32" Congregs
II z s: aa of thelntema_?c?;af Council
of the Aeronautical Sciences

International Council of % EHANE HAI September 6-10, 2021
the Aeronautical Scnences Pudong Shangri-La, Shanghai, China

DESIGN OF SIMULATION-BASED PILOT TRAINING SYSTEMS
USING MACHINE LEARNING AGENTS

Johan Kallstrom!, Rego Granlund? & Fredrik Heintz?

ILinképing University, Linkdping, Sweden, {johan.kallstrom, fredrik.heintz}@liu.se
2RISE SICS East, Linképing, Sweden, rego.granlund@ri.se

Abstract

The high operational cost of aircraft, limited availability of air space, and strict safety regulations make training
of fighter pilots increasingly challenging. By integrating Live, Virtual, and Constructive simulation resources,
efficiency and effectiveness can be improved. In particular, if constructive simulations, which provide synthetic
agents operating synthetic vehicles, were used to a higher degree, complex training scenarios could be realized
at low cost, the need for support personnel could be reduced, and training availability could be improved. In this
work, inspired by the recent improvements of techniques for artificial intelligence, we take a user perspective
and investigate how intelligent, learning agents could help build future training systems. Through a domain
analysis, a user study, and practical experiments, we identify important agent capabilities and characteristics,
and then discuss design approaches and solution concepts for training systems to utilize learning agents for
improved training value.

Keywords: Air Combat Training; Flight Simulation; LVC Simulation; Machine Learning; Reinforcement Learn-
ing

1. Introduction

Providing efficient and effective training solutions for fighter pilots is becoming increasingly challeng-
ing. Due to the high operational cost of aircraft, limited availability of air space, and strict safety
regulations, it is difficult to realize training scenarios with the desired contents and density in a live
setting. Instead, virtual and constructive simulation resources must be used to a higher degree. Live,
Virtual and Constructive (LVC) simulation aims to integrate real aircraft, ground-based systems and
soldiers (Live), manned simulators (Virtual) and computer-controlled entities (Constructive) [1]. By
using constructive simulation to augment the live and virtual aircraft operated by trainees, it is pos-
sible to improve training effectiveness by simulating scenarios with a large number of participating
entities [2]. However, training value will depend on the quality of the agents used to control the con-
structive entities. Ideally, these agents should be able to act as synthetic instructors, and adapt their
behavior to the training needs of the human trainees. This would allow us to minimize the number
of human support personnel required for conducting training, which would lead to lower costs and
improved training availability.

As illustrated in Figure |1, we can divide the users of training systems into two major categories:
training audience and training providers. The training audience consists of those in training, e.g.,
pilots learning how to operate a new aircraft subsystem, while the training providers consist of those
delivering the training, e.g., instructors, operators, and role-players. Instructors are responsible for
the pedagogical contents of a training session, while role-players and scenario operators help deliver
the training by participating as actors or controlling parts of the simulated scenario respectively. If
synthetic agents were to become smarter, they could replace or augment human role-players, and
reduce the amount of human input required for the training scenario to progress in the desired way.
To further raise the level of autonomy of the system, agents could also assist instructors in evalu-
ating the performance of the trainees, and in adapting the contents and characteristics of training
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Figure 1 — Users of simulation-based pilot training systems (from [4]).

scenarios. However, creating behavior models for the agents is challenging, especially for end-users
of training systems (e.g., instructors), who may not have the required expertise and experience [3].
In the past, this has constrained the use of agents in training. Now, with the recent advances in arti-
ficial intelligence (Al), there is hope that data driven methods will simplify the process of constructing
intelligent agents, which could replace human support personnel in simulation-based training.

For learning sequential decision-making, reinforcement learning [5] has become the state of the art
method. Guided by a human-designed reward signal, such agents can learn a policy purely by in-
teracting with their environment. By leveraging deep learning [6], it has become possible to beat
human champions in classic board games as well as multi-player computer games [7,18,19,/10]. The
results have sparked interest in investigating applications of reinforcement learning in many domains,
including air combat simulation. However, the focus has, to a large extent, been on maneuver opti-
mization, rather than potential improvement of training value. To successfully design agents suitable
for training, a good understanding of the domain and its actors is essential.

In this work, we proceed to study learning agents from a user perspective, with support from experi-
enced fighter pilots. The goal is to learn more about how intelligent agents could be used to automate
some of the tasks performed by human training providers. Our contributions and the structure of the
paper can be summarized as follows.

« First, we perform an analysis of the domain of simulation-based training, using tools from Cog-
nitive Work Analysis (CWA) [11] and the Joint Control Framework (JCF) [12]. The analysis is
conducted from the perspectives of instructors and trainee pilots respectively. The purpose of
the analysis is to identify constraints imposed on training providers when using different types
of simulation resources, and to model the patterns of decision-making a synthetic agent must
be capable of if it is to replace human role-players in air combat scenarios.

» Second, we conduct a user study, consisting of repeated interviews and a written survey, with
the purpose of finding out what experienced pilots consider important agent capabilities and
characteristics in different types of simulation-based training scenarios, and what challenges
pilots are facing in their current training environment.

 Third, we conduct a study of human-agent interaction in an air combat scenario, where agents
trained with a state of the art reinforcement learning algorithm cooperate with humans to solve
an air policing task. The purpose of the experiment is to study how aspects of the agent design
affects the agent’s performance.

 Finally, we discuss design approaches and solution concepts within the context of a system
architecture for a simulation-based training system that incorporates learning agents. The pur-
pose is to provide a breakdown of the problem into smaller sub-problems, and provide framing
for future research efforts.

The work forms a basis for future research on learning agents in simulation-based training.
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2. Domain Analysis of Simulation-Based Training

In this section we conduct an analysis of the domain of simulation-based pilot training. The aim is to
identify and illustrate how different types of simulation resources and tools affect the constraints im-
posed on actors that provide training, and what decision-making capabilities a learning agent would
need to have to effectively participate in training scenarios, acting in a similar way as human role-
players. In support of our study, we use two modeling tools: The Abstraction Hierarchy, and the Joint
Control Framework Score (JCF-S) notation.

The abstraction hierarchy is a modeling tool used in Cognitive Work Analysis (CWA) [11]. CWA is a
framework of methods and tools for analysis of the constraints imposed on actors, to support design
of complex sociotechnical system. The abstraction hierarchy is used for work domain analysis, to
identify constraints placed on actors by the system’s purposes, values and priorities, functions, and
physical resources [11].

The JCF-S notation was proposed as part of the Joint Control Framework (JCF) [12]. JCF-S is
intended to support modeling of temporal aspects of human-machine interaction, at different levels of
autonomy in cognitive control (LACC). The levels are summarized below.

1. The Physical level, which shows constraints related to physical actions.
The Implementation level, which shows constraints related to implementation properties.

The Generic level, which provides generic plans for common situations.

2.
3.
4. The Value level, which handles trade-offs among the system’s objectives.
5. The Effect level, which deals with the system’s purpose and goals.

6.

The Framing level, which identifies the situation and context for control.

Levels 1 and 2 determine HOW control is realized, levels 3 and 4 deal with WHAT is done, and
levels 5 and 6 are related to WHY the system exists. To model the joint control of man and machine,
perception points (PP), decision points (DP), and action points (AP) are placed on six timelines, each
of them representing one of the LACC levels. As a result, a pattern of the control loop of the joint
system emerges. When agents are used in training scenarios, they should display a similar decision-
making pattern as human pilots.

2.1 Abstraction Hierarchy

Figure [2] shows an abstraction hierarchy for simulation-based pilot training, which models the domain
from the point of view of the organizations and instructors that provide training. The hierarchy identi-
fies functions and objects that can be used to achieve the purpose of the system, as well as measures
to evaluate its performance. The connections in the diagram illustrate the dependencies among the
levels of the hierarchy. The functional purpose of the air combat training system is to ensure air force
readiness by providing user-adapted training to fighter pilots, whilst considering constraints regarding
physical resources, competencies, and time. Definitions of concepts used at the lower levels of the
hierarchy are given below.

Value and Priority Measures

We have identified three important measures of system performance: Training Effectiveness, Training
Efficiency, and Training Availability. Training Effectiveness measures the system’s ability to deliver
the type of training that allows trainees to develop towards the training goals. Training Efficiency
measures the system’s ability to deliver training while minimizing resource consumption. Training
Availability measures the system’s ability to deliver training when needed. We believe that learning
agents could help improve performance in each of these measures, by affecting the contents of train-
ing scenarios as well as the way they are delivered.
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Functional Purpose To ensure air force readiness by providing user-adapted training to fighter pilots,
whilst considering constraints regarding physical resources, competencies, and time.

Value and Priority

Training Effectiveness ‘ ‘ Training Efficiency ‘ ‘ Training Availability
Measures
Purpqse-related Trainee Evaluation ‘ ‘ Training Evaluation ‘ ‘ Training Adaptation ‘ ‘ Training Delivery
Functions
Object-related Mission Scenario Behavior Behavior Scenario
Processes Analysis Adaptation Adaptation Control Control
|
Logging Analysis Scenario Entity Scenario Pilot Role-Play | | Operator
Objects System Tool Tool Tool Actor Station Station Station
Analysis Objects Scenario Objects Station Objects

Figure 2 — Abstraction hierarchy diagram for a simulation-based pilot training system.

Purpose-Related Functions

We have identified four purpose-related functions: Trainee Evaluation, Training Evaluation, Train-
ing Adaptation, and Training Delivery. Trainee Evaluation is concerned with evaluation of individual
trainees, and identifying the proficiency gaps that must be filled to achieve training goals. Training
Evaluation is concerned with evaluation of the complete training process, for the set of trainees in
training. Training Adaptation is concerned with adapting training to individuals and groups to improve
their progress towards training goals. Training Delivery is concerned with organizing and delivering
training contents to trainees in the system of interest.

Object-Related Processes

We have identified five object-related processes that can help realize the higher-level purpose-related
functions: Mission Analysis, Scenario Adaptation, Behavior Adaptation, Behavior Control, and Sce-
nario Control. Mission Analysis is used to study how trainees perform in simulated missions over
time. Scenario Adaptation is used to adapt training scenarios so that they suit trainees’ current
training needs. Behavior Adaptation is used to adapt the behavior of synthetic agents to fit current
training needs and training scenarios. Behavior Control is used to control the behavior of scenario
actors while running training scenarios, e.g., through partially manual control of synthetic agents in
case they are not able to operate fully autonomously, or through instructions given to human role-
players. The control can be through a representative interface, or though more abstract, generic
interfaces. Scenario Control is used to control scenario properties other than agent behavior, e.g.,
activating additional entities in the simulation.

Objects

We have organized the objects that support object-related processes into three groups: Analysis Ob-
fects, Scenario Objects, and Station Objects. Analysis Objects enable logging of data from training
sessions, as well as trainee performance analysis and tracking. Scenario Objects enable scenario
construction, model construction (e.g., aircraft and weapon models) and modeling of agent behav-
ior, and provides the actors that populate training scenarios to stimulate the trainees, i.e., synthetic
agents or human-role-players. The Station Objects provide the interfaces for users, i.e., trainee pi-
lots, role-players, operators and instructors. Pilots and role-players can participate through Virtual
simulators of varying fidelity, or through Live aircraft.

4
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2.2 Constraints when using Different Types of Simulation Resources
Figure [3| shows the relative importance of a set of constraints, for three different types of training
simulations, Live, Virtual, and Constructive.

Physical Resources
Model Quality

Air Space

Safety

Secrecy

Online Support
Offline Support

Live Virtual Constructive

Figure 3 — Constraints affecting training for different types of simulation resources.

Live training simulation provides the highest possible fidelity in terms interaction with the aircraft and
its subsystems. However, in the Live setting, training is highly affected by aspects of the physical
world. For instance, the availability of vehicles and other types of systems may not be sufficient to
realize complex scenarios. In particular, a military organization may not have access to systems that
have the same performance and characteristics as those that are used by the enemy. Furthermore,
operation of physical vehicles, e.g., aircraft, is highly expensive, which limits the amount of training
that can be delivered in this setting.

Training in the Live setting is also constrained by the limited availability of air space, as well as safety
regulations, which makes it difficult to realize scenarios with many entities, who are operating over a
large geographical area. A large number of support personnel may also be required to plan and con-
duct such exercises. In addition, when acting in the open, there is a risk that systems’ performance
and tactics are revealed to opponents.

By using ground-based, Virtual simulators, the constraints imposed by the physical environment are
lifted, and training delivery becomes easier. Still, there is a considerable cost related to populating
complex scenarios with a large number of high-fidelity simulators. Constraints regarding model fidelity
increase in this setting, in particular for within Visual Range (WVR) combat, where the effects of, e.g.,
g-forces is an important factor for pilot performance. To populate scenarios with only Virtual partic-
ipants, some humans must act on the opponent’s side. If they use high-fidelity pilot stations to play
this role in the scenario, they can learn to understand the opponent’s systems and tactics. However, if
the simulators used for this type of role-play do not have sufficient fidelity, the training value will be low.

Constructive simulation makes it possible to realize large scenarios, populated by synthetic entities,
which can replace human role-players. This reduces the need for physical resources, so that only
the computation hardware for running the simulation software is required. Instead, the constraints
are shifted to the fidelity of the simulation models, and the available offline support for building the

5
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Figure 4 — Hostile entities approaching a Combat Air Patrol (CAP).

models, as well the simulation scenarios. In particular, it becomes challenging to construct behavior
models for the synthetic entities, and adapting models to the training needs of individual trainees.
Since the expertise required for such tasks may not be available locally, at each training facility, the
turn-around time for updating training contents may be long. Instead, it may be necessary to have
scenario operators manually control the flow of the tactical scenario to some extent.

Learning agents have the potential to reduce the constraints of constructive simulation, by simplifying
the construction of high-quality behavior models. Data-driven methods can also provide objective
evaluations of trainees, on a machine-readable format, which can support automated adaptation of
simulation contents, so that training scenarios are always in pace with training needs.

2.3 Human-Machine Interaction for Decision-Making in Air Combat Scenarios

In this section, we study aspects of human-machine interaction in air combat scenarios. The aim is
to illustrate to what extent perception, decisions, and actions are supported by the automation of the
aircraft, and what parts of the control loop must be handled by the pilot alone. This information gives
insight regarding requirements that must be fulfilled by synthetic agents that are to replace human
pilots in training scenarios, and how to design the interface between the agent and the aircraft model,
including its tactical systems. For synthetic agents, decisions made by human pilots must be suf-
ficiently supported by Al, while the information available to support human decision-making should
also be incorporated in decision-making algorithms to maximize performance.

To illustrate how the capabilities of the pilot’s tactical control loop (Observe-Orient-Decide-Act) are
mapped to different levels of cognitive control, we study the engagement of two pilots in offensive
and defensive counterair operations, i.e., the quest for a favourable air situation, air superiority, or
air supremacy. For this study, we use the scenario illustrated in Figure |4/ to set the context. In this
scenario, two aircraft are flying a Combat Air Patrol (CAP) directed towards the south, to protect their
assigned Fighter Area Of Responsibility (FAOR), which is illustrated by the blue circle in the figure.
The FAOR contains three high-value assets, which are illustrated in yellow in the figure. Approaching
from the west are two hostile aircraft, which intend to perform an opportunistic attack on the high-
value assets, and must therefore first deal with the defending aircraft of the CAP. We assume that
the blue fighters are trainees, while the red fighters are human role-players, who try to support the
training of the trainees.

The engagement is modeled using the score notation, and the result is illustrated in Figure 5l To
simplify the notation we only present the engagement of two of the aircraft in the scenario.

6
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Figure 5 — Score for blue and red forces in a counterair operations scenario.

The timeline of the scenario is divided into four sections (A-D), where significant events occur. The
behavior of the defending agent is presented in the top score (labeled BLUE), and the behavior of the
attacking agent is presented in the bottom score (labeled RED). At the top of the figure, the geometry
between the two aircraft in different sections of the scenario is illustrated.

In section A of the scenario, a hostile RED aircraft is approaching the FAOR of the opposing BLUE
aircraft. The approach is carried out according to a pre-planned procedure (AP on level 3 Gen). The
pilot of the BLUE aircraft is informed by the decision support system that it is in the radar field-of-view
of the RED aircraft, and updates himself regarding the scenario geometry using the head-down dis-
plays (HDDs) (PP on levels 4 Val and 1 Phy respectively). He then makes a decision regarding the
current threat level (DP on level 6 Fra).

In section B of the scenario, the pilot of the BLUE aircraft once again refers to the HDDs, to assess
how to best deal with the threat (PP on level 1 Phy). The decision is then made that the most valuable
course of action is to engage the target (DP on level 4 Val). After the decision has been communi-
cated to the tactical air unit (AP on level 1 Phy), the pilot proceeds with target engagement according
to doctrine (AP on level 3 Gen).

In section C of the scenario, the pilot of the RED aircraft is informed by the decision support system
that it is in the radar field-of-view of the BLUE aircraft, which it is tracking (PP on level 4 Val). The
pilot considers desirable effects related to tactical mission goals as well as trainees’ training goals
(DP on level 5 Eff), and decides to proceed into the BLUE aircraft's FAOR, with the hope of attacking
a high-value asset (DP on level 4 Val). In the meantime, the pilot of the BLUE aircraft observes that
the RED aircraft is now within range (PP on level 4 Val), and decides to fire a missile (DP on level 4
Val followed by AP on level 1 Phy).

In section D, after firing the missile, the pilot of the BLUE aircraft guides it towards the target ac-
cording to doctrine, until handover (AP on level 3 Gen). The pilot of the RED aircraft is informed by
the decision support system that there is an incoming missile (PP on level 4 Val), and performs an
evasive maneuver to avoid the threat (DP followed by AP on level 3 Gen).

7



Design of Simulation-Based Pilot Training Systems using Machine Learning Agents

We can see that the pilot is supported by refined, abstract information, provided by the decision sup-
port system, to form his situational awareness. We can also see that several actions are pre-defined
to handle a certain situation, and have a temporal extension, e.g., target approach procedures, mis-
sile guidance procedures, and evasive maneuvers. Finally, decisions on how to handle the situations
that occur are often taken at the higher levels of cognitive control, were full automation may not cur-
rently be available. Therefore, the pilot still plays a vital part in the outcome of missions. He must
have the capability to comprehend the situation, to identify and rank potential threats and targets.
Then, when acting upon his situational awareness, the pilot must carefully choose how to use the
tactical systems of the aircraft. These aspects need to be considered by learning algorithms

3. Learning Sequential Decision-Making for Air Combat Scenarios

In recent years, reinforcement learning has come to be the state of the art method for learning se-
quential decision-making. By leveraging deep learning [6], it has become possible to beat human
champions in classic board games [7, 18], solve challenging robotics tasks [13, 14, 15], and learn how
to play single and multi-player video games directly from pixel input [16} 9, [10]. The results have
sparked interest in investigating applications of reinforcement learning in many domains, including air
combat simulation.

Reinforcement learning allows an agent to learn a function for decision-making (policy r) by interact-
ing with its environment in a form of trial-and-error learning [5]. A reinforcement learning problem is
typically modeled as a Markov Decision Process (MDP), or derivations thereof. A Markov Decision
Process is defined by the tuple (S,A,T,R, ), specifying:

» S: The set of states of the process

A: The set of actions of the process

T: The transition dynamics of the process
* R: The reward function of the process

+ v: The discount factor indicating the importance of immediate and future rewards respectively

The agent interacts with its environment by selecting actions according to its policy (a;, = 7(s;)), and
observes the resulting environment state (s,;1) and the received reward (r;+;). When the agent ex-
ecutes an action that results in high reward, that action is reinforced, so that it will be taken more
often in the future. During learning, the agent must balance between exploration and exploitation,
which is one of the greatest challenges of reinforcement learning. Exploration means that the agent
selects exploratory actions to learn more about the environment, while exploitation means that the
agent uses the knowledge gained so far to gather reward. The process is illustrated in Figure 6]

1
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Figure 6 — Markov Decision Process.
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The goal of the agent is to maximize its future expected return R, when starting in state so and then
following policy &, which is captured in the state value function Vy(s):

Va(s) = E[Ri[so = 5] = E[fa Yrlso=s] (1)

We can also define a state-action value function Q, which specifies the value of taking action a in
state s and then following policy x:

Qx(s,a) :E[i Yrilso =s,a0 = a] (2)
t=0

The Q function can be used as a policy, by greedily selecting the action with highest estimated value.
The Q function can be learned through Q-learning [17], by representing the Q function as a table of
Q values, and applying the following update rule in each step of the episode:

Q(Stvat) = Q(Staat) + OC(”t + }/maxaQ(sstH,a,H) - Q(shal)) (3)

As can be seen in the equation, the Q function is updated based on the difference in return estimates
at different times, the so called temporal difference (TD) error, scaled by the learning rate .

The tabular approach to reinforcement learning does not scale well to complex state and action
spaces, which limits it applicability to many real-world problems. A breakthrough in reinforcement
learning was the development of the Deep Q Networks (DQN) algorithm, which uses a neural net-
work to represent the policy, making it possible for agents to learn how to play video games from
pixels [16]. It uses a separate target network (updated less frequently than the policy network) to
estimate the TD error, and trains the policy network with data sampled from a buffer of past ex-
periences to stabilize learning. As one of the early scalable deep reinforcement learning algorithms,
it has been evaluated in many application domains, including air combat simulation [18],19, 20} 21} 4].

The DQN algorithm can only learn policies for discrete actions, which may limit the applicability to,
e.g., robotics problems. The Deep Deterministic Policy Gradient (DDPG) algorithm extended deep
reinforcement learning to domains with continuous actions [13]. It is an actor-critic architecture, that
uses a deep Q network (the critic) to estimate the values of actions, to guide updates of the agent’s
(the actor’s) policy. In air combat simulation, continuous actions can be valuable for platform ma-
neuvering, and there have been a number of studies, primarily for within visual range (WVR) combat
scenarios [22, 23] 24, 25! 26].

For success in air combat, agents need to learn how to cooperate with teammates in complex, com-
petitive environments. This is a challenging task for reinforcement learning, since the environment
becomes non-stationary when multiple agents are learning concurrently. Lowe et al. proposed the
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, an extension of DDPG to multi-
agent environments [27], to address this challenge. The algorithm proposes to learn policies in a cen-
tralized fashion, allowing the critic of each agent access to the observations and actions of all other
agents in the system. This simplifies determining what effect the behavior of an individual agent has
on the dynamics of the complete system. Though such approaches are valuable for air combat sim-
ulation, there has been surprisingly few research efforts in that direction, although interest seems to
be increasing [28] 14} 29, 130, 131].

While existing work on reinforcement learning for air combat simulation has covered some ground
in investigating the applicability of different types of learning algorithms, the focus has been on opti-
mization of air combat maneuvers, rather than potential added value for the users of simulation-based
training systems. For this reason, the next section provides an analysis of desirable agent capabilities
and characteristics from a user perspective, to identify how learning agents could support instructors
and trainees.
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4. User Needs in Simulation-Based Training using Learning Agents

In this section, we present the results of a user study, which aimed at identifying how intelligent
agents could help make simulation-based pilot training more efficient and effective. We discuss
which capabilities and characteristics agents are expected to have, from the perspectives of trainee
pilots as well as instructors.

4.1 Organization of the Study

The study consisted of repeated user interviews, and a follow-up written survey. The participants of
the interviews and the survey were experienced fighter pilots from the Swedish air force, and experi-
enced test pilots from Saab Aeronautics. Three pilots participated in the interviews, while twenty-five
pilots participated in the survey. The age of the participants of the survey ranged from 30 to 57 years,
and their years of experience as pilots ranged from 4 to 22 years. Density estimates for the age and
experience of the participants are shown in Figure

0.06 [ Age
[ Experience

0.05

0.02

0.01

0.00
0 10 20 30 40 50 60 70
Years

Figure 7 — Age and experience of survey participants.

The goal of the interviews was to allow pilots to describe current challenges in pilot training, and
possible areas of improvement. In particular, the focus was on ways to automate training delivery to
a higher degree using intelligent, learning agents, to reduce the dependency on support personnel
such as role-players and scenario operators, and to improve the availability of high-quality training
while reducing cost. Participants were initially asked to share their thoughts on training goals, training
approaches, and training media, to give an unbiased overview of how training is currently conducted.
Thereafter, the interviewers took a more active part, to identify the achievable training value when us-
ing agents in place of human role-players, to learn about challenges related to constructing training
scenarios when using agents, and to discuss what role learning agents could play in simulation-based
training systems in the future.

The interviews with pilots revealed a set of important factors that would need to be considered in the
design of synthetic agents. For the written survey, based on the information gathered through the
conducted interviews, a number of statements regarding desirable agent capabilities and character-
istics were presented to the participants. They were asked to rate to what degree they agreed with
the statements, for three different types of training: Basic Training, Tactical Procedure Training, and
Mission Training. In the Basic Training phase, a pilot with previous experience in flying a different
type of aircraft, or a different edition of an aircraft, is trained in basic flight maneuvers and system
operation. In the Tactical Procedure Training phase, a pilot is trained in using, e.g., tactical sensors,
data links, and weapon systems in typical combat scenarios. In the Mission Training phase, pilots are
trained to cooperate in teams to carry out typical operational missions. The intention was to identify
how user needs differed for these three types of training.

10



Design of Simulation-Based Pilot Training Systems using Machine Learning Agents

125

10.0 ’

7.5

Score

5.0

2.5

0.0

[ Basic
[ Procedure
=2.5 [ Mission

Deterministic Advanced Doctrinal

Figure 8 — Importance of different types of agent behavior.

The statements presented to respondees were divided into three categories: Types of Agent Behav-
ior, Human-Agent Interaction, and Agent Behavior in Training Scenarios. Respondees were asked
to give a score in the range one (low importance) to ten (high importance) for each statement, and
they also had the possibility to add additional comments in free text. The results of the survey are
presented as violin plotﬂ for each category of training. In these plots, the outline of the "violin" is a
density estimate for the answers, the thick bar in the center and the thin line in the center represent
the interquartile range and the lower/upper adjacent values respectively, and the white dot on the
bars represents the median score given by respondees.

4.2 Desirable Agent Capabilities and Characteristics

For the category of Types of Agent Behavior, the following statements were presented to respondees
for rating:

» Deterministic: It is important that synthetic tactical entities can be given a deterministic behav-
ior.

« Advanced: It is important that synthetic tactical entities can display advanced tactical behavior.
» Doctrinal: It is important that synthetic tactical entities can act according to doctrine.

The aim of his category of statements was to investigate the importance of different types of agent
behavior in different types of training scenarios. The scores given by respondees, which indicate to
what degree they agree with the statements, are presented in Figure

Regarding the ability to assign agents a Deterministic behavior, we can see that this is important in
all phases of training, although the scores vary more for mission training. The scores for Advanced
behavior increases as we move from Basic Training, where the importance is modest, to Mission
Training, where the importance is very high. Here, there is some variance in the scores for Basic
Training and Tactical Procedure Training, while the pilots are in high agreement regarding the impor-
tance for Mission Training with advanced synthetic opponents. Finally, the importance of Doctrinal

See, e.g., https://seaborn.pydata.org/generated/seaborn.violinplot.html
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behavior shows a similar pattern as Advanced behavior, becoming more important as we move to-
wards Mission Training, although it is fairly important already for Basic Training. As for Advanced
behavior, the variance in the scores is higher for Basic Training and Tactical Procedure Training than
for Mission Training.

In interviews, pilots expressed that in the initial phases of training, the requirements on synthetic
opponents are rather modest. In this phase of training, it is important that the behavior of synthetic
agents is predictable. The most important thing is to be able to create well defined, deterministic
scenarios. For instance, when learning the functions and controls of a new sensor system, it may be
distracting if opponents behave in an unpredictable manner. Instead, entities may move along pre-
defined trajectories, or the positions of vehicles, including the trainee’s own aircraft, may be frozen.
In many scenarios, there are synthetic entities that are primarily used as background noise, and it
is then desirable that they can perform simple tasks such as start and landing. For entities that play
a tactical role in the scenario, there are also well established, standard maneuvers that they are ex-
pected to be able to perform, such as straight flight, gimbal turn, and pincer maneuver.

As the training progresses, more advanced agents, who can take defensive as well as offensive roles,
are required to realize scenarios that allow trainees to develop their tactical proficiency. One pilot rea-
soned that a good base requirements for entity behavior is the ability to respond, in a believable way,
to all orders available on the aircraft tactical data link. Furthermore, as explained by the participants
in the study, providing agents that display advanced tactical behavior is a necessary, but not sufficient
condition. It is also required that synthetic agents can follow a certain doctrine when acting in training
scenarios, to prepare trainees for a variety of potential adversaries. Such a capability is a natural
component of Mission Training, which is supposed to support preparations for specific missions. This
means that when agent behavior models are developed using machine learning techniques, there
must be a way to infuse domain knowledge in the learning process, so that the resulting behavior
fulfills rules encoded in a specific doctrine.

For the category of Human-Agent Interaction, the following statements were presented to respondees
for rating:

» Challenging Opponent: It is important that synthetic tactical entities can act as challenging
opponents (e.g., by discovering and exploiting flaws in the human trainee’s tactics and execu-
tion).

« Wingman: It is important that synthetic tactical entities can act as wingmen of human trainees,
with intelligent behavior.

» Voice Communication: It is important that a synthetic tactical entity that act as wingman can
communicate with human trainees through radio voice communication.

The aim of this category of statements was to investigate the importance of having agents act in
different types of roles in different types of training scenarios, as well as the importance of voice
interaction with agents. The scores given by respondees, which indicate to what degree they agree
with the statements, are presented in Figure [9

Regarding the ability of agents to act as Challenging Opponents, we can see a quite wide range of
scores from Basic Training to Mission Training. The median score for Basic Training is low, while the
median scores for Tactical Procedure Training and Mission Training are high. There is quite large
variance in the responses for the two simpler categories of training, while respondees are more in
agreement for the category of Mission Training. Having synthetic, intelligent Wingmen, is considered
important for Tactical Procedure Training and Mission Training, but slightly less important for Basic
Training, where simpler scenarios, populated with fewer entities, are often used for training. The im-
portance of Voice Communication received scores in the mid of the range, and with high variance.
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Figure 9 — Importance of different types of agent roles and voice interaction.

In Basic Training, having too Challenging Opponents may make it difficult to focus on learning how
to, e.g., operate sensor and weapon systems. Instead, as noted previously, opponents may be con-
figured to move along predefined routes, while acting according to predefined, predictable rules. For
Tactical Procedure Training and Mission Training, having Challenging Opponents is essential, to eval-
uate the performance of trainees, as well as to validate the effectiveness of developed tactics. Pilots
reasoned that if agents had a learning capability, they could identify flaws in human-developed tac-
tics, and learn to exploit those flaws.

To be challenging opponents, agents need to posses similar capabilities as human pilots. Among
other things, key to winning the fight is to coordinate with your teammates, achieve high time on sta-
tion. and to detect others while not being detected yourself. Together with teammates, agent need
to select good formations, maintain a favorable scenario geometry in relation to enemies (e.g., posi-
tion, altitude, and movement), and keep enemies outside stand-off distance while agents themselves
move into stand-off distance. It is important to maintain pressure on the enemy and cover a lot of
surface (depth and width). Agents should also be able to learn to identify weak opponents, and target
them for attack in coordination with teammates. Agents must carefully consider when to engage an
enemy based on its value and threat level, so as to not take unnecessary risk, or waste fuel and
missiles, In a similar way, when using sensor or electronic warfare systems, emission management
must be considered to balance the chance of detecting opponents while avoiding being detected by
enemies.

Since pilots do not operate on their own in real-world missions, support for team training is of utmost
importance, as indicated by the scores from the survey. In interviews, pilots expressed that having
agents that are intelligent enough to act as Wingmen of trainees is valuable, since it makes it possible
to train as you fight even when there are not enough human pilots available to populate complex sce-
narios. At a minimum, self-paced training with 2-vs-2 fighters and a strike force should be supported.
This requires that synthetic agents can learn to understand the intentions of trainees, as well as their
own role in the mission.

For success in air combat, it is important that the members of a unit coordinate their actions well.
Therefore, some level of communication capability among human and synthetic agents may be re-
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quired. The need for voice communication within mixed teams of human and synthetic agents was
included in the survey since it is a rich form of communication, which in general may be challenging
to realize in a believable way for synthetic agents. However, pilots reasoned that in air combat the
information exchange over radio channels is often of a simple form, following a predefined proto-
col. Using domain knowledge makes it possible to predict what types of interaction will occur, which
helps when building models for the speech understanding and speech synthesis of agents. Pilots
also argued, that in many situations they know how to respond to teammates actions without com-
munication, since the team is trained in executing coordinated maneuvers. However, realizing such a
capability in a synthetic agent may be challenging.

Populating training scenarios with mixed teams of human and synthetic agents can make training
more efficient and effective. When using machine learning to build agents, learning behavior that
supports interaction with humans is important, but also challenging, since during learning agents
typically act in a simulation where no humans are present. The reason for this is that a large number
of iterations, i.e., many thousands of simulated missions, are required to learn advanced behavior.
Therefore, learning methods that allow agents to learn behavior that generalizes to diverse environ-
ments and scenarios are important.

For the category of Agent Behavior in Training Scenarios, the following statements were presented
to respondees for rating:

+ Agent Performance: It is important that synthetic tactical entities have realistic performance
(e.g., do not always execute weapon delivery and evasive maneuvers perfectly).

» Element of Surprise: It is important that there is an element of surprise in the tactical scenario
(i.e., the scenario does not play out in the exact same way in each run).

« Behavior Explainability: It is important that it is possible to explain the behavior of synthetic
tactical entities in debriefing sessions (e.g., why a missile was fired in a certain situation).

The aim of his category of statements was to investigate the importance of different agent character-
istics in the context of a training scenario. The scores given by respondees, which indicate to what
degree they agree with the statements, are presented in Figure [10]

For the category of Agent Performance, we can see that there is high variance in the scores, but
the median is at the lower half of the range for Basic Training. For Tactical Procedure Training and
Mission Training, on the other hand, the importance of having realistic performance is high. The im-
portance of having an Element of Surprise and variation in training scenarios increases as we move
from Basic Training to Mission Training. Behavior Explainability is of high importance in all types of
training.

In interviews, pilots argued that it is important that it is possible to adjust the agents’ performance to
suit specific trainees and training scenarios. As one pilot said, the learning agents should ideally be
able to act as the perfect pedagogical instructor, adapting their behavior to the current training needs
of trainees. Synthetic agents should not be perfect (e.g., performing perfect evasive maneuvers or
missile delivery); they should make similar mistakes as human opponents would, so that trainees can
learn to exploit such mistakes. When using human role-players for training, these will try to adapt to
the proficiency level of the trainees, and then sometimes make small, intentional mistakes, which the
trainees are expected to exploit. This imposes requirements on the algorithms used for learning the
behavior models of agents, requiring them to learn models that can be adjusted in a similar way as
human role-players can be instructed how to act in a training scenario.

Training scenarios with variation are important for advanced tactical training, so that trainees do not
simply learn how the scenario plays out each time, and base their decisions on that information. Vari-
ation also makes it more difficult for trainees to exploit possible deficiencies in the behavior models
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Figure 10 — Importance of different types of scenario characteristics.

used to control synthetic agents. The variation can be realized in different ways, e.g., by varying the
goals of agents, by adapting the way in which agents try to achieve those goals, for instance by spec-
ifying different rules of engagement, and by varying the characteristics of the agents that populate
the training scenarios, such as their proficiency, aggressiveness, and level of risk-taking.

Training sessions are typically concluded in a debriefing, where the outcome of the training scenario
is discussed to determine what went well, what went less well, and areas for future improvement.
In these sessions it is valuable if the decision-making process of the agent is transparent, so that
the decisions made by agents at key points in the scenario can be understood by the human partici-
pants. When using traditional techniques for constructing agent behavior models, e.g., scripts, state
machines, and behavior trees, tools for analysis of agents can be constructed by extracting suitable
information from those models. For learning agents that use neural networks to represent the agent’s
policy, this process becomes more challenging, since neural networks are black-box models trained
with data driven methods.

4.3 Limitations of Current Agent Technologies

In our interviews with experienced pilots, we discussed to what extent agents could currently be used
to provide high quality training, and what challenges they were facing. Instructors are provided with
behavior models from simulator engineers, but they may not fit all relevant training cases, especially
as time passes, and aspects of the environment change. Therefore, it would be good if instructors
could adapt training contents on their own, without the support of simulator engineers. However,
instructors feel that this is difficult when using the tools that are currently available for behavior mod-
eling. This is not surprising, since the construction of behavior models for multi-agent systems is
a highly challenging task, and a very active area of research. When simulator engineers must be
involved, the turn-around time increases, and It is also challenging to translate human domain exper-
tise to model parameters that engineers can base their implementations upon.

At present time, the highest training value is achieved when using agents as opponents. This reduces
the need for support personnel, who do not receive training, to participate in training scenarios. It
also reduces the need for expensive equipment, e.g., aircraft or high-fidelity simulators. However,
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Figure 11 — Training scenario to the left, test scenario in the middle, and state space to the right.

handcrafted behavior models often result in behavior that comes across as scripted, static, and pre-
dictable. To get the variation required in a stimulating learning environment, a lot of manual work and
time must be invested, and the cost of keeping in pace with training needs may be high. By using
machine learning, it could become possible to construct behavior models that continually adapt to
changes in the training environment, e.g., encounters with new trainees, introduction of new aircraft
systems, and changes in trainees’ tactics.

As it seems, users currently tend to be sceptical about replacing team members with agents. This
is due to the richer interactions within a team of cooperating pilots. Pilots also expressed that even
if agents had human-level intelligence, it may sometimes be desirable and preferable to train in units
populated by the other members of your wing, since these are the people you would cooperate with
in combat. However, having intelligent, synthetic wingmen opens up the opportunity to realize self-
paced training, where individual pilots can train on their own at a time that suits them, without the
support of an instructor, and without the need to populate training scenarios with other human pilots.
For self-paced training, it would be valuable if synthetic pilots could be modeled to act in a similar
way as specific human pilots, i.e., the team members of the trainee.

5. A Study of Human-Agent Interaction in an Air Policing Scenario

In this section, we present results from a practical experiment, intended to illustrate aspects of human-
agent interaction when using machine learning agents in an air combat scenario. In this experiment,
human operators were teamed with agents trained using reinforcement learning, to solve a task in
an air policing scenario. The intention was to study how the mixed team of humans and agents
performed on the task, and how the behavior of humans and agents differed. For these practical
experiments, the participants were three experienced simulator engineers, and two of them also ex-
perienced pilots, although not fighter pilots.

5.1 Experiment Design

For the study of human-agent interaction, we used an air policing scenario developed in previous
work [4] to train the agents. In this scenario, three agents should escort potential threats out of their
air space, in order to protect three high-value assets. Incoming threats are controlled by handcrafted
behavior models, implemented using behavior trees [32]. To escort a threat out of protected air
space, an agent needs to fly within 5 km of this threat. The challenge for the agents is to learn to
allocate threats among themselves, so that each agent can escort a threat out of protected air space.
The scenario is illustrated to the left of Figure Before each episode of training, defending agents
spawn in random positions and with random heading in the blue rectangle. Threats approach along
the arrows in red, towards the high-value assets in green.
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To promote cooperation, the learning agents received a shared reward defined as:
3
np=— ‘ lmiH(HPa,- — Pd, ”7 Hpa; _pd2H7 Hptli _Pd3H) (4)
where p,, refers to the position of attacker / and p,, refers to the position of defender k. The action
space of an agent allowed it to fly forward, or turn left or right with a load factor of 2-4 g. The ob-
servation space of the agent was defined as the relative position of all other agents, in a body-fixed
coordinate system, as illustrated to the right of Figure To help the agent predict were the other
agents in the scenario are going, it is given a stack of observations from the last 4 time steps in the
episode as input to its policy. The agents’ policies are represented by multilayer perceptrons (MLP),
with 2 hidden layers, each with 64 neurons and the RelLU activation function. The policy is executed
at a frequency of 1 Hz.

We trained the agents over 90k episodes, with each episode lasting for 600 steps, i.e., 10 min. We
used the MADDPG algorithm [27], a learning rate of o = 102, a discount factor of y = 0.95, and
trained using the Adam optimizer [33].

After training, we study transfer of learning by evaluating agents in a slightly different scenario, illus-
trated in the middle of Figure This scenario has a more compact geometry, which can make it
more challenging to decide which agent should approach which threat. With this scenario, we wanted
to analyze how the selected design of action space, observation space, reward system, and training
approach affected the performance of the agent. Additionally, we replaced one of the synthetic agents
with a human operator, to investigate how human pilots and learning agents could coordinated their
actions to solve a cooperative task. We ran five iterations of the experiment, with starting positions
and heading of defenders’ aircraft generated by random for each iteration. Human pilots controlled
their aircraft with a standard gaming joystick mounted on a desktop, observed the environment in an
out-the-window (OTW) view presented on a monitor, and could also observe the positions of other
entities in the scenario through a 2D map presented on a monitor to the right of the OTW view.

After human pilots had completed their five iterations, they were asked to answer the following ques-
tions based on their experience:

* Q1: How easy was it to determine an optimal target allocation?
» Q2: To what extent was the agents’ behavior reasonable?

» Q3: How valuable do you think the following modes of interaction for coordination in these (and
similar) scenarios would be?

— Q3.1: Situational awareness map on the aircraft head-down display that shows, e.g., the
position and combat value of other A/C.

— Q83.2: Link text message with current high-level goals (e.g., priority target) of other A/C.
— Q83.3: Speech message with current high-level goals (e.g., priority target) of other A/C.

5.2 Results

To the left of Figure [I2 we present the mean and standard deviation for rewards received by teams
with only agents compared to the rewards received by teams with a mix of agents and humans. We
can see that the performance of the two categories of teams is similar, although teams with a human
participant perform slightly better. From a qualitative point of view, when observing the outcome of
each iteration, it could be seen that both teams were trying to split up and have one pilot approach
each threat, which is the optimal tactic for the scenario. However, humans were better at quickly
resolving conflicts, when two pilots started approaching the same target.
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Figure 12 — Rewards to the left, survey results in the middle, roll angle distribution to the right.

In the middle of Figure [12)the results of the survey are presented as mean and standard deviation
for the answers of the three pilots. Humans felt that in three of the five iterations it was clear how
to allocate the threats among the pilots, while in two iterations it was not obvious what the optimal
target allocation would be. The behavior of agents received fair scores by the human pilots. The
major complaint was that when there was a conflict in target allocation, with a human pilot and an
agent approaching the same target, agents might not immediately realize this and select a new tar-
get. In the experiments with pure agent teams, it was noted that when conflicts arise agents may
also have difficulties determining which agent has the most favorable position to keep pursuing the
target. Human pilots felt that the 2D map was valuable for coordinating with the other agents, but also
reasoned that additional information presented in either text or speech messages, e.g., the targets
selected for pursuit by agents, would further simplify the task. This is most likely true for the synthetic
agents as well. To incorporate such functionality, the action and observation spaces of the agents
could be modified. By letting the agent act by selecting which threat to engage, rather than acting
by commanding the desired turn rate, information about the agent’s selected target becomes avail-
able, and can be distributed over data link. This makes the agent’s behavior more explainable and
transparent, and coordination with human pilots could be improved. In a similar way, by modifying
the agent’s observation space, and including information about targets that have been selected for
pursuit by other pilots in the scenario, the decision-making task of the agent could be simplified.

To the right of Figure [12] we can see the distribution of the aircraft roll angle for agents and human
pilots over the iterations of the experiment. It can be seen that agents are turning frequently, while
human pilots are more frequently flying straight. This is related to the design of the agents’ action
space as well as the design of their reward signals. The action space in this experiment is a low level
action space, with continuous actions. This makes it challenging for the agent to explore, and to find
the optimal action for each state. Furthermore, there is no component in the reward design that gives
the agent an explicit incentive to avoid aggressive control of the aircraft. Either modifying the agent’s
action space, having it act using more abstract, high level actions, or modifying the agent’s reward
signal to penalize aggressive maneuvers, could help make the agent’s behavior more human-like and
believable.

The results of these experiments illustrate that when designing learning agents it is important to use
architectures, abstractions, and training schemes that generalize over a wide range of environments,
missions, and adversaries. We further discuss ways of constructing agents in the next section.

6. Introducing Learning Agents in Simulation-Based Pilot Training Systems

In this section, we first present an architecture for a simulation-based pilot training system, which au-
tomates parts of training adaptation and training delivery by incorporating learning agents. Based on
this architecture, and the results of our cognitive work analysis, user study, and practical experiments,
we then discuss design approaches and solution concepts that could produce agents with desirable
capabilities and characteristics.
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6.1 System Architecture for Simulation-Based Training using Learning Agents

A system architecture for a simulation-based pilot training system, which incorporates learning agents
for improved efficiency and effectiveness, is illustrated in Figure The architecture is an extended
and modified version of an architecture proposed in previous work [4, [34].
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Figure 13 — System architecture for training system using learning agents.

The architecture integrates agents to support organisations and instructors in adapting training to
trainees’ training needs (Scenario Adaptation Agent), and delivering it in an efficient manner (Syn-
thetic Trainer Agent). In training scenarios, agents participate as synthetic trainers, with the same
purpose as human role-players. These agents act in one of the roles of the scenario, either as op-
ponents or teammates of the trainee pilots. In the same way as role-players, their major goal is to
provide a stimulating training environment to the trainees. Offline, between training sessions, agents
analyze data generated in past sessions, for User Profiling, identifying trainees’ weaknesses and
strengths, and inferring current User Needs for future improvement of proficiency.

The goals of the trainer agent are modelled through its Reward System, which captures important
features for successful decision-making in air combat scenarios. An individual agent’s preferences
among reward features are determined by the agent’s Utility function.

The trainer agent’s ability to perceive the state of its environment is essential for decision-making in
the complex domain of air combat. The agent’s perception is formed by two components: the agent’s
interface to the fused information of the aircraft’s sensors (Observation Space) in combination with the
agent’s internal beliefs regarding the state of the world, based on its past observations (World Model).

The Decision System of the trainer agent realizes its capability to learn how to act (using the actions
of its Action Space) based on passed experience, as well as its capability to evaluate and plan future
actions based on its learned understanding of the dynamics of its environment, e.g., its ability to pre-
dict future behavior of other agents.

Agents enter the training environment through Computer Generated Forces (CGF) software, where
their capabilities can also be further improved offline, in part based on interactions with human
trainees.

We provide further discussions regarding these components, and ways of realizing them, in the sec-
tions below.
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6.2 Reward System and Utility Function

For reinforcement learning agents, the goals that should be achieved are expressed through a reward
signal. In the proposed architecture, the reward signal is generated by each agent’s internal reward
system, based on current and past states of the world, according to the agent’s perception. The re-
ward signal is a vector, whose components represent important features of the scenario, which should
affect the agent’s decision-making over time. For instance, rewards could be given for achieving ad-
vantageous geometry relative opponents, for detecting other entities while avoiding being detected,
for missile hits, and for sensible resource management. This information supports control at level 4
of the LACC. The overall value of states and actions are determined by applying the agent’s utility
function U over the vector returns:

u=U(Vz(s)) (4)

This gives a scalar value u that supports ordering of policies.

The reward system design is one option for infusing domain knowledge in the behavior of the learning
agent, to bias the learning process towards desirable characteristics, e.g., making an agent learn be-
havior which is in line with a certain doctrine. By using different combinations of reward components,
a diverse set of agents can be created, which can make training more varied and stimulating. The
components of the reward vector represent the objectives of the agent, and finding optimal policies
results in a multi-objective optimisation problem.

One way to construct the reward system is to let a human pilot demonstrate how to solve a certain
task, and then inferring a reward signal from this information, or simply rewarding the agent for be-
having in a similar way as the human pilot [35, [36, [37]. Demonstrations are often used to support
training of human pilots, so this approach leads to a man-machine interface that feels natural for the
instructor, and reduces the need for explicit programming of agents.

Since dense reward systems, which give frequent feedback to the agent, as well as rewards based
on demonstrations, introduce a bias in the agent’s policy, they may prevent the agent from finding
an optimal policy. To create very challenging opponents it may instead be desirable to use sparse
reward signals, e.g., only rewarding the agents for winning a fight according to some metric. This
allows agents to freely explore the world, and novel tactics and doctrines may emerge.

Agents that are to act as synthetic trainers for humans can not only consider components of the tac-
tical scenario, they must also include information about the trainees’ learning needs in their reward
system, so that the decisions made during a training session are based on reasoning about training
effect at level 5 in the LACC. This includes observing the trainees’ proficiency in different aspects
of air combat, and identifying ways of giving the trainees the right stimulation to improve their profi-
ciency over time. This process is supported by analysis of data from past training sessions offline,
through the Scenario Adaptation agent’s profiling of trainees, and inference of training needs to meet
the organisation’s training goals. Agent behavior is then further adjusted during the progression of
a training session, in a similar way as human role-players would adapt their behavior to the perfor-
mance of trainees.

6.3 Observation Space and World Model

The design of the agent’s observation space determines which features of the environment will be
considered when making decisions. As illustrated in our analysis of decision-making in air combat
scenarios, human pilots use low level features (LACC level 1) as well as more abstract value-based
information (LACC level 4) to support their decision-making. For efficient learning of policies, agents
should be supported by similar information. This includes, e.g., knowledge about the performance
of own and opponents’ vehicles, sensors, and weapon systems, which human pilots would have ac-
quired in theoretical study.
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To realize intelligent behavior, agents can not act only based on the immediate observation of the
world, but must instead consider its whole history of observations. This functionality is realized by
the agent’s world model, which uses memory mechanisms to learn an abstract model of the state of
the world, which can support decision-making. The model can be infused with domain knowledge, by
explicitly modeling such features that human pilots believe are important for success in air combat,
for instance, predictions regarding other agents’ goals, beliefs, and future behavior. To support adap-
tation of behavior to trainees’ current training needs, the world model should also provide abstract
information related to training effect, e.g., estimates of trainees’ proficiency. The functionality of the
world models enables the agent to frame the current situation, and to reason about the effect of its
actions (levels 5 and 6 of the LACC).

One challenge for learning agents is that they typically learn their policies in an environment pop-
ulated exclusively by other synthetic agents, i.e., they do not interact with humans. The reason for
this is the large number of iterations required for learning algorithms to converge. For agents to in-
teract effectively with humans in training sessions, they need to have the capability of adapting their
behavior to a wide range of teammates and opponents. One way to achieve this is to maintain a
diverse population of agents while learning new policies, and to assemble teams of agents by ran-
dom sampling from this population before each episode of learning [9]. Another approach is to use
meta-learning, where agents learn to model characteristics and behavior of other agents based on
few observations [38] 139]. Online, during training sessions, such an approach could be used as a
basis for modeling a specific human trainee.

6.4 Action Space and Decision System

The design of the agent’s action space has great impact on its ability to explore, and will affect its
final learned behavior. For air combat simulation, it may be desirable to constrain the behavior of
the agent, so that it resembles a certain opposing force. By using parametric action spaces, actions
can be made available for selection only when certain conditions are fulfilled. Such approaches have
been used to make sure that learning agents abide to the rules of games [8}, [10]. In air combat sim-
ulation, for instance, rules of engagement can be encoded in the action space, to restrict when and
how target engagement is allowed.

By including temporally extended actions in the design of the agent’s action space, it becomes pos-
sible to learn a policy over actions at level 3 of the LACC. The options framework for hierarchical
reinforcement learning provides a formalism for learning with temporal abstractions [40]. An option
o € Q is defined as a tuple (I, 7w, Bw), Where:

* Q is the set of available options
* I, is the initiation set, specifying in which states the option can be selected
* Ty IS the intra-option policy, i.e., the policy used once the option has been selected

* Bo is the termination condition of the option, specifying the probability of the active option ter-
minating in a state, to allow a new option to be selected

One benefit of temporal abstractions and hierarchical reinforcement learning is that agents’ policies
can become easier to understand [41]. Another benefit is that the performance of learning can be
improved when a problem is broken down into a set of sub-problems, which are then dealt with in a
decision-making hierarchy.

The options used for air combat simulation could be handcrafted, to replicate how temporally ex-
tended actions are executed according to a nation’s air combat doctrine. This is a natural approach
when the designer has a clear idea about how an extended action should be performed, e.g., actions
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that have been optimized based on the laws of physics, such as missile guidance. Using handcrafted
options as building block for learning tactics is also more likely to result in behavior that is believable
to humans, than learning with low level actions alone, which can sometimes have undesirable effects,
as illustrated in our practical experiments. For areas where there is greater uncertainty regarding how
the agent should act to solve a task, there are also algorithms that make it possible to learn hierar-
chical policies from scratch, e.g., the option-critic architecture [42], the double actor-critic [43], and
feudal reinforcement learning [44], which makes it possible to discover complex, novel actions.

As noted in our discussion on reward systems and utility functions, designing air combat policies is
a multi-objective optimisation problem. Multi-objective reinforcement learning (MORL) provides sys-
tematic methods for learning sets of policies that are Pareto optimal, meaning that for at least one
objective there is no policy that gives higher return [45, 46| |47]. We believe that this is a natural
approach for reinforcement learning in the air combat domain, where tradeoffs between conflicting
objectives are often required. The method supports decision-making at level 4 of the LACC. To adjust
training to fit the needs of individual trainees, suitable agent policies can be selected from the set of
Pareto optimal policies [48, 4, [29].

In MORL, there are two types of optimization criteria that are used when learning policies, scalarized
expected returns (SER) and expected scalarized returns (ESR):

Vf(s)zU(E[iéyrrtsozs]),SER (5)
Vv (s) :E[U(iy’rt>|s0 :s],ESR (6)

t=0

The SER criterion aims to optimize the average outcome of several episodes, while the ESR criterion
tries to optimize the average outcome of each episode. For air combat training, the ESR criterion
may be the most suitable one, since from a safety perspective pilots want to optimize their chances
of survival in each mission, rather than their expected survival rate over a complete campaign. We
can see that for linear utility functions the criteria are the same, since the positions of expectation and
utility functions can be interchanged. However, we argue that the utility function of a fighter pilot is
not a linear function. For instance, safety may be considered infinitely more important than other ob-
jectives up until a certain probability of survival, resulting in a utility function with non-linear thresholds.

To further adapt agents’ behavior to fit trainees’ needs, planning algorithms can be used to adjust
the agents’ policies online, while a training session is in progress. These algorithms use the agent’s
world model to do simulated rollouts, to explore the effects future actions would have on the outcome
of the mission. One family of planning algorithms that has had great success in, e.g., games of var-
ious forms is monte-carlo tree search (MCTS) [49]. MCTS can be combined with the learned value
functions of the agent, to improve its performance [7,[8]. In training scenarios, planning could be used
to adapt behavior to maximize the current utility of the agent, which is related to the training effect of
trainees, and level 5 of the LACC.

6.5 Adapting Agent Behavior to Inferred Training Needs

To support adaptation of simulation contents and agent characteristics to current training needs, the
Scenario Adaptation agent should learn a model of different aspects of trainees’ proficiency, based
on their performance in past training sessions. Performance measurements can include, e.g., mea-
surements describing an agents’ flight path, risk exposure, resource management, and success rate
in engagements in missions. The model is used as input to the agents that participate in training,
and affects their utility for different types of behavior, to achieve maximum training effect. This corre-
sponds to having agents with a capability of perception and decision-making at LACC level 5, which
is a highly challenging task, but recent machine learning techniques have shown promising results.
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In addition to supporting adaptation of agent behavior, the Scenario Adaptation agent should also be
able to adjust the contents of training scenarios, so that suitable components for improving trainees’
performance are included. Here there is an overlap between human training and training of synthetic
agent’s behavior. For efficient learning, synthetic agents should be exposed to increasingly challeng-
ing problems, at a rate determined by their rate of improvement. In reinforcement learning, this is
called curriculum learning [50}, 51]. It is possible that curriculum learning techniques that have proven
effective for training of synthetic agents could be adapted for training of humans as well, but further
research on the topic is required.

6.6 Training Environments

The training environment is where agents and human trainees interact. Here, it is desirable to have
high-fidelity models for the vehicles operated by the actors in the simulated scenario, as well as en-
vironment properties of various sorts, e.g., weather effects. However, when learning agent behavior
using current state of the art reinforcement learning techniques, many iterations of missions are re-
quired, leading to long simulation times if a complex simulator is used. For this reason, it is valuable
to have the possibility to adjust the fidelity of the simulation in several steps. The initial learning can
then take place in lower fidelity environments, for many iterations, and the learned policies can then
be successively transferred to environments with higher fidelity models for fine-tuning.

For our evaluations of learning agents, we use simulations of varying complexity and fidelity. Con-
cepts are developed and analyzed in desktop simulations, with simple scenarios, and then further
developed for integration in the target environment. The target environment is a high-fidelity tactical
simulation, used for training of fighter pilots that operate the Saab Gripen aircraft. In this environment,
evaluations with multiple manned stations can be performed. In operational training, the simulations
are intended for future use in ground-based simulators as well as embedded training solutions in the
aircraft, which itself is integrated in a distributed simulation network using a data link.

7. Conclusion

In this work, we studied introduction of intelligent, learning agents in simulation-based pilot training
systems from the users’ perspective. We analysed how agent technologies relate to constraints
imposed on actors in training systems, and what decision-making patterns should be supported
by agent designs. Through interviews, a survey, and practical experiments we learned about re-
quirements on agent capabilities and characteristics, challenges and shortcomings of current agent
technologies, and aspects of human-agent interaction with agents constructed using state of the art
reinforcement learning techniques. Finally, we discussed design approaches and solution concepts
for a training system architecture that integrates learning agents.

We conclude that the ongoing revolution in artificial intelligence is providing great opportunities for
improvement of training efficiency and effectiveness. While our focus in this paper was on military
training, many of the discussed concepts have broader applicability, e.g., for training simulations of
other sorts, including training of pilots for civilian flight, where agents could help realize dense air
traffic and patterns of life, automated setting of adversarial weather conditions and malfunctions, as
well as automated evaluation and profiling of trainees.

For future research, we recommend further development of learning agents from the users’ perspec-
tive, to steer progress in the most valuable direction. Real-world air combat scenarios provide many
challenges to agents, e.g., cooperation and competition in scenarios with many agents, decision-
making under partial observability and uncertainty, and the need to prioritize among multiple con-
flicting objectives, such as tactical mission goals, resource consumption, and safety. Therefore, the
domain of air combat training is an excellent benchmark for reinforcement learning algorithms, and
there are many exciting directions of research left to explore.
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