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Abstract 

The shimmy damper of a fleet aircraft is hydraulic motor in which more friction and freeplay exists compared 

to the other forms of shimmy damper,in addition, freeplay of the nose landing gear will increase in later service. 

A perturbation analysis of nonlinear shimmy in the landing gear is presented. The method is used to obtain 

general expressions for the limit cycle amplitude and frequency which are functions of ground speed. The 

analysis shows that stable or unstable limit cycles can exist for taxi speeds above or below a critical value with 

stability of the limit cycles being determined by the sign of a computed coefficient. The solution method is 

applied to a dual wheel nonlinear shimmy model. The analysis shows that when only Coulomb friction is 

present, an unstable limit cycle exist beyond the critical velocity; When only freeplay is present, a stable limit 

cycle exists below the critical velocity. Both freeplay and Coulomb friction is present, a stable limit cycle exists 

below the critical velocity; Pilot should do his best to reduce disturbance when landing to avoid shimmy and to 

decrease taxi speed below the critical velocity; If possible, increasing the critical velocity by strengthening twist 

stiffness of nose landing gear of the fleet aircraft. 

Keywords: perturbation analysis; shimmy; fleet aircraft; freeplay; Coulomb friction 

 

1. Introduction 

The prevention of landing gear shimmy continues to be important in the design of aircraft. Typically, 

both linear and nonlinear shimmy analysis are conducted and by appropriate changes in the 

geometric, damping, and structural parameters, a shimmy free configuration is sought. However, 

linear models will fail to predict accurately the behavior of the inherently nonlinear landing gear 

system and explain why the system is stable when the disturbance is smaller than some value and 

vice versa. The damper of one fleet aircraft is driven by the gear between hydraulic motor and collar 

and there are three pairs gear joints in hydraulic rotor besides the presence of Coulomb friction 

between the oleo struts and freeplay in the torque links, so the nonlinearity of freeplay and coulomb 

is more stronger than other aircrafts. Besides, analytical solutions to nonlinear shimmy models have 

appeared in the published literature in only a few cases. This paper establishes a nonlinear shimmy 

model of a fleet aircraft for engineering application and find the analytical solutions at a given 

equilibrium point using a perturbation analysis, the method of multiple-time-scales is applied to 

general autonomous self-excited systems to obtain expressions for the limit cycle amplitude and 

frequency, and associated stability criteria. 

2. Theory of Perturbation Analysis of Shimmy 

The nonlinear shimmy models considering freeplay and Coulomb friction is presented as follows: 

𝑴𝒒̈ + 𝑲𝒒 = 𝑭̂𝒋𝑠𝑔𝑛(𝑞𝑗) + 𝑭̂𝒌𝑠𝑔𝑛(𝐹̂𝑓𝑝, 𝑞𝑘)                                        (1)   
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M and K(V) are matrices for inertia and viscous damping, and stiffness, respectively; q is state 

variable；𝑭̂𝑗 𝑠𝑔𝑛( 𝑞𝑗) is the Coulomb friction in steering shimmy system of nose landing gear; 

𝑭̂𝑘(𝐹̂𝑓𝑝, 𝑞𝑘) is the torque freeplay in steering shimmy system of nose landing gear. the torque of the 

steering system of the nose landing gear is given by: 

ˆ
fp k fpF k q F= +

                                                                              (4)   

Where 𝑘𝜃 is the torque stiffness of nose landing gear，𝑉 is the velocity of aircraft. 

There is a critical velocity 𝑉0 for linear system (𝑭̂𝑗 = 𝑭̂𝑘 = 0). When 𝑉 < 𝑉0，the linear system is 

stable；𝑉 > 𝑉0，the linear system is unstable；𝑉 = 𝑉0，there is an pure imaginary root in 

eigenvalues and all other eigenvalues have real parts. Then, the equation (1) can be solved about 
the equilibrium point 𝒒𝒆 = 𝟎 with perturbation analysis. 

Assume that 𝑉 can be expanded as a power series in a small parameter 𝜀 about the critical point 𝑉0. 

2 3
0 1 2 ( )V V V V O  = + + +

                                                                 (5)   

Where, coefficients 𝑉𝑖 are constants，𝜀 is perturbation parameter. 

Stiffness matrics 𝜥(𝑉) can be expanded as: 
2

0 1( ) ( ) ( ) ( )V V V O = + +(0) (1)
Κ K K

                                                                 (6)   

Rescale the nonlinear terms by a factor 𝜀: 

ˆ
j j=F F

                                                                                   (7)   

ˆ
k k=F F

                                                                                   (8)   

Then, equation (1) becomes： 

[ sgn( ) ]jq+ = −j kMq Kq F F
                                                                   (9)   

Using the method of multiple time scales, the dependent variable q can be expanded as: 
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Define multiple time scales such that 
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Substitution of equations (5)-(6) and (10)-(13) into equation (9), gives the following sets of equations 

to 𝑂(𝜖2). 

 

2.1 ϵ0 Order System 

0Lq = 0                                                                                       (14)   
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The 𝜖0 order system in equation (14) is the set of linear shimmy equations for small perturbations 

about the equilibrium point 𝒒𝒆 = 𝟎. The harmonic solution to equation (14) for 𝒒𝟎 is 

0 2 Re [ ]i i iA e A e A al e   −= + =q u u u
                                                               (16)   

0 0 1 2( , ,...)     = +                                                                (17)   

1 2( , ,...)A A  =                                                                (18)   

Substitution of equations (17) and (18) into equation (16) gives 

0 0=L u

                                                               

(19)   

0 0i= + (0)
L M K

                                                               

(20)   

Equations (20) possesses nontrivial solutions if and only if  

det 0=0L

                                                               

(21)   

Equations (21) determines the eigenvalue ω0, and hence the according eigenvector u. 

 

2.2 ϵ1 Order System 
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(22)   

Expand the nonlinear terms due to Coulomb friction and structural freeplay which appear on the 
right hand side of (22) in complex Fourier series with 
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For n−  , and where 
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(25)   

Substitute 𝒒𝟎 from equation (16) into equations (22), (23), and (24) to obtain an equation for 𝒒𝟏. 
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The terms on the right hand side of equation (26) which multiply 𝑒𝑖𝜓  and 𝑒−𝑖𝜓 are secular and lead 
to spurious resonance which can be suppressed by requiring that 
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where 

 = T
v Mu

                                                 

(29)   
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 = T (1)
v K u

                                                 

(30)   

 = − T (+1)
yv f u

                                                 

(31)   

 = − T (+1)
kv f u

                                                 

(32)   

v is the left eigenvector associated with 

T T
0v L = 0

                                                 

(33)   
By equating the real and imaginary parts in equation (28) to zero individually, partial different 
equations are obtained for the amplitude A and phase 𝜓 

1
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A  
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
                                                 (34)   
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
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
                                                 (35)   

Gordon[18] compared the first order system solution with direct numeric integration solution, and found 
that the compliance is good. We also take the first order system in this paper. 

2.3 Limit Cycle Solution 

For stationary periodic motion, 1 0A   = , and from equation (34) the limit cycle solution is obtained. 

( ) 0R R RG A A  = + + =
                                                 (36)   

The combination of equations (10), (16), (17) and (18), take 
0 1( )V V V = − , we get   

02 ( ) / Re [ ] ( )
iw

R R R al e O
   = + +q u

                                                 (37)   

the phase 𝜓 and shimmy frequency 𝜔 can be determined through equation (17) and equation (35). 
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= − + 

                                                   (39)   

The amplitude of limit cycle 2 2 LCA A=  is determined by equation (36), take 𝜀 = 1 

2.4 Nonlinear Stability Analysis 

The partial differential equation (34) is solved as 

1

2 3( , ,...) (( ) / )R

R R RA K e
     −

= − +                                          (40)   

When 1 0( 0)A A = = , 
0 ( ) /R R RK A   = + + , then        

1

0( ( ) / ) (( ) / )R

R R R R R RA A e
      −

= + + − +                                          (41)   

Stability of the limit cycle is determined by evaluation of 𝐺′(𝐴) = 𝑑𝐺 𝑑𝐴⁄ . The limit cycle is stable for 

𝐺′(𝐴𝐿𝐶) > 0 and unstable for 𝐺′(𝐴𝐿𝐶) < 0. 

3. Shimmy Analysis of a Fleet Aircraft 

3.1 Shimmy model 

It is a dual wheel strut nose landing gear having no inclined angle, the parameters and variables 

used for shimmy analysis is in table 1, analysis software is Matlab_R2012a. 
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Table 1   Parameters and variables for shimmy analysis 

Parameter Description Value 

cfC  Half Coulomb friction coefficient 5N.m 

fp  Effective torsional freeplay 0.001rad 

zI  Moment of inertia of gear 7.5kg.m2 

k  Half torsional stiffness of gear 3×104 N.m/rad 

a  Lateral stiffness of tire 1.8×106N/m 

b  Torsional stiffness of tire 2.9×106N.m/rad 

B  Half wheel distance 0.21m 

C  Longitudinal stiffness of tire 0.16m 

t  Mechanical caster 0.3m 

d  Tire diameter 0.51 

W  Tire width 0.14 

  Lateral roll coefficient of tire 139.7 

  Torsional roll coefficient of tire 35.6 

  Yaw angle  variable 

  
Velocity of yaw angle variable 

  Lateral displacement variable 


 Torsional displacement variable 

V  Taxing velocity variable 

fpF  Effective moment in torque link variable 

cfF  Coulomb moment between oleos variable 

First, build the fourth linear shimmy equations (42) according to the reference[1]. Then, solve the 

equations (42) to get the critical velocity under various velocity and running load based on the Hurwitz 

theorem, and get the required damping value ℎ = 210𝑁. 𝑚. 𝑠/𝑟𝑎𝑑 based on the convergency 

criterion[21]. 

21 1
0

2 2

0

0

0

zI h CB at b

t V V

V V

    

   

   

 


+ + − − =


 + + + =
 + − + =

 − =

                                         (42)   

Build the fourth nonlinear shimmy equations (43) considering Coulomb friction and freeplay, and the 

equations (43) is solved by the perturbation analysis mentioned at chapter 2. 

21 1

2 2

0

0

0

z fp cfI h CB at b F F

t V V

V V

    

   

   

 


+ + − − = − −


 + + + =
 + − + =

 − =

                                         (43)   

Where, 

ˆ
fp fpF k F= +                                                                       (44)   
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sgn( )cf cfF C =                                                                       (46)   

1, 0

sgn( ) 0, 0

1, 0



 



+ 


= =

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Rewrite equation (43) as matrix form 

ˆ ˆsgn( )cf fp+ = +Mq Kq F F
                                                               (48)   

   1 2 3 4, , , , , ,
TT

q q q q    = =q
                                                               (49)   
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 
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 
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                                                               (50)   
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 
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−  

K

                                                               (51)   
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F 
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 
 
  
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                                                               (52)   

0ˆ
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0
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C 
 
 = −
 
 
  
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                                                               (53)   

According to equation (6) 

2
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0 0

0

0 0
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1 0 0 0

CB k at b

V V

V V


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 + − −
 
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 
−  
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                                                               (54)   

1 11

1 1

0 0 0 0

0 0

0 0

0 0 0 0

V V

V V 

 
 
 =
 −
 
 

( )
K

                                                               (55)   

For linear system, according to equation (21), separate the real part and imaginary part and make 

them equal zero, we can get the critical velocity of shimmy 𝑉0 = 16.469𝑚/𝑠 , the critical circle 

frequency of shimmy 𝜔0 = 215.56𝑟𝑎𝑑/𝑠. And the critical velocity and critical frequency increase with 

increasing of torsional stiffness, for example, when 𝑘𝜃 = 5.0 × 104𝑁. 𝑚/𝑟𝑎𝑑，𝑉0 = 19.46𝑚/𝑠，𝜔0 =

243.04𝑟𝑎𝑑/𝑠. 

3.2 Coulomb Friction only 

Normalize 𝒖 and make 𝜃 = 𝑞20 = 2𝐴 𝑐𝑜𝑠 𝜓, left eigenvector and right eigenvector can be obtained 
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by equation (19) and equation (33). 
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V i V
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i b atV
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i I
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  

v

                                                 (57)   
(+1)

yf  can be got by equation (23) using piecewise integration. 

3.1831

0

0

0

i− 
 
 =
 
 
 

(+1)
yf                                                                        (58)   

𝜎, 𝜇 and 𝛾 can be obtained by equation (29), equation (30) and equation (31) respectively for every 

single velocity. 

For 𝑉 < 𝑉0, 𝜇𝑅 > 0. Initial value 𝐴0 ≤ |
𝛾𝑅

𝜇𝑅
| or 𝐴0 > |

𝛾𝑅

𝜇𝑅
|, when 𝑉 > 𝑉0, 𝐴 → 0, according to equation 

(41), the system is stable. 

For 𝑉 > 𝑉0, 𝜇𝑅 > 0. Initial value 𝐴0 ≤ |
𝛾𝑅

𝜇𝑅
|, when  𝜏1 → ∞, 𝐴 → 0; Initial value 𝐴0 > |

𝛾𝑅

𝜇𝑅
|, when  𝜏1 →

∞, 𝐴 → ∞. There is unstable limit cycle, in general, the system is unstable. The stability of the limit 

cycle can also be determined by sign of 𝐺′(𝐴𝐿𝐶). 

Figure 1 is a limit cycle of 𝑉 = 36m/s, the amplitude of the limit cycle is 2𝐴𝐿𝐶 = 0.001344. limit cycle 

is a continuous vibration of which the amplitude is constant; Figure 2 is the amplitude response of A 

when 𝐴0 = 0.0001, which means 𝐴 is stable when 𝐴0 < 𝐴𝐿𝐶; Figure 3 is the amplitude response of A 

when 𝐴0 = 0.01, which means 𝐴 is unstable when 𝐴0 > 𝐴𝐿𝐶; Figure 4 is the relationship of A and V, 

when 𝑉 < 𝑉0, the system is stable, and when 𝑉 ≥ 𝑉0, the system is unstable and the amplitude of 

limit cycle is decreasing with V being bigger than 𝑉0 , and 𝐺′(𝐴𝐿𝐶) = −6.8415 .Figure 5 is the 

relationship of limit cycle amplitude and velocity, the unstable area is decreasing with increasing of 

Coulomb. when 𝑉 < 𝑉0 , the system is stable; when 𝑉 > 𝑉0 , the system is unstable if the initial 

disturbance is bigger than limit cycle amplitude. 
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Fig.1 Limit cycle for only Coulomb(𝐶𝑐𝑓 = 5𝑁. 𝑚, 𝜃𝑓𝑝 = 0) 

 

Fig.2 Response of yaw angle for only Coulomb(𝐶𝑐𝑓 = 5𝑁. 𝑚, 𝜃𝑓𝑝 = 0, 𝐴0 = 0.0001𝑟𝑎𝑑) 

 

Fig.3 Response of yaw angle for only Coulomb(𝐶𝑐𝑓 = 5𝑁. 𝑚, 𝜃𝑓𝑝 = 0, 𝐴0 = 0.01𝑟𝑎𝑑) 

 

Fig.4 Limit Cycle Amplitude vs Taxi Speed(𝐶𝑐𝑓 = 5𝑁. 𝑚, 𝜃𝑓𝑝 = 0) 
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Fig.5 Limit Cycle Amplitude for different Coulomb vs Taxi Speed 

3.3 Freeplay only 

Normalize 𝒖 and make 𝜃 = 𝑞20 = 2𝐴 𝑠𝑖𝑛 𝜓, left eigenvector and right eigenvector can be obtained by 

equation (19) and equation (33). 
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yf  can be got by equation (24) using piecewise integration. 
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𝜎, 𝜇 and 𝛾 can be obtained by equation (29), equation (30) and equation (31) respectively for every 

single velocity. 

For 𝑉 > 𝑉0, the system is unstable, and we focus on 𝑉 < 𝑉0.Figure 6 is a limit cycle of 𝑉 = 16m/s, 

the amplitude of the limit cycle is 2𝐴𝐿𝐶 = 0.8188. Figure 7 is the amplitude response of A when 𝐴0 =

0.0001, which means 𝐴 is convergent when 𝐴0 < 𝐴𝐿𝐶 and the limit cycle is stable; Figure 8 is the 

amplitude response of A when 𝐴0 = 0.01, which means 𝐴 is divergent when 𝐴0 > 𝐴𝐿𝐶, while the limit 

cycle is stable. Figure 9 is the relationship of A and V, when 𝑉 ≥ 𝑉0, the system is unstable. And 
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when 𝑉 < 𝑉0, the system is stable and the amplitude of limit cycle is decreasing with V being bigger 

than 𝑉0, and 𝐺′(𝐴𝐿𝐶) = 0.0272. Figure 10 is the relationship of limit cycle amplitude and velocity, the 

unstable area is increasing with increasing of freeplay. when 𝑉 < 𝑉0, the system is stable no matter 

the initial disturbance is bigger than limit cycle amplitude or not; when 𝑉 > 𝑉0, the system is unstable. 

 

Fig.6 Limit cycle for only Coulomb (𝐶𝑐𝑓 = 0𝑁. 𝑚, 𝜃𝑓𝑝 = 0.001) 

 

Fig.7 Response of yaw angle for only Coulomb (𝐶𝑐𝑓 = 0𝑁. 𝑚, 𝜃𝑓𝑝 = 0.001, 𝐴0 = 0.0001𝑟𝑎𝑑) 
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Fig.8 Response of yaw angle for only Coulomb (𝐶𝑐𝑓 = 0𝑁. 𝑚, 𝜃𝑓𝑝 = 0.001, 𝐴0 = 0.01𝑟𝑎𝑑) 

 

Fig.9 Limit Cycle Amplitude vs Taxi Speed (𝐶𝑐𝑓 = 0𝑁. 𝑚, 𝜃𝑓𝑝 = 0.001) 

 

Fig.10 Limit Cycle Amplitude for different freeplay vs Taxi Speed 
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3.4 Freeplay and Coulomb Friction 

Normalize 𝒖 and make 𝜃 = 𝑞20 = 2𝐴 𝑠𝑖𝑛 𝜓, left eigenvector and right eigenvector can be obtained by 

equation (19) and equation (33). 
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(+1)
yf  and (+1)

yf can be got by equation (23) and equation (24) using piecewise integration. 
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𝜎, 𝜇 and 𝛾 can be obtained by equation (29), equation (30) and equation (31) respectively for every 

single velocity. 

For a fleet aircraft, considering both freeplay and Coulomb friction, the analysis result is same as the 

result of considering freeplay only, which is relevant  to the system parameters. For 𝑉 < 𝑉0, the 

system is stable, no matter the initial disturbance is bigger than limit cycle amplitude or not. For 𝑉 >
𝑉0, the system is unstable. Figure 11 is the relationship of limit cycle amplitude and velocity, the 

amplitude of limit cycle is decreasing far away from critical velocity。 
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Fig.11 Limit Cycle Amplitude vs Taxi Speed (𝐶𝑐𝑓 = 5𝑁. 𝑚, 𝜃𝑓𝑝 = 0.001) 

4.  Conclusion 

（1）For the fleet aircraft, Only Coulomb considered, the system is stable under the critical velocity. 

When above the critical velocity, the system is unstable if the disturbance is greater than limit cycle 

amplitude and the unstable zone is decreasing with increasing of Coulomb friction. Only freeplay 

considered, there is stable limit cycle under the critical velocity and unstable limit cycle above the 

critical velocity, the unstable zone is increasing with the increasing of freeplay. Both Coulomb and 

freeplay considered, the result is same with that of only considering freeplay in this case and it is 

related with the system parameters. 

（2）The shimmy damping based on linear analysis is not always valid for pretending shimmy. From 

the perturbation analysis, the wheel stability is still related to the disturbance value, therefore, it is 

useful to decrease the disturbance when landing and to detect the landing gear freeplay in case of 

diverging quickly of yaw angle. 

（3）For the fleet aircraft, it should decrease aircraft speed below the critical velocity if shimmy 

occurs when landing on the land; and it should raise the arresting ratio to suppress the shimmy of 

the fleet aircraft when landing on the deck, it can decrease unstable zone by increasing the torsion 

stiffness of the nose landing gear. 
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