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Abstract 

Singularities appearing in solutions of 3D boundary layer (BL) equations are discussed. For conical bodies, 

equations are investigated analytically using asymptotic methods. Explicit solutions are obtained for the outer 

BL region; their singularities are studied. The asymptotic flow structure near the singularity is constructed on 

the base of Navier-Stokes equations at large Reynolds numbers. For different flow regions analytical 

solutions are found and are matched with BL equation solutions.  Properties of BL equations for the near-wall 

region in the runoff plane are investigated and a criterion of the solution disappearing is found. It is shown 

that this criterion separates two different topological flow structures and corresponds to the singularity 

appearance in this plane in solutions of full equations. Calculations confirmed these results are presented. 

These results are important to understand properties of different aerodynamic flows with regions, where two 

streamline families collide between themselves, and to construct effective numerical methods.  
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1. Introduction  
Singular solutions of unsteady or 3D boundary layer (BL) equations are slightly studied due to 

difficulties of analytical investigations of complex nonlinear equations and the uncertainty of 

numerical results treatments. However, this task will be solved, since it is of interest as for the 

mathematical physics and for numerical modelling of aerodynamic applications at high flight 

velocities. In contrast to the 2D steady BL equations, considered singularities don’t related directly 

with the flow separation, however their study is necessary to understand this phenomenon in the 

3D flow and, apparently, different separation development scenario may be at the presence of 

different singularity types.  

For the first time, a singularity was found in the solution of unsteady BL equations by K. Stewartson 

for the flow around the flat plate impulsively set into motion [1]. It had the logarithmic type and 

located in the outer BL part on the boundary of the unsteady flow region. The singularity of the 

similar type was discovered on the side edge of a quarter flat plate in a uniform freestream [2] and 

at a collision of two jets [3, 4]. In the reference [5], necessary conditions were formulated for a 

singularity formation in self-similar unsteady and 3D boundary layers. However as sufficient 

conditions and singularity types were not obtained.  

It can understand from these works, the singularity can arise when two subcharacteristic 

(streamlines) families are collided – this is necessary condition. Such situation arises usually in the 

leeward symmetry (runoff) plane over a body of revolution under the angle of attack α*. Unusual 

properties in numerical solutions of self-similar equations in this plane for a round slender cone in 

supersonic freestreams were studied in many works due to the practical interest of the heat 

exchange on flying vehicles head parts [6 – 12]. In this case, the one parameter defines the flow, 

 4 3 ck    , where c  is cone half apex angle. Two solutions were found in the windward 

symmetry (attachment) plane and at small angles of attack ( ck k ) in the leeward symmetry plane. 
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In this plane, no solutions were found at moderate angles of attack ( 2 / 3ck k  ), and many 

solutions at larger incidences up to BL separation ( 2 / 3 1k  ). Full BL equation solutions with 

initial conditions in the windward symmetry plane fixed the violation of symmetry conditions in the 

runoff plane, a velocity jump through this plane in the angle of attack diapason, when the self-

similar solution been absent [13, 14]. Similar results were obtained for the turbulent flow over the 

wing [15]. The task for the cone was solved numerically on the base of parabolized Navier-Stokes 

equations, without the streamwise viscous diffusion [16]. However the problem is retained since the 

flow structure and reasons of unusual BL properties have not been explained. 

Analytical solutions of full equations for the outer BL part on the slender round cone with initial 

conditions in the windward symmetry plane showed the singularity presence in the leeward 

symmetry plane of the logarithmic type at 1/ 3k   and of a power type at 1/ 3k   [17]. It had been 

showed that full equations numerical solutions gave incorrect results near the singularity due to the 

accuracy loss. Similar but more complex results were obtained for arbitrary cones; they allow 

defining the sufficient conditions of the singularity arising [18, 19]. The asymptotic flow structure at 

large Reynolds number near the singularity on the base of Navier-Stokes equations was 

constructed, and analytical solutions in different asymptotic regions were obtained, which were 

matched with BL solutions. The analysis of the viscous-inviscid interaction region, in particular, 

revealed that the singularity can arise not only in self-similar but in full 3DBL equations The theory 

showed that the singularity appearance relates with eigensolutions of the BL equations appearing 

near the runoff plane; it also explained numerical modelling results on the base of parabolized 

Navier-Stokes equations.  

In the outer BL part, the theory gives the critical angle of attack for the singularity 

appearance 1/ 3k  . However calculations showed that this parameter is a function on numbers of 

Mack M , Prandtl  Pr  and the wall temperature  wh ,   M ,Pr,c c wk k h  [6–12]. This indicates 

that a singularity can arise in the near wall region, and new results presented below confirm it. The 

series decomposition of the near-wall solution in the runoff plane showed the presence of a 

parameter  , the linear combination of skin friction components, the sign change of which leads to 

the change of the physical flow topology near this plane. The analysis of BL equations in the near-

wall region showed that 0  corresponds to the critical value ck , and it confirmed by all 

published numerical calculations [6–12, 19–21]. In the runoff plane, the new power type singularity 

in solutions of full BL equations was revealed that is related with the eigensolutions appearing near 

this plane. Presented calculation results for BL on delta wing confirm the singularity presence. 

2. Problem formulation 

The 3D laminar boundary layer on a conical surface in the orthogonal coordinate system xy  (Fig. 

1) is described by following self-similar equations and boundary conditions [18, 20]: 

1 ( )yy yu Awu vu Aw u w    ,     

   2 2
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0: 0, ( 0); : 1.w yy u v w h h h y u w h                                     (1.1) 

Equation coefficients are defined by expressions: 
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In these equations, to reduce formulas Pr 1  and the linear dependence of the viscosity on the 

temperature ( 1 ) are assumed. Indexes y  and   denote derivatives with respect 

corresponding variables; x  is distance from the body nose along the generator referenced to the 

body length l ; y  is Dorodnitsyn variable; y
 is normal to the body surface;   is transversal 

coordinate, it can be the polar angle for a round cone (see Figure 1);  ,f y   and  ,g y   are 

longitudinal and transverse streamfunctions;  ,v y   is transformed normal velocity;  R   is metric 

coefficient. The density  , the enthalpy h , the viscosity  , the longitudinal u  and  transversal w  

velocities are referenced to them values at the outer boundary indexed by e , which are normalized 

to their freestream values indexed by  ; they are functions of   only. The transversal velocity on 

the outer boundary-layer edge 0ew   in the initial value plane (the attachment plane) 0 , in 

which  0 0K  ), and in the runoff plane 1  , in which  1 0K k    and two boundary layer 

parts came from different sides of the attachment plane are collided. For the round cone 1   . 

 

Figure 1 - The general flow scheme and the coordinate system 

Eqs. (1.1) are simplified for slender bodies since in this case 1 1, 1e e eA u     .  Neglecting 

proportional to 1A   terms in (1.1) we obtain Crocco integral for the enthalpy and momentum 

equations in the form: 

   2 21 1
2 2

, 1 , 1 ,w r e r w e eh h h u M u h h M M M v f Kg Ag              

yy yu Awu vu  , 

   2 2
3 3yy yw Aww vw w u Kw h K      .                                      (1.2) 

For the slender round cone  

 2 sin , ( ) cos , sin .ew K k A k         
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3. Singularities in the boundary layer outer part and corresponding flow structure  

Let consider the asymptotic form of Eqs. (1.2) at 1y   so that flow functions are represented as:  

       1 , , 1 , ,u U w W y a            , 

  21 1
2 2

1 1 1e w eh H M h U M U       .                                        (2.1) 

Here     is displacement thickness defined by the equation of F. Moore [6], the function  a   is 

found from the local self-similarity condition, 1U   and 1W   are velocity perturbations with 

respect to boundary conditions, which in the first order approximation satisfy to equations [18, 20]:  

0U U aAU      

   32 2
3 2 3

1 3W W a AW K W ap U          .                                    (2.2) 

Equations (2.2) have solutions: 

   1, 2U C erfc    

           1 1, , , ,W b U W b U B k V                                          (2.3) 

Constants 1C  and 1B  are calculated from matching condition with a numerical solution inside the 

boundary layer. These solutions satisfy to initial conditions in the attachment plane and must tend 

to zero at     . The function  ,V    is the solution of the homogeneous equation for the cross 

velocity perturbation (2.2), when the right hand side equals to zero; it is expressed by Veber-Ermit 

functions [22]. The coefficient  1 ~1/ 0B K , i.e. it has the singularity at  0 0K   . For the round 

cone this limit corresponds to zero angle of attack; in this case, the analytical expression for 

 1 ,W   shows the presence of the power type singularity in the leeward plane 1   [17]. The 

first solution  ,W    is regular in this limit, its behaviour is defined by functions  a  and  b  , 

which satisfy to equations [17 – 21]:  

    3 1

2 2
2 1 2 , ( ) 1 1 1e e e e ww b M w b pMw p K M h           , 

      12 1 2 , 3 .e e ew a N w a Nw N M K                                        (2.4) 

The equation for the function  a   is derived from the condition that coefficient before second 

terms in Eqs. (2.2) equals to unity; this corresponds to the local self-similarity of BL equations near 

the runoff plane. Solutions of these equations with initial conditions in the attachment plane are 

represented in integral forms in the general case and have analytical expressions for the round 

cone [17–21]. Their properties near the leeward plane, at 1 1      are represented by 

expressions [19–21]: 

     13
1 1 1 1 12

, , , ( ), 3ew kR k K R R p p n m K             , 

2( 1)1
1 11: , 1: 2 ln

1

m

m

mp
m b b m b p b

m

      


  , 

2( 1)

11: , 1: 2ln
1

n

n

n
n a a n a a

n

      


  .                                  (2.5) 
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Here 
na  and 

mb  are known coefficients [17–21]. Formulas (2.5) are true for non-slender bodies 

also [18]. These results show the presence in the outer BL part of two singularity types in the 

leeward plane related with properties of functions  a   and  b  . 

For 1k   the function  ,U    exists at 0  but reaches this limit irregularly, its behaviour is 

studied analytically in details for the slender round cone [17]. For 1k   the function  ,U    is 

singular at 0  since  a   and the BL thickness tends to infinity as  a  : the 

logarithmic singularity type takes place at 1k  and it is of the power type at 1k  . At 1k   the flow 

separation is observed in experimental and numerical studies, this phenomenon leads to change 

not only the outer part but also the inner boundary-layer structure.  It should be noted, such 

behaviour of velocity viscous perturbations near the BL outer part at the separation development is 

new property in the comparison with the 2D flows. 

The function  ,W    has irregular but finite limit in the leeward plane at 0  and 1 3k  . This 

limit is singular at 1 3k  : the singularity has the logarithmic or power type, if 1 3k   or 1 3k  . At 

1 3 1k   the singularity is related with the behaviour of cross-flow velocity only. This singularity 

leads to the longitudinal vortex component strengthening in the outer part of the viscous region. The 

singularity takes place, if the pressure gradient is negative ( 2 3k  ) or positive ( 2 3k  ).  It is 

formed by а proper solution of BL equations, which have homogeneous conditions on both 

boundaries and arise near the runoff plane. The critical value 1 3ck   for the outer BL part is 

undependable on the wall temperature, Mach and Prandtl numbers. The considered singularities 

define the real flow structure near the leeward plane at 1 3k   [18, 19].  

Due to the irregularity of the solution already at 1 6k   ( 2m  ) the vortex boundary region near the 

runoff plane is formed with transverse dimension 

1

2~ m  ; at ~1m  this value is of the order of the 

BL thickness  . In this region, the transverse diffusion is the effect of the first order, and to describe 

it we introduce variables:  

           
1
23

1 1 1 1 12
, , , , , , , Re / .e e ez kxR u u y z h h y z w w y z u



                

Using these variables from Navier-Stokes equations at 1~ 1   for this region we derive self-

similar equations, which in its outer part, at 1y  , reduce to the form:  

 1 0yy zz y zU kU k yU kzU     . 

    2
13

2
1 2 1 0yy zz y zW kW k yW kz W k m W pU

z

 
         

 
                               (2.6) 

For 1k   these equations have the solution corresponding to the regular at 0k   solution of BL 

equations:  

           1 1, 1 2 2 , 1 2U y z C erfc y k erf z W B z C erfc y k     , 

   1

2
2 1 2 ( ), ( ) 2zz zB z B m B mp F z F z erf z

z

 
       
 

.                          (2.7) 
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The function  B z  is expressed by Kummer function  , ,a b x  [22]: 

     
2(1 )

23 1
1 0 12 2

1 , , , .
m

m m mB mp B z B m z B b R kx


                            (2.8) 

Here 0 ( )B z  is particular solution of the inhomogeneous equation (2.7); the coefficient mB  is 

determined from matching condition of (2.8) with (2.5). In Fig. 2, comparisons of solutions of BL 

(dotted lines) and Navier-Stokes (solid lines) equations for 1/ 2m   (curves 1 and 2) and 1m   

(curves 3 and 4) are presented. It is seen, regular solutions of Navier-Stokes equations are 

converged quickly to singular solutions of BL equations. 

Figure 2:  - Solutions of boundary layer equations (dotted lines) and parabolized Navier-Stokes 
equations (solid lines) 

Another effect generated by the singularity at 1 3k  due to the BL growth at 0  is the viscous-

inviscid interaction. This effect is important in the region, where the inviscid and induced cross-

velocities have same orders; this condition defines the transverse dimension of the region   and 

the velocity scale inside it as:  

1 1
4 4~ , ~ .e ex w kRu x

 
    

In this region, the flow has the two-layer structure. Assuming the potential flow in the outer inviscid 

region the solution here is presented by the improper integral from the displacement thickness 

 ,x s . In the boundary layer the flow is described by full 3D equations:  

     
 

3
2 2 2

0

,4
, , , , 1 ,e e e e

x t dtR m
s w u W x s W x s ks r r

x s t




     
 





, 

  22 1
13 2

,s x w r ev f Kg Ag xf h h h u M u        , 

2
3yy e s y xu W wu vu xuu   , 

   2 2 2
3 3 3yy e s y es es xw W ww vw w u W w h W xuw       .                           (2.9) 

For these equations boundary conditions have the form (1.1). A solution of  Eqs. (2.9) will be 

matched with (2.3) at s . For Eqs. (2.9) initial conditions are needed at some streamwise 

location 0x x , which can be obtained from a solution of  Navier-Stokes equations near the body 

nose; this feature does the problem more complicated.  Eqs. (2.9) allow a self-similar solution for 

hypersonic flows at some additional assumptions.  
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The solution of Eqs. (2.9) in the outer boundary layer part, at 1y  , is described by formulas: 

         1, , 1 , , , 1 , , 1 1 , 2t y d x s u U x t s w c x s U v y k r U C erfc t           , 

   1 2 2 1 2s x sr sd mxd n r d n       , 

       3 1
1 0 0 02 2

1 2 2 1 2 , 1s x s wr sc mxc m r c m p qp p M h           . 

Along characteristics  ,x s const , which are streamlines of the inviscid flow, equations for 

functions  ,d d s   and  ,c c s   are reduced to ordinary differential equations and are 

integrated. At 0s   these functions are represented in the form: 

 
   1 0 1 1

, , ; , ,
1 1 1 1

sL Is s

s

m p p r m r n rn
c Cs L s d Ds I s

m r r n r r

    
     

     
  , 

1 1,m n

m nC b D a    .                                                         (2.10)                                  

Coefficients C  and D  obtained by matching for  ,d s  and  ,c s  at s  with relations (2.5) 

for  a   and   b   at 0  [18, 19]. The logarithmic singularity appears in these functions at 

0I   or 0L  . At  ,0 0L   or  ,0 0I   the singularity is of the power type. It is followed from 

presented results, the viscous-inviscid interaction doesn’t eliminate the singularity, this effect moves 

only the critical value of ck . 

4.  Singularities in the boundary layer near-wall region 

In the outer BL part, the critical value 1/ 3ck  , although calculations show 

 M ,Pr, 1/ 3c c wk k h  . This indicates that the singularity can arise firstly in the near wall region. 

To study such possibility, at the first, we study the behaviour of the Eqs. (1.2) solution at 1y   in 

the runoff  plane 1  . In the near-wall region, the solution can be presented in the following form 

[21]: 
 

   2 2
0 0

0 0 0 0 0 0 0 0

0 0
( ), ( ), ,

2 2

du dwy y
f F y g G y

dy dy
         , 

 2 1
0 0 0 0 0 0 0 0 0 02

( ), ( ), ,u y U y w y W y v y F kG k               , 

 2 2 2

0 0 0 0 0 02w r e r e eh h h y M y h M y U M U        .                               (3.1) 

 

Using Eqs. (1.2) second terms of these decompositions can be presented by series: 
 

4 5 2 3

0 0 0 0 0 0

0 0 0 0

, , , .
( 4)! ( 5)! ( 2)! ( 3)!

i i i i

i i i i
y y

i i i i

y y y y
U F F W G G

i i i i

   

   

     
   

   
   

.        (3.2) 

 

First three coefficients of these series are defined by relations: 
 

0 0 1 0 0 2 0 12 , ,k k            , 

  21
0 1 0 2 0 0 0 03

, , 3 2w r eph p h k pM              .                            
 
(3.3) 
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Using these expansions we can study qualitatively a dependence from parameters of the flow 

structure near the runoff plane by analyzing the behaviour of  subcharacteristics of  Eqs. (1.2). 

Transformations of the normal to the body surface v  and transverse w  velocities at 1   and 

1y   in the first order approximation are represented in the form: 

 

 2 3 2

0 0 0 0 0

0

1 1 6 6
, , .

6 6
c c

w

v v y k y k y y y y w w k y
k kph

 
              

 

 
    


 

 

In the plane 0  the cross-flow velocity 0w   due to symmetry conditions, and two critical points 

can be here, in which 0v  . The first point locates on the cone surface 0y  , and the second one 

cy y   appears in the flow space at 0 , if 0p   ( 2 / 3k  ), that corresponds to small angles of 

attack for the round cone,  and at 0 , if 0p  . Commonly, the critical value of the cross-flow 

velocity gradient 1/ 3ck   and corresponds to the negative cross-flow pressure gradient, when 

0p  ; the transverse skin friction in this region 0 0 . Using these expressions, the equation for 

subcharacteristics is obtained in the form: 
  

   
0

0 00

, ; 0 : ,
1

c c

c c

y dy y y sd
y s

y y y k y y s
    

  





  
  

  
, 

0

0 0

0 : ,
1 ln 6

wy ph
y d

y d s
  





. 

.

 
Here 0y  and 0z  define the initial point in the cross plane.  

 
                                       а) 0 ;                                                     б) 0 ; 

Figure 3 - Subcharactristics in the cross-plane at 0  (a) and 0  (b); 0p   

 

The subcharacteristic behaviour is shown in figures 3a and 3b for 0p  . At 0  velocities 0v   

and 0w ; the only critical point-node is in the coordinate origin, and  subcharacteristics go to it 

from the region 0  (see Fig. 3a).  At 0  0cy   and the point 0y   is double critical point 

of the type the saddle-node; the saddle is in the lower half-plane, i.e. out of the physical space. The 

node is in the upper half-plane and the subcharacteristics pattern retains the same form as at 

0 . At 0  the node drifts in the point 0 , 0cy y   , and the coordinate origin becomes 

by the saddle point (see Fig. 3b). In this case, at cy y   the normal velocity 0v   and at 

0 cy y   , 0v  ; 0v   on the plane cy y . 
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This analysis shows that the physical flow structure varies qualitatively, if  the sign of the parameter 

 changes. The value 0  is the criterion of the new flow properties appearance. It should be 

noted that in solutions of Navier-Stokes equations for similar problems near the coordinate origin 

0y   the streamwise oriented vortex arises, and the flow isn’t described by the BL theory. On 

the base of this qualitative analysis it can suppose that the critical value  ,Mc wk h  is defined by the 

relation:  
 

     0 02 0c c c ck k k k     .                                                   (3.4) 

 

To support this hypothesis we analyse equations for functions 0 ( )U y  and 0 ( )W y , which are derived 

by substituting decompositions (3.1) to Eqs. (1.2). Considering functions 0 ( )U y  and 0 ( )W y  as 

perturbations we can linearize equations and obtain in the first order approximation: 
 

     2 22 2
0 0 0 0 0 0 0 0 0 1 2 0 0 03 3

1
3 2

2
yy y r eW y W yW F kG y y y p h M y U                     , 

 2 2

0 0 0 0 0 0yy yU y U F kG y       .                                            (3.5) 

 

At 0y   0 ( )U y  and 0 ( )W y  are expressed by series (3.3); in order to match solutions of equations 

(3.5) and (1.2) in the main BL part the first one will growth at y   not faster than a power 

function. Equations (3.5) have the large order and it is difficult to find their analytical solution. To 

study their solution behaviour at y   and 0 , we introduce the new variable:  

 

 
1
33 3, 3 .y y                                                          (3.6) 

 

At the limit   , Eqs. (3.5) are reduced in the first order approximation to the form:  

 

 

1
3

1
3

2

0 0 0 0 0

2

2

0 0 1 2
0 0 0 02

32 3
, 2 ,

3 3 9

2 3 2
3 .

3 3 6 9
e

U U k
c

W W
cW M U

  
 

   

  
   

     

     
       

    

    
          

    

  

Solutions of these equations can be represented as:  
 

   
 

1
3

1

3
0 01 22 1 4

0 00 01 003 3 3

0 0 0 0 0 0

33 3 3
, , , ,

2 3 9 3

eM
W B c B c U

k k k

 
         

   

   
  

      
, 

1
3 31

3
0 00 0

0

3
y

s

U A e ds
  

   
 


 




.                                                      (3.7) 

 

First terms of these expressions are solutions of homogeneous equations, with zero right hand 

sides; 00A , 00B  and 01B  are constants; ( , , )a b x  is Kummer degenerate hypergeometric function, 

which has following asymptotes at  [21]: 
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 
2

30, 0 : ~ ; 0, 0 : ~
c c

e


             . 

 

Solutions (3.7) growth exponentially at 0   and 0p  ; their can’t be matched with the solution in 

the main BL part. Therefore, at these conditions a solution of  BL equations can’t exist. This 

conclusion and also the criterion (3.4) for the boundary of the leeward symmetry plane solution 

existing are confirmed by numerical calculations for the slender round cone at an angle of attack [6 

– 12, 20], a part of which is presented in Fig. 4. In this figure, symbols correspond to calculations of  

limit values  ck  for the solution existing at different boundary conditions in the diapason of  Mack 

numbers from 2 to   at Pr 1  and for different surface temperatures. At 1/ 3k   data are grouped 

near the value 0  in accordance with Eq. (3.4); apparently, the data scatter is due to the 

decrease of the calculation accuracy at the approach to the critical value ck  and also with errors of 

data copying from papers. At 1/ 3k  , all calculations are finished with 0 , since the solution 

existing in this region is determined by singularities in the outer BL part, but not in the near-wall 

region. 

 
 

Figure 4 - The boundary of the solution existing in the leeward symmetry plane of the slender round 

cone at the angle of attack and Pr 1  in the dependence of the critical value ck : ▲ – [11], ■ – [12], 

○ – [20]. 

 

Then we consider the solution behaviour of full BL equations in the near-wall region beside the 

runoff plane, at 1 . 3DBL equations have the parabolic type and their solution before the runoff 

plane know nothing about the solution in this plane. However, in order to the first solution moves 

smoothly into the last one at 0 , the first will be locally self-similar. Due to this condition, the 

streamwise     and cross-flow     friction stresses and the self-similar variable   at 1  

will be defined by expressions: 

 

 
 

 
   

0 0, , .
y

z
a a a

  
 

   
  

                                  (3.8) 

 

The function  a   at 0  will satisfy to the condition   0 1a  . In this case, flow functions in the 

boundary layer near the wall can be represented in the form: 
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 

 

2

0 0

2

0 0

2

0

( , ) ( , ) , ( , ) ( , ),
2

( , ) ( , ) , ( , ) ( , ),
2

1
1 .

2

f a F u f U

g a G w g W

a a
v a k F kG k k G k W

a a

 
     

 

 
     

 

    
          

    





 

 


           


           

      

                         (3.9) 

 
Substituting  Eqs. (3.8) and (3.9) to Eqs. (1.2) and linearizing the result with respect to disturbances 

we obtain equations of the first order approximation for the flow in the near-wall region beside the 

runoff plane:  

  

2 2 2

0 0 0

2 2

0 0

2 2 21 2
0 0 1 3 0 02 3

1 ,

1 3

3 e r

a
U U a k U F kG k G

a

a
W W a k W F kG k G c W

a

a pM ph U

    
          

    

    
          

    

         



   



   

      


      

        

              (3.10) 

Here 
2 22

3 0 0 0 03 ek pM       . In Eqs. (3.10), due to them local self-similarity at 0  at least 

two first terms will be invariant with respect to transformations (3.8) – (3.9) and will have same 

coefficients as Eqs. (3.5). This condition defines the function  a   by satisfying following 

equations: 

2 2

0 2

0

1 4
, 1 ,

2

qa k aa a C q
k

    


    


.                                  (3.11) 

The constant 
2C  can be found from comparison with numerical calculations. It is follows from this 

relation at 0  and 2q   the solution of Eqs. (1.2) in the near wall region at  1  can find in 

the form of the decomposition on powers of  . First two terms are: 

       

       

0 0

0 0

( , ) ..., ( , ) ...,

( , ) ..., ( , ) ...,

q q

q q

q q

q q

F F F U U U

G G G W W W

     

     

         

         
                 (3.12) 

First terms of these expansions coincide by the form with the solution (3.7) for the runoff plane, but 

depend on the self-similar variable (3.8). Second terms define the proper solution of BL equations 

(1.2) при 1 , which are found as a solution of the following equations: 

  

    

2

0 0 0

0 0 0 0 0 0

4 1

1 ,

q q q q q

q q q q

U U U F F k q G G

F F k q G G U F kG U kqW U

        
 

         
 

 

 

  
 

  

2

21
0 0 0 0 1 32

4
3 3

3

1

q q q q

q q

W W c W c W

F F k q G G

 
     

 

          
 

     

    
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   

    

2
0 0 03

0 0 0 0 0 0

3

1 .

e r q

q q q q

pM ph U U

F F k q G G W F kG W kqW W

      

        
   

  
 

To extract asymptotic forms of functions  qU   and  qW  at   we use the variable 

transformation similar to (3.6): 

 
1
33 3, 3 .         

Using this transformation at   in the first order approximation we obtain equations: 

0 032 4
0, 2 ,

3 3 9
q q q

k
U U U c 

 
 



 
     
 

 

 
 

1
3

0 031
0

2 32 4 3
.

3 3 3 6 9

e

q q q q

pM
W W c W U U 

  
 

   

     
             
     

 

The solution of these equations is expressed by formulas: 

 
1
3

0 1

4 2 5 4
, , , , ,

3 3 3 3
q q qU A A

   
      

   
     

     
1
3

1

3
1 254 2 4

0 13 3 3 3 11
0 0 03

0 0 0 0
0

0 0 0

9 3 3
, , , ,

2

3 3
.

2 3

q q q

e e
q

W B c B c
k

M M
U U

k

 
         

  

 
 



  
   

   

   

  

 

Here 
0qA , 1qA , 

0qB  and 1qB  are constants. These relations show that the proper solution in near-

wall BL region near the runoff plane is nonzero. It is irregular at 0  and it is singular at 0 . 

The logarithmic singularity is not in this case, and the solution of BL equations exists at the critical 

value ck  in contrast to the outer region. 

 

 

                                              а)                              b) 

Figure 5 - Skin friction distributions on the small aspect ratio delta wing at М∞ = 2 related with: 
a) the second boundary-layer approximation; b) the angle of attack 
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Numerically singularities in solutions of 3DBL equations were found at calculations of the turbulent 

flow on the swept wing in the form of finite velocity jump [15] and at the asymptotic laminar flow 

analysis around slender delta wings with the small aspect ratio in the supersonic freestream [20, 

21].  In the work  [21], at the analysis of perturbations related with the angle of attack and the 

boundary layer it was found the presence of  infinite disturbances in the symmetry plane, although 

equations no visible singularities contained. In this case, the first order approximation is described 

by the Blasius solution for the delta flat plate. In Fig 5, dimensionless longitudinal and transverse 

skin friction distributions  1f z  and  1g z , induced by the second order BL theory approximation 

(Fig. 4a) and the angle of attack (Fig. 4b) in dependence on transverse coordinate 1 /z Z X  , 

where X  and Z   are Cartesian streamwise and span coordinates. Skin friction perturbations 

infinitely growth, when  the symmetry plane ( 1z  ) is approached. Detailed investigation of 

equations for these functions shows that in these cases singularities take place as  in the near-wall 

and outer BL parts. In the outer part, the singularity corresponds to values of the parameter m 3/4 

and 7/8 in relations (2.5)  for cases а and b, correspondently. The longitudinal velocity perturbation 

singularity is related only with the near-wall singularity described by decomposition (3.12). 

5.  Conclusions 

In this work, the short review of investigations of singularities in solutions of BL equations, which 

are formed when two streamline families are collided, is presented. This phenomenon can arise 

only in unsteady and 3D problems and has not an analogue in 2D flows. A typical example of such 

problem is the flow around a slender cone in the vicinity of the runoff plane. In this case, solutions 

are found in the analytical form that allows analyzing explicitly the singularity character. 

The analysis of solutions for the outer flow part revealed two singularity types related with 

streamwise and cross velocity viscous perturbations. The first type arises at values of relative cross 

pressure gradient 1k   and leads to the exponential disturbance growth, if the runoff plane is 

approached. At 1k   the singularity is logarithmic and at 1k   it is power type; its appearance is 

correlated with the BL separation appearance. 

Another singularity type at smaller values of 1/ 3k   leads to the infinite growth of transverse 

velocity perturbations only and isn’t related directly with the flow separation; at 1/ 3k   the 

singularity is logarithmic and at 1/ 3k   it is power type. These singularities correspond to some 

asymptotic flow structure at Re 1 . This structure includes the boundary region with the 

dimension of the order of the BL thickness, in which the viscous transverse diffusion effect 

smoothes the singularity. The comparison of obtained solutions of parabolized Navier–Stokes 

equations describing the flow in the boundary region with solutions of BL equations confirms this 

conclusion. Second region induced by the viscous-inviscid interaction effect has the transverse 

dimension of the order of square root from the BL thickness and the two-layer structure. For the 

potential flow in the outer inviscid subregion the integral solution representation is found on the 

base of the slender wing theory. The inner subregion is described by full 3DBL equations, the 

solution of which is obtained for the outer viscous subregion part. It was shown that the viscous-

inviscid interaction don’t eliminate the singularity but drifts it in the parametric space; to eliminate 

the irregularity the boundary region is needed. 

To find the dependence of the critical parameter of the singularity appearance ck  on Mach and 

Prandtl numbers and the wall temperature solutions of BL equations are studied in the near-wall 

region beside the runoff plane. Equation subcharacteristics (streamlines) analysis showed the 

presence of one parameter  , the sign of which defines the qualitative change of the streamline 

topology and, consequently, the physical flow structure. It is shown and is confirmed by comparison 

with  all available calculations, the boundary of the solution existing in the runoff plane corresponds 

to the criterion   0ck  . The analysis of solutions of BL equations near the runoff plane revealed 
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the presence at 0  of irregular and at 0  singular proper solutions. This is confirmed by 

numerical calculations of the flow around slender delta wing with the small aspect ratio. 

Singularities in the near-wall region generate the some flow structure in its vicinity, the study of 

which is out of this paper framework. Presented results don’t depend on outer boundary conditions 

and are true for the full freestream velocity diapason including hypersonic flows.  

Presented results allow concluding that the flow near symmetry planes, for example, on wings, has 

the complex structure, which is needed to take into account at the numerical modeling in order to 

eliminate the accuracy loss. Regular flow function expansions commonly used at solutions of BL 

equations are not applied near this plane, and it can’t consider as a boundary condition plane due 

to a possible solution disappearance. 
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