicate the proposed method performs well both in 
local exploitation and global exploration, and is efficient in solving complex system optimizations. 
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1. Introduction 
In modern complex system optimizations, especially in aircraft design, the problems always have 
large design space and show strong nonlinearity due to complex couplings. Thus, it provides a 
prohibitive difficulty in employing complicated and time-consuming high-fidelity analysis techniques 
during optimization [1]. Surrogate model has been popularly used in lieu of expensive high-fidelity 
analyses in optimization after the fruitful paper [2], to improve optimization efficiency. However, the 
adaptability of surrogate-based optimization (SBO) in handling complex system optimizations are 
greatly influenced by the adaptive infilling [3].  
Common adaptive infilling strategy includes maximizing surrogate error (MSE), minimizing surrogate 
prediction (MSP), the infilling based on the expected improvement (EI), the probability of 
improvement (PI), and the lower confidence bound (LCB) [4]. The EI-based infilling is widely used in 
SBO due to its balance in local exploitation and global exploration. However, abovementioned 
infilling strategies choose only one infill sample in each refinement cycle to update the surrogate 
model during SBO process. 
Currently more efficient parallel adaptive infilling strategies are of our concern [5], which shows good 
balance in local exploitation and global exploration. Ginsbourger selects q infill samples 
simultaneously using the EI-based infilling, of which the Kriging Believer and Constant Liar are 
proposed to update the surrogate q times in one refinement cycle [6]. It is suitable for general 
nonlinear problems. The clustered Multiple Generalized Expected Improvement is proposed to 
adaptively balance the exploitation and exploration of the EI-based infilling, and choose multiple local 
extrema of the generalized EI function in parallel by the NM-simplex [7]. The method needs more 
local optimizations based on surrogate model. Li combines different common adaptive infilling 
strategies to generate infill samples to balance local exploitation and global exploration [8]. However, 
it is greatly influenced by the initial set of samples, especially in case that the initial samples lack too 
much information of the design space. Those strategies focus on adding infill samples balancing 
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local exploitation and global exploration. 
A successive response surface methodology is proposed to reduce design space around an 
optimum during SBO process [9]. But it will find local optimum when initial samples loose design-
space information. An intuitive methodology is proposed by Wang and Simpson to systematically 
reduce the design space during refinement [10], which depends more on the initial sampling, and 
might miss global optimum. Guo et al first generate a huge number of samples through the surrogate, 
then use the fuzzy c-means clustering to cluster those samples in order to identify interesting spaces 
for selecting infills [11]. Three metamodels are combined with the optimized weight factors, then the 
optimum and the promising samples in the sparse region are chosen as new infills within the reduced 
space [12]. The above methods also show deficiency in global exploration for problems with strong 
nonlinearity. 
This paper proposes an efficient adaptive SBO based on Kriging surrogate model, by using the fuzzy 
clustering algorithm to identify several subspaces for select new infill samples, after which the design 
space is reformed. Hence, during the sequential infilling procedure, the design space is adaptively 
modified which can improve the adaptability and effectiveness of SBO for solving complex system 
optimization problems. Finally, the proposed method is validated, and applied to solve the beam and 
the rocket interstage-section optimization problems. 

2. Methods 
2.1 Procedure of the proposed surrogate-based optimization with fuzzy clustering 
A general nonlinear optimization problem under constraints can be expressed as, 

L, U,

min ( )
s. t. ( ) 0 1,2,...,

1, 2,...,
j

i i i

f
g j J
x x x i m

≤ =

≤ ≤ =

x
x                                                      (1) 

where, gj(x) is the jth constraint; xL,i and xU,i are respectively the lower and upper bound of the ith 
design variable. It is assumed that the objective function or the constraint functions are expensive to 
evaluate. Thus, SBO is taken to improve optimization efficiency. The procedure of the proposed SBO 
method is shown in Figure 1. An initial set of samples are first generated by a certain design of 
experiment (DoE) method, then analyses are performed to obtain high-fidelity data, based on which 
the Kriging model of the objective is built. Thereafter, the objective function is optimized based on 
the Kriging model, and high-fidelity analysis is performed of the optimum. If the surrogate model is 
accurate, the optimum could be the final solution; or else, the adaptive infilling is executed.  

 

 
Figure 1 – Procedure of the proposed SBO combined with fuzzy clustering algorithm. 
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In comparison with the basic SBO process, the adaptive infilling procedure consists of the following 
four steps: 1) Reduction of the pseudo samples generated in current design space; 2) clustering of 
the trimmed pseudo samples; 3) Select of infill samples in subspaces; 4) merging of the reduced 
subspaces. The Kriging modeling, the adaptive infilling procedure, and the constraints handling are 
detained in the following subsections. 

2.2 Kriging model 
The South Africa geologist Daniel G. Krige first proposed the Kriging model in 1951 [13], to predict 
the unobserved value in a random field using the observations nearby. The French mathematician 
Georges Matheron developed the regional-variable theory and coined it Kriging [14]. 
Suppose an objective or a constraint function with m design variables, which is expensive to obtain, 
then a Kriging model needs to be built for the unknown function y: ℜm→ℜ with respect to x. First, a 
certain DoE method, e.g. Latin hypercube sampling (LHS), is used to generate an initial sampling 
plan S=[x(1), x(2)…, x(n)]T. Then high-fidelity analyses, such as CFD, are performed of the n samples to 
obtain the responses y=[y(1), y (2)…, y (n)]T. Hence, the sampled data set as well as the corresponding 
responses could be used to build the Kriging model. A common Kriging model is an interpolation 
model based on statistics. It is expressed as, 

                                                                ( ) ( )ŷ Zµ= +x x                                                                  (2) 
where x is the design vector containing m design variables, and y�(x) is the predicted function value 
at a certain x; μ is the regression parameter, which is the mean of the observations; Z(x) is a 
stochastic process with zero mean. Z(x) can be calculated through the correlation between the local 
position and its nearby observations, which can be formed by the correlation matrix 

 ( ) ( ) ( )2
CCov , ,i j i jZ Z Rσ   =   x x R x x                                                  (3)  

in which R is the correlation matrix, and σC is its variance. R is the Gaussian correlation function which 
can be computed by, 

( ) 2

1

, exp , 1,2, ,
m

i j i j
l l l

l

R x x i j nθ
=

 
= − − = 

 
∑ x x                                       (4) 

where, n is the number of the samples; θl is the lth unknown correlation parameter for tuning Kriging 
model. The correlation function represents the influence of the neighbor samples on the local model 
accuracy and the smoothness of the model. Thus, the Kriging model can be expressed as, 

( ) ( )1ˆ ˆ ˆTy µ µ−= + −x r R y 1                                                           (5) 
where, r represents the correlation between the unobserved sample x and all the observed samples; 
and y denotes the vector containing the function values of all the samples. Hence, with a specified 
θ, the estimated regression parameter μ� and the estimated variance σ�C  can be computed by 

( ) ( )11
2
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                                          (6) 

In Eq. (6), θ can be obtained by maximizing the concentrated logarithm likelihood function, as follows 

( ) ( )2
C= ln +ln / 2ˆLn n σ −  θ R                                                       (7) 

Simultaneously, the mean square error of the Kriging model can also be computed by, 

( )
( )21
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T
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2.3 Adaptive infilling 
To explain the adaptive infilling procedure, following expressions are first introduced. Dinit is the initial 
design space, where xL,init and xU,init are the lower and upper bound of the initial design space, 
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respectively. Then, c1 is specified to restrict the minimum design space to Δlimit= c1(xU,init - xL,init) during 
refinement, in which c1 is recommended as 0.1. Thus, in the first refinement cycle, the current design 
space is set to Dinit. 

2.3.1 Pseudo samples reduction 
Before clustering, a set of samples needs to be generated using surrogate model, named pseudo 
samples, because the real samples through high fidelity analyses are too few to be clustered. In the 
paper, the random LHS (RLHS) is used to generate Np pseudo samples, as Np is usually large than 
100. Thus, the DoE method has small influence on the uniformity of the sampling plan. 
In the jth refinement cycle, xk (k=1, 2, …, Np) pseudo samples are generated in the current design 
space Dj=[xL,c, xU,c]. The objective are accordingly fk (k=1, 2, …, Np). Thus, the reduction of the pseudo 
samples is carried out by the following steps. a) Compute mean objective fm of the pseudo samples; 
b) Calculate objective threshold by ft=tr(fmax-fmin), in which tr (0<tr≤1) restricts the objective threshold, 
fmax and fmin are the maximum and minimum predicted objective respectively; c) Identify the value 
for deleting pseudo samples by comparing the mean and threshold objective fd=max(fm, ft); d) Delete 
the pseudo sample, when fk>fd (k=1, 2, …, Np), then Nr pseudo samples are remained for clustering. 
Thus, it makes a balance between the mean and threshold objective, which can keep enough 
samples for clustering, as well as to prevent fast reduction of the design space. 
On the one hand, the reduction of the design space can amplify the local features of the design 
space, thus to improve optimization quality; on the other hand, it can reduce the samples for building 
the surrogate, accelerating modeling procedure. 

2.3.2 Clustering of the trimmed pseudo samples  
Clustering algorithm is a statistical analysis technique that can classify samples or indexes. Since a 
clustering algorithm can capture the features of each cluster, it is used to generate subspaces for 
selecting infill samples. In this step, the remained pseudo samples are clustered by the fuzzy cluster 
means (FCM) algorithm after pseudo samples reduction. The FCM algorithm is a kind of soft 
clustering algorithm first proposed by Bezdek [15], which determines the membership of the samples. 
If the number of the clusters Nc is given, the samples can be automatically partitioned into Nc clusteres 
by the FCM. Suppose there are Nr pseudo samples xk (k=1, 2, …, Nr) after reduction, the discrepancy 
between the cluster centers and other samples is 

cr 2

1 1
( , ) ( )

NN
d

ik k i
k i

J u
= =

= −∑∑U V x v                                                (9) 

in which U is the fuzzy partition of the pseudo samples; uik is the weight of the kth pseudo sample in 
the ith cluster; vi is the ith cluster center; d is a constant larger than 1, and is set to 2 here. U and V 
can be obtained by minimizing the discrepancy, and the weight uik of each sample to every cluster 
center could also be obtained, which satisfies  

c

1
1

N

ik
i

u
=

=∑                                                                      (10) 

The abovementioned optimization problem can be solved by the Lagrange multiplier method, subject 
to the equality constraint in Eq. (10). Hence the cluster centers are obtained by employing the 
necessary condition of the Lagrange function, as is shown in Eq. (11), and the weights are solved 
by evaluating the membership of each sample shown in Eq. (12). 

r r
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d d
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Given a set of initial cluster centers (iteration step k=1), the membership matrix Uk needs to be first 
computed, then the cluster center matrix Vk could be updated.  If the cluster centers are stable, final 
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cluster center matrix is obtained; if not, update the iteration step by k= k +1. 

2.3.3 Infill samples selection 
By means of clustering, new samples are generated within each partitioned subspace to enhance 
both global exploitation and local exploration. The hybrid refinement strategy combining the EI-based 
infilling and the MSP is taken to select new samples. Suppose in the ith subspace [xL,i, xU,i], Nc 
samples S1={xj| j=1, 2, …., Nc} are generated by maximizing EI function, and Nc samples S2={xj| j=1, 
2, …., Nc} are from minimizing the surrogate prediction. Hence the new samples selected by the 
infilling criterion are expressed as Snew={min{S2}, S1}. As the subspaces might overlap, new samples 
selected in each subspaces might quite similar, thus only one of those new samples is kept, and 
other similar samples need to be removed from the sample set Snew. The new samples finally selected 
are expressed as {xnew,i}⊂Snew (i=1, 2, …., pj). Infill samples selection simultaneously considers the 
global and local features of the objective function, which is more adaptive. 

2.3.4 Subspaces merging 
After selecting infill samples, the subspaces need to be merged into a new design space, thus to 
reduce the design space during optimization. The merged design space Dm=∪[xL,i, xU,i]( i=1, 2, …., 
Nc), is the union of Nc subspaces, and the design space is updated by 

( )( )u m init  limitmax min , ,=D D D ∆                                              (13) 
where, Δlimit is the restricted minimum design space, and min(Dm, Dinit) restricts the updated design 
space within the initial design space. Then the design space can be updated by Du. After updating 
the design space, high-fidelity analyses are performed for those new infill samples in parallel to 
improve optimization efficiency. 

2.4 Constraints handling 
Different from penalizing the objective function, the constraints are handled here during refinement, 
by constraining the EI function and penalizing the surrogate prediction as well. During SBO, 
surrogate models are needed to be built for constraints when they are expensive to evaluate. To 
reduce computational cost, only one surrogate model is fitted by using the maximum value of all 
constraint functions at each sample. Hence, the constraint function might be discontinuous. If g(x)<0 
is defined to satisfy the constraint, the probability of satisfying all the constraints of the EI function is 

( )( )  ( ) ( )( )EI max cmax0 1P g g sΦ< = −x x x                                              (14) 

in which, gmax(x) is the maximum value of all constraint functions at x, computed by gmax(x)=max gi(x); 
ĝmax(x) is the built surrogate model for the constraints; sc(x) is the error of the constraint model. Thus, 

the constrained EI function is expressed in Eq. (15), and it is used to replace the EI function during 

refinement procedure to select infill samples.  

( )( )'
EI max[ ( )] [ ( )] 0E I E I P g= ⋅ <x x x                                                 (15) 

For the MSP infilling criterion, the predicted objectives need to be penalized during refinement to 
prevent infills against constraints being added into the design space. The penalty function for the 
predicted objective function is PMSP(x)=a·max(0, gmax(x)), where a is the factor to tune the penalty. The 
value of a can be specified as the inverse of the optimum in current iteration, it should be restrained 
to a small positive value to prevent the penalty becoming infinity. Hence, during refinement the 
surrogate of the objective function is replaced by the penalized surrogate for the objective, expressed 
as 

 ( )  ( ) ( )
'

MSPy y P= +x x x                                                       (16) 

3. Test cases and applications 
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3.1 Analytical tests 
The proposed method is validated by several analytical benchmark test cases. The proposed method 
is named SBO-FCM for short. Details of the benchmark test cases are shown in Table 1.  
 

Table 1 – Illustration of the benchmark test cases. 

Tests Nm Nf Formular x* f* [xL, xU] 

Branin(BR) 2 3 ( ) 2 2
2 1 1

2

 [ 5.1(0.5 ) (5 ) 6]
10[1 0.125(1 )]cos 10

f x x x
x

π π
π

= − + −
+ − +

x  
(-π,12.275) 
(π, 2.275) 

(9.4248,2.475) 
 1

2

[ 5,10]
[0,15]

x
x
∈ −
∈

 

Rosenbrock(RB) 2 1 2 2 2
2 1 1( ) 100( ) ( 1)f x x x= − + −x  (1,1) 0 1 2, [ 5,10]x x ∈ −  

Six-hump camel 
back(SC) 2 2 ( ) 2 4 6 2 4

1 1 1 1 2 2 1= 4 2.1 3 4 4f x x x x x x x− + + − +x  (0.0898, -0.7126) 
(-0.0898, 0.7126) -1.0316 1 2, [ 2, 2]x x ∈ −  

Rastrigin(RS) 2 1 ( ) ( )
2

2

1
= 18 10cos 2i i

i
f x xπ

=

 + − ∑x  (0, 0) 0 1 2, [ 1,1]x x ∈ −  

Griewank(GN) 2 1 
22

2

1 1

( ) 200 cos( ) 1i i
i i

f x x i
= =

= − +∑ ∏x  (0, 0) 0 1 2, [ 100,100]x x ∈ −  

Generalized 
polynomial 

Function(GF) 
2 1 ( )

2 2 2
1 2 3

1 2

1 2 3

where 1 1,2,3
and 1.5, 2.25, 2.625

j
j j

f t t t
t a x x j

a a a

= + +
= − − =

= = =

 (0, 0) 0 1 2, [ 5,5]x x ∈ −  

Hartmann(HN6) 6 1 ( ) ( )
4 6

2

1 1
expk ki i ki

k i
f b a x p

= =

 
= − − − 

 
∑ ∑x  (0.2017, 0.1500, 

0.4769, 0.2753, 
0.3117, 0.6573) 

-3.322 
[0,1]

1, 2, ,6
ix

i
∈

= 

 

F16 
function(F16) 16 1 ( )( )

16 16
2 2

1 1
1 1ij i i j j

i j
f a x x x x

= =

= + + + +∑∑   25.878 
[ 1,0]

1, 2, ,16
ix

i
∈ −

= 

 

Parameters in test case HN6 and F16 can be related in reference [8]. 
 
The SBOs with EI-based infilling (SBO-EI) and with MSP (SBO-MSP) are taken to compare with the 
proposed method to evaluate the performance of the adaptive infilling. Setting of the parameters Nc, 
Np and tr for adaptive infilling can be found in Table 2. Initial samples are determined following the 
policy: (m+1)(m+2)/2 samples for problems with m<6; 2m samples for problems with m≥6. For test 
cases in two dimension, 6 initial samples are generated to avoid missing promising regions due to 
too few samples.  
Results of 30 repeated runs by each method are also compared in Table 2. It shows the SBO-FCM 
has better performance than the SBO-EI and SBO-MSP in optimization quality and robustness for 
test cases of SC, BR, RB, GN, GF, HN6 and F16. Since the RS function has many local optima, the 
SBO-EI is inefficient in exploring more local optima. In comparison, the SBO-FCM finds more local 
optima due to adaptive infilling. Besides, in view of the variances, the SBO-FCM has smallest value 
in comparison with the SBO-EI and SBO-MSP, which indicates that the SBO-FCM has best 
robustness. 
 

Table 2 – Results comparison by different SBOs. 

Test 
cases DoE SBO-FCM SBO-EI SBO-MSP 

Nc Np tr mean opt. variance mean opt. variance mean opt. variance 
SC 6 2 100 0.75 -1.0312 3.5125e-6 -1.0300 5.5469e-5 -1.0261 2.6159e-4 
BR 6 2 100 0.7 0.3978 2.8206e-9 0.3984 1.4624e-6 0.6622 3.9860e-1 
RB 6 2 100 0.75 0.0036 1.9748e-4 0.0217 9.0286e-3 0.7028 2.4285 
GN 6 4 100 0.1 0.0439 6.4191e-3 0.0952 1.7599e-2 0.3804 3.1022e-1 
RS 6 8 200 0.9 -1.9960 4.8886e-4 -1.5616 4.7992e-1 -1.4600 5.8407e-1 
GF 6 2 200 0.8 0.0136 8.0778e-4 0.0128 7.7404e-4 0.4924 4.7491e-1 

HN6 28 2 100 0.7 -3.2690 6.5762e-3 -3.1687 5.3283e-2 -3.1656 6.3367e-2 
F16 32 2 100 0.7 25.8765 5.8149e-7 25.8765 4.1221e-6 25.8788 2.4042e-5 

 
The number of the total samples, the iteration cycles, and the optimum range of the 30 repeated 



EFFICIENT ADAPTIVE SBO USING FUZZY CLUSTERING FOR COMPLEX SYSTEM OPTIMIZATIONS 

7 

 

 

runs are compared in Table 3. The optimum range by the SBO-FCM is the narrowest for each test 
case. It indicates that the SBO-FCM has best robustness. In comparison, the SBO-FCM performs 
fewest iteration cycles, although it always has most samples evaluated.  
The box plots in Figure 2 indicates that the SBO-FCM has best robustness in comparison with SBO-
EI and SBO-MSP. The median optimum by the SBO-FCM is close to the lower bound of the optimum 
range for all the test cases, which indicates it has good robustness. The SBO-EI also shows good 
robustness for simple problem; however, its robustness decreases for complex problems. In 
comparison, the SBO-MSP shows worst robustness. 
 

Table 3 – Comparison of total samples, iteration cycles and optimum range by different SBOs. 

Test 
cases 

SBO-FCM SBO-EI SBO-MSP 
Opt. range samples cycles Opt. range samples cycles Opt. range samples cycles 

SC [-1.032, -1.021] 88.43 25.80 [-1.032, -0.991] 46.50 37.17 [-1.032, -0.953] 53.00 39.60 
BR [0.398, 0.398] 87.77 25.77 [0.398, 0.402] 48.00 36.70 [0.398, 1.943] 83.10 59.03 
RB [1.919e-6, 0.076] 247.60 73.00 [2.436e-4, 0.519] 125.60 75.37 [1.076e-6, 7.591] 351.17 226.17 
GN [2.092e-9, 0.150] 215.63 40.00 [1.085e-4, 0.397] 596.27 309.23 [1.010e-3, 1.768] 376.03 244.70 
RS [-2.000, -1.879] 168.60 17.97 [-2.000, -0.539] 47.80 30.00 [-2.000, -0.539] 78.40 50.60 
GF [2.736e-5, 0.113] 672.72 136.08 [4.162e-6, 0.124] 551.83 286.63 [4.550e-4, 1.619] 617.50 364.97 

HN6 [-3.322, -3.188] 112.73 26.27 [-3.322, -2.629] 71.73 34.37 [-3.322, -2.629] 68.40 148.70 
F16 [25.875, 25.877] 106.23 22.57 [25.875, 25.882] 84.50 47.13 [25.876, 25.887] 96.23 26.88 

 
 

             

             
Figure 2 – Box plots of 30 optima by different SBOs. 

 
The adaptivity of the infilling is compared in Figure 3. The samples for the best optimization of the 
30 runs by different SBOs are compared. It indicates that the SBO-MSP just focuses on local 
exploitation, resulting fast direct convergence to a local optimum. The SBO-EI behaves much better, 
because the EI function can balance local exploitation and global exploration as well. However, for 
highly nonlinear problems, the SBO-EI also shows insufficiency in global exploration, proven by the 
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samples in the plots of the figure. The samples by the SBO-FCM are concentrated in regions with 
optima or ridges, which indicates the SBO-FCM has good adaptivity considering exploitation and 
exploration. Especially for optimizing the GN and GF functions, the SBO-FCM can find many valleys 
and the two long ridges of the objective function. 
 

 
(a) Optimization of RB function (1: contour; 2: SBO-FCM; 3: SBO-EI; 4: SBO-MSP) 

 
(b) Optimization of BR function (1: contour; 2: SBO-FCM; 3: SBO-EI; 4: SBO-MSP) 

 
(c) Optimization of GN function (1: contour; 2: SBO-FCM; 3: SBO-EI; 4: SBO-MSP) 

 
(d) Optimization of GF function (1: contour; 2: SBO-FCM; 3: SBO-EI; 4: SBO-MSP) 

Figure 3 – Distribution of samples by different SBOs. 
 

3.2 Applications 
3.2.1 Beam optimization 
The SBO-FCM is applied in solving a beam optimization problem [15] with four design variables. The 
objective is to minimize the vertical deflection of an I-shape beam under the bending loads of P=600 
kN and Q=50 kN. The design variables are the parameters describing the cross-section shape of the 
beam, as is shown in Figure 4. The Length of the beam L is 200 cm, and the Young’s Modulus of 
Elasticity of the beam E is 20,000 kN/cm2. There are two constraints: the cross-section area A≤300 
cm2, and the bending stress of the cross section σ≤6 kN/cm2. The vertical deflection can be computed 
by PL3/48EI, and the optimization problem is expressed as 

x1

x 2

-5 0 5 100

5

10

15
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Figure 4 – Description of the beam optimization problem. 

 
The problem in Eq. (17) is a nonlinear constrained problem, which can be solved by a variety of 
optimization problems. Assume that the objective function is computationally expensive to evaluate, 
hence SBO is chosen to search for the global optimum. According to the abovementioned policy, 15 
initial samples are generated by the RLHS to start the refinement procedure. For the adaptive infilling, 
parameters are set as Nc=8, Np=200 and tr=0.6. To compare with the SBO-FCM, the differential 
evolution (DE) algorithm and the N-M simplex are also employed to solve the optimization problem. 
For DE, 20 populations and 400 generations are set; for N-M simplex, with respect to its local-search 
feature, two starts are set.  
The results in Table 4 shows the SBO-FCM is the most efficient method, which only perform 305 
function evaluations. The DE carries out 8,000 function evaluations, which is more expensive. 
Although the optima found by both methods can satisfy all the constraints, the bending stress by the 
SBO-FCM is smaller. The N-M simplex performs less function evaluations than DE, but it depends 
on the start. It finds a local optimum with start I, which it obtains the global optimum with start II. 
However, one of the constraints is violated for the global optimum. Generally, the proposed SBO-
FCM is more efficient, and the adaptive infilling can benefit optimization quality. 
 

Table 4 – Comparison of total samples, iteration cycles and optimum range by different SBOs. 

Methods optimum 
(cm) cycles samples design variables of optimum 

(cm) 
constraint 1 

(cm2) 
constraint 2 

(kN/cm2) 
SBO-FCM 0.013079 31 305 [79.9963, 49.9984, 0.9001, 2.3210] 299.9270 3.9944 

DE 0.013176 400 8000 [79.9972, 45.7629, 0.9124, 2.5296] 299.9018 4.4757 
N-M 

simplex 
Start I 0.013269 346 621 [80.0000, 39.3533, 0.9004, 2.9646] 300.0267 5.3718 
Start II 0.013165 349 630 [80.0000, 44.3244, 0.9000, 2.6255] 300.0240 4.6408 

 

3.2.2 Rocket interstage optimization 
Mass reduction is usually a goal for aircraft structure design, and optimization is an efficient approach 
to reduce structure mass [16].  Here the mass of a rocket interstage-section with four holes is 
minimized. Between two shells, there are integral latticed stiffeners, consisting of axial stringers, 
circular stringers, and hole stringers. SHELL93 and SOLID95 elements are respectively used to 
model the shells and stringers. Then a minor node is defined as the intersection point of the upper 
end face and the axis, and it is connected with all other major nodes on the upper end face by the 
RBE3 elements. Hence the axis load of 1,800 kN and the bending moment of 500 kN·m are acted 
on the minor node. The minor node displacement is the average displacement of all the major nodes, 
which is exactly the displacement of the upper end face. The lower end face is fixed-supported. 
Detail features of the material are: density is 2,700 kg/m3, yield strength is 313.8 MPa, Young modulus 
is 68,646 MPa, and Poisson ratio is 0.3.  
There are four holes in the same size on the body surface of the rocket interstage-section, and the 
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hole stringers, the heights of the circular stringers, and the heights of the axial stringers are the same. 
Through sensitivity analysis, 8 design variables are defined for the optimization problem: thickness 
of the axial stringer, circular stringer, hole stringer are respectively C1, C2 and C3; height of the loaded 
ring C4; shell thickness T; stringer height H; the major and minor semi-axis are A and B. Those design 
variables are shown in Figure 5, and their metric is mm.  
 

         

Figure 5 – Design variables of the rocket interstage-section optimization. 
 
The optimization model of reducing interstage-section mass can be expressed as 

( )
1 2 3 4

limit

1 2 3 4
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s s
T C C C C
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≤

≤
∈

∈
∈

x
x

x
x                                                    (18) 

in which, w(x) is the total structure mass; x is the design vector; σ is the maximum equivalent stress, 
which should be smaller than the yield strength; s is the maximum structure displacement limited by 
0.6 mm. The other design variables are constrained by bound constraints.  
The SBOs with EI-based infilling and the hybrid infilling, and the DE algorithm are utilized to compare 
with the proposed method. 45 samples are generated by the RLHS, and the same initial sampling is 
used for all the SBOs. The parameters for the SBO-FCM are set as: Nc=4, Np=300 and tr=0.9. For 
the DE, 20 populations and 100 generations are specified.  
Results are compared in Table 5. The DE needs much more high-fidelity analyses; in comparison, 
the SBO-FCM performs less high-fidelity analyses. With respect to constraints, the constraint margin 
of stress is still large, which demonstrates the found minimum might be a local optimum. Thus, the 
parameters are reset as Nc=8, Np=300 and tr=0.9, and the optimization is rerun. The SBO-FCM (2) 
finds a better solution with a little less weight, which is closer to constraint bounds, but needs more 
high-fidelity analyses.  
Figure 6 compares the displacements of the optimized rocket interstage-section by different methods. 
The optimized designs by the DE and SBO-FCM (2) have larger displacements around the holes 
due to weak shell and stringers. Since the momentum acted on the upper end face obeys the right-
handed rule, the lower-right hole has largest displacement on its head. The optimum design by the 
SBO-FCM shows the largest stress around the holes, as is shown in Figure 7. The bilateral stress of 
the lower-right hole is close to the yield stress, which illustrates the performance of the material is 
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better used. Besides, the bilateral stress around the hole is higher than other regions due to less 
circular material. 
 

Table 5 – Optimization results for weight reduction of rocket interstage-section. 

Methods w (kg) samples cycles σ (MPa) s (mm) 
Baseline 210.1840 - - 71.57 0.1035 

DE 83.9953 1864 100 287.18 0.5667 
SBO-EI 84.0525 81 40 228.83 0.4924 

SBO-hybrid 85.0626 243 79 295.90 0.5408 
SBO-FCM 83.4198 493 100 297.14 0.5810 

SBO-FCM (2) 82.4653 908 100 311.24 0.5866 
 
 

       
(a) Baseline                           (b) DE                            (c) SBO-FCM                   (d) SBO-FCM (2) 

Figure 6 – Displacement contour comparison. 
 

           
(a) Baseline                           (b) DE                            (c) SBO-FCM                   (d) SBO-FCM (2) 

Figure 7 – Stress contour comparison. 
 
Figure 8 shows the convergence histories of the objective and constraints. It illustrates that the 
optimization process converges quite well due to reduction of the design space. The SBO-hybrid 
does not converge, but terminates due to none update of the temporary optimum. The SBO-EI 
converges in 40 iterations due to fast converging to a local optimum. With respect to constraints, the 
optimum design found by the SBO-FCM is close to constraint bounds, and the constraints are 
satisfied. 
 

      
(a) Convergence history of objective            (b) Convergence histories of constraints 

Figure 8 – Convergence histories from the SBO-FCM (2). 
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Above applications indicate that the proposed SBO-FCM is more efficient in searching global 
optimum for problems with expensive function evaluations, and the adaptive infilling can better 
balance global exploration and local exploitation. 

4. Conclusions 
The paper proposes an adaptive surrogate-based optimization (SBO) using the fuzzy clustering. The 
proposed method is validated by several benchmark test cases, and then applied to solve a beam 
optimization problem and a rocket interstage-section optimization problem. Following conclusions 
are obtained: 
(1) The adaptive infilling using the fuzzy clustering can benefit both the global exploration and the 
local exploitation, thus it can handle complex system optimization problems with strong nonlinearity 
and multiple optima.  
(2) By selecting infill samples in subspaces clustered, the infilling is in parallel which can further 
improve optimization efficiency in case of enough computer resources. 
(3) The two applications indicate that the proposed SBO-FCM is more efficient than the DE and the 
N-M simplex in searching for the global optimum for real engineering problems. 
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