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Abstract 

Uncertainties consequentially exist in almost all of engineering and physical problems. These uncertainties 

may cause the system performance to change or fluctuate, or even cause severe deviation and result in 

unanticipated or even unprecedented function fault and mission failure. As an efficient uncertainty 

quantification (UQ) methodology for moment propagation and probability analysis of quantities of interest 

(QoI’s), polynomial chaos (PC) expansions have received broad and sustained attentions. However, the 

exponentially increasing cost of building PC representations with increasing dimension of uncertainty, i.e., the 

curse of dimensionality, seriously restricts the practical application of PC at the industrial level. Some efficient 

strategies applying adaptive basis selection algorithm for sparse optimization (or l_1-minimization) of PC show 

great potential compared to the classical full PC. However, these strategies mainly focus on forward selection 

algorithms, which are incapable of correcting any error made by these algorithms. Hence, a novel adaptive 

forward-backward selection (AFBS) algorithm has been developed for reconstructing sparse PC. The 

proposed algorithm by a reasonable combination of forward selection and adaptively backward elimination 

technique can efficiently correct mistakes made by earlier forward selection steps, which retains the most 

significant PC terms and discards redundant or insignificant ones. The proposed algorithm was first proposed 

in reference (Zhao, H., Gao, Z., et al. "An efficient adaptive forward–backward selection method for sparse 

polynomial chaos expansion," Computer Methods in Applied Mechanics and Engineering Vol. 355, 2019, pp. 

456-491.). In this paper a fully adaptive forward-backward selection (FAFBS) algorithm is proposed by 

involving an efficient optimization search algorithm for adaptively selecting the optimal sparse PC. The 

developed FAFBS method is investigated by several analytical functions and a challenging aerodynamic 

analysis application. The results demonstrate that the proposed FAFBS method can efficiently identify the 

significant PC contributions describing the problems, and reproduce sparser PC metamodel and more accurate 

UQ results than classical orthogonal matching pursuit (OMP) and full PC methods. 

Keywords: uncertainty quantification; sparse polynomial chaos; adaptive forward-backward selection; fully 
adaptive forward-backward selection; aerodynamic analysis 

 

1. Introduction 

Uncertainties consequentially exist in almost all of engineering and physical problems. These 

uncertainties may lead to the system performance to change or fluctuate, or even cause severe 

deviation. Deterministic approaches may not always converge to the desired optima, especially when 

the design solution is highly sensitive to probable uncertainties [1]. For example, it is usually difficult 

for deterministic approaches to satisfy these conventional design requirements: transonic free-shock 

or weak-shock design over a range of flight conditions, a wide spread low-drag design of natural-

laminar-flow (NLF)[2] or robust rotor blade design under both manufacturing error and operating 

condition uncertainties. Therefore, with great advance in computer power and engineering 

refinement, demands for designers are ever increasing by incorporating uncertainty into system 

design and analysis to yield an economically viable solution at a minimum of cost and risk. 

Uncertainty-based design optimization (UBDO) , as a particularly promising methodology for this 

purpose, has been extensively recognized and utilized in many domains, e.g., aerodynamic shape 

optimization (ASO) [3-6], structure design undergoing fluid-structure interaction phenomena [7], etc. 

Unlike conventional optimization, UBDO involves a typically nested-loop optimization process, i.e., 
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outer optimization loop and inner uncertainty quantification (UQ) loop. In outer loop, robust 

optimization executes Pareto-optimal solutions. This is usually a complex multi-objective 

optimization and trade-off problem, always involving typical conflicting objectives, i.e., enhancing the 

robustness of objective, improving the performance of objective, maintaining the reliability of design 

[8]. At each iteration point of outer optimization loop, it calls the UQ loop to perform both moment 

propagation and probability analysis of quantity of interest (QoI). In fact, the simulation models are 

often computationally expensive especially for complex vehicle design, e.g., Computational Fluid 

Dynamics (CFD) for aerodynamic analysis, Finite Element Analysis (FEA) for structure dynamic 

analysis [7], etc. As a result, the solution of an UBDO problem will draw in UQ of QoI and its 

integration within an optimization routine. Consequently, significant higher order of computational 

effort is associated with UBDO, as compared to the deterministic optimization. 

To alleviate this issue, more studies revolve around the extensive development of efficient UQ 

techniques, e.g., polynomial chaos expansion (PCE)/sparse PCE [9, 10], stochastic collocation [11], 

Gauss-type integration [12] and sparse grid regulations [13], univariate/generalized dimension‐

reduction method [14], Taylor series expansion-based method [15], universal Kriging or Co-Kriging 

method [3], etc. A recent review [5] has summarized these popular UQ methods and their 

characteristics. Among them, non-intrusive PCE (NIPCE) has revealed great potential and has 

attracted many designers to integrate it into UBDO process [4, 16, 17] since NIPCE can provide 

particularly efficient UQ with a comparable accuracy with respect to (w.r.t.) Monte Carlo simulation 

(MCS) technique. The charm of PCE lies on its mathematically rigorous concept, the mutual 

orthogonality of PC bases and good convergence for a general square-integrable stochastic process 

[18]. The establishment of PCE usually depends on two ways, i.e., Galerkin projection (GPNIPC) 

and point collocation (PCNIPC) methods. Although both methods show various advantages and 

disadvantages, with more random variables (RVs) and high-order response considered recently, 

they both suffer from the so-called curse of dimensionality. This motivates researchers to develop 

efficient methods for recovering the coefficients of NIPCE by reducing the size of stochastic problems, 

e.g., reduced-basis approach [19], adaptive basis approach [20], sparse basis [9, 21]. Recently, 

sparse approaches by ℓ1 -minimization or weighted/ gradient-enhanced/ Multi-fidelity ℓ1 -

minimization algorithms [22-25] have been shown to be very efficient to reduce the computational 

cost of high-dimensional and high-order PCE when the solution (PCE coefficients) is sparse. 

Forward selection algorithms, e.g. classical Least angle regressions (LAR) [26], select the significant 
basis at each step to aggressively reduce the squared error. However, they cannot correct mistakes 
made in earlier steps. Forward selection algorithms can early select certain basis which has the less 
contribution to the output when more significant bases are incorporated. Hence, this basis should be 
removed later to enhance sparsity and to improve prediction accuracy. Conversely, backward greedy 
algorithms can remove the basis from the candidate bases with the smallest increase of squared error. 
However, backward greedy algorithms probably overfit the data, which fail if all bases are removed 
and cannot effectively eliminate bad features, meanwhile with more computational cost. Hence, 
backward greedy algorithms need to start with a good candidate set that does not completely overfit 
the data. In other words, it can only correct errors with a small amount of overfitting.  

In author’s previous paper[27], we proposed a novel and efficient adaptive forward-backward 
selection (AFBS) technique for the sparse PC reconstruction. The AFBS technique combines the 
strength of both forward and backward selection algorithms while avoiding their shortcomings. AFBS 
technique iteratively and alternatively performs stepwise regression of forward and adaptive backward 
steps until the most significant bases are retained and all redundant or insignificant bases are 
discarded. This procedure is provably robust and efficient by fixing the drawbacks of forward selection 
algorithms, which is further validated by using many complex analytical functions and multiple 
challenging engineering applications. Some in-depth and comprehensive comparisons were also 
made with LAR and classical full PC methods. In this paper, we proposed a fully adaptive forward-
backward selection (FAFBS) method for an adaptive construction of the optimal sparse PC 
representation. The remainder of the paper is organized as follows. The details of PC representations 
and available solving approaches of constructing PC representations are presented in Section 2 and 
3. Next, in Section 4, a advised FAFBS algorithm and the complete procedure of FAFBS methodology 
are proposed. Then, an analytical function and an aerodynamic analysis problem for validating the 
effectiveness of proposed algorithm are illustrated in Section 5. Finally, some important conclusions 
are proposed in Section 6. 
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2. Polynomial Chaos Expansion 

PC representations have been widely used for accurate representation of any square-integrable 
stochastic process or RV on a probability space (Ω, 𝛩, 𝑃) , where Ω  is a sample space, 𝛩  is an 

appropriate 𝜎-algebra on Ω and 𝑃 is a probability measure on (Ω, 𝛩). Cameron-Martin [18] proved the 

convergence of the Wiener-Hermite PCE with Gaussian inputs for any 𝐿2(Ω,𝛩, 𝑃) functional in the 

𝐿2(Ω, 𝛩, 𝑃) sense. In case of more general distributions of inputs, Xiu and Karniadakis [10] have 
developed Generalized polynomial chaos (GPC) expansions by using a broader class of orthogonal 
polynomials in the Askey scheme, and illustrated that the Wiener-Askey PC exhibits exponential 
convergence. Each family of orthogonal polynomials corresponds to a given choice of distribution for 
the inputs. These orthogonal polynomials of different orders make up the complete bases in the 
random space. The convergence properties of different bases, and thus the number of bases required 
for a given accuracy, depend both on the approximated process/response and on the distribution of 
involved inputs. Therefore, it would be very promising if PCE employs Legendre polynomials for 
surrogating the design space due to the bounded and uniform search domain of engineering 
optimization problems. Reference [28] examined the performance of Legendre-PC-Kriging 
metamodel and other variants of universal Kriging methods applied in global optimization problems, 
and found that the Legendre-PC-Kriging metamodel is the best one considering the more robust 
performance compared with others. More importantly, when practical optimization problems inevitably 
involve uncertainties into the process, Legendre-PC representations are the most appropriate to 
approximate the stochastic response in terms of simultaneous inputs of design variables (DVs) and 
random variables (RVs). In addition, the statistical moments of stochastic response at each candidate 
design can be estimated cheaply by PC-Kriging metamodel based on MCS technique. 

Let 𝑓 ∈ 𝐿2(Ω) denote a real valued random variable, i.e., 𝑓:Ω → R, which can be represented as 
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where Γ𝑘 denotes the Legendre polynomial of order 𝑘 in terms of the input vector (𝑥1, 𝑥2,⋯ 𝑥𝑛). The 𝑑 
and 𝑛 represent the dimensionality of DVs 𝐗 and RVs 𝚵 involved in the design system, respectively. 

The 𝐗 = (𝑥1, 𝑥2,⋯ 𝑥𝑛) comprises the vector (𝑥1, 𝑥2, ⋯𝑥𝑛) where 𝐗 = (𝑥1, 𝑥2,⋯ 𝑥𝑑) is defined as RV 
vector. In practical usage, we can always assume that the input vector 𝐗 consists of 𝑛 variables with 
independent, uniformly distributed entries. Further, the PCE can be rewritten succinctly as 
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where there is a one-to-one correspondence between the coefficients and functionals in Eq. (1)and 

those in Eq.(2). The multi-dimensional polynomials 𝜓𝑗(𝐗) are constructed by tensorizing univariate 

polynomials, 
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where {𝜓𝑘𝑖
(𝑥𝑖)} (𝑖 = 1,2,⋯ , 𝑛) represents the complete set of orthonormal polynomials of degree 𝑘𝑖 

(𝑘𝑖 = 0, 1,⋯ ,∞) with respect to the probability density function 𝜌𝑖(𝑥𝑖). The 𝜓𝑗(𝐗) of total order 𝑝 

implies that we consider all polynomials satisfying 
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where 𝐤 = (𝑘1, 𝑘2,⋯ , 𝑘𝑛). When the polynomial chaos is truncated at 𝑝 polynomial order, 𝑓(𝐗) can be 

expressed as the summation of 𝑀𝑝 PC terms 
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where 𝜀  is the truncation error and 𝑀𝑝 = (𝑝 + 𝑛)!/𝑝! 𝑛! . The PC expansions form the complete 

orthogonal bases in the 𝐿2(Ω,𝛩, 𝑃) space of the homologous inputs, i.e., 

 2, ,i j i ij   =  (6) 

where 𝛿𝑖𝑗 is Kronecker delta and 〈∙,∙〉 denotes the ensemble average. For given truncation error, the 
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procedure of constructing PC representations is to efficiently and accurately estimate PC coefficients. 
There exist two popular solution approaches, i.e., GPNIPC and PCNIPC. In this paper, the PCNIPC 
is used for calculating the PC coefficients. The PCNIPC applies a regression technique in the 𝐿2 
sense to obtain the polynomial coefficients by solving an over-determined least squares problem, 
which is given by 

 ( )
1

T T
−

=β Ψ Ψ Ψ Y， (7) 

where 𝚿 = {𝜓𝑖(𝐗
(𝑗))}𝑁×𝑀𝑝

= [𝛙1, 𝛙2,⋯ ,𝛙𝑀𝑝
] represents the measurement matrix. The each column 

𝛙𝑖 of 𝚿 is computed by substituting 𝑁 observed points {𝐗(𝑗)}𝑗=1
𝑁  into candidate PC basis 𝜓𝑖(𝐗)(𝑖 =

1,2,⋯ ,𝑀𝑝). 𝐘 = (𝑓(𝐗(1)), 𝑓(𝐗(2)),⋯ , 𝑓(𝐗(𝑁)))T contains the 𝑁 realizations of 𝑓(𝐗) from the observed 

points {𝐗(𝑗)}𝑗=1
𝑁 . The 𝛃 = (𝛽1, 𝛽2,⋯ , 𝛽𝑀𝑝

)T  denotes the column vector of PC coefficients. As a 

necessary condition, 𝑁 ≥ 𝑀𝑝 is required to achieve a stable approximation of 𝛃. The number of PC 

terms grows exponentially with both the dimension of inputs and PC order. As a result, using full PC 
representations rapidly becomes unaffordable as the dimension of inputs increases. To circumvent 
this issue, building sparse PC representations by ℓ1-minimization or some efficient basis adaptive 
selection algorithms has extensively been researched when the solution (PCE coefficients) is sparse. 

3. Sparse polynomial chaos via 𝓵𝟏-minimization 

When PC coefficients 𝛃 are sparse, we seek to identify the small cardinality 𝜅 of 𝑪 = {𝛽𝑖|𝛽𝑖 ≠ 0}, and 
so look to efficient techniques from the field of compressed sensing or ℓ0-minimization. However, ℓ0-
minimization generally suffers from the high computational cost due to the exponential number for 
candidate PC terms. To circumvent an exponential dependence, the convex relaxation of ℓ0 -

regularization based on ℓ1 -minimization [29], also referred to as basis pursuit denoising or 
compressing sensing[30], has been developed, as given by 
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where ‖𝛃‖1 denotes the ℓ1 norm of 𝛃, and 𝜀 is a tolerance of solution inaccuracy due to the truncation 

of the expansion. 𝚿 needs to satisfy certain conditions [31] to guarantee that the solution 𝛃 by ℓ1-
minimization is the same or approximate with that by ℓ0-minimization, e.g., the restricted isometry 
property (RIP) [32]. Some studies [29, 33] have demonstrated that the Legendre matrix is able to meet 
the strict requirements of RIP for ℓ1 -minimization regularization. Therefore, sparse PCE 

reconstruction by Eq. (8) has been researched and developed using many efficient algorithms. These 

algorithms include basis pursuit and greedy algorithms (the reader may refer to [27, 34] for more 
details), e.g., orthogonal matching pursuit (OMP) and least angle regressions (LAR) are the widely 
used greedy algorithms.  

In this paper, we focus the novel adaptive forward-backward selection (FAFBS) method[27]. The 
detailed procedure of AFBS algorithm is presented in  [27]. The AFBS technique combines the 
strength of both forward and backward selection algorithms while avoiding their shortcomings. AFBS 
technique iteratively and alternatively performs stepwise regression of forward and adaptive backward 
steps until the most significant bases are retained and all redundant or insignificant bases are 

discarded. The algorithm starts with an empty active set 𝐴′(0) = 𝜙 which contains no basis vector at 
the iteration step 𝑘 = 0. The next step (𝑘 = 𝑘 + 1) after initialization is a first forward selection step. 

The forward selection algorithm can refer to OMP. The most correlated basis 𝛙𝑖∘ is first selected and 

is added to the current active set 𝐴′(𝑘). The prediction vector 𝛍(𝑘) is updated by 
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Then, the adaptive forward-backward selection procedure is performed (𝑘 = 𝑘 + 1). The first selection 

step is the forward selection step by OMP algorithm. After the significant predictor 𝛙𝑖∗ is selected from 

forward selection criterion, the current active set 𝐴′(𝑘), the cumulative decrease of squared error 𝑑+ 

and the cumulative change of squared error 𝑑 are updated, namely 𝐴′(𝑘) = 𝐴′(𝑘−1) ∪ {𝛙𝑖∗}, 𝑑
+ = 𝑑+ +

𝛿+, and 𝑑 = 𝑑 + 𝛿+, where the decrease of squared error 𝛿+ at each iteration 𝑘 is given by 
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and the prediction vector 𝛍(𝑘) is also updated by 
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where 𝚿𝐴′(𝑘) represents the current active basis vector matrix, i.e., 𝛙𝑖 ∈ 𝐴′(𝑘) is the column vector of 

𝚿𝐴′(𝑘) in order. The 𝛃̂(𝑘) is estimated by  
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When no less than two predictors have been added to active set 𝐴′(𝑘), backward selection algorithm 
is carried out automatically. The backward selection algorithm will remove the insignificant or 
redundant predictors. The insignificant basis vectors are those that the least squares loss slightly 
increases or 𝛿− near zero when they are removed from the current active set. The backward selection 
step selects the insignificant predictor by the criterion 
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where 𝛃̂𝑖−
(𝑘)

 represents the coefficients estimates of basis vectors in current active set 𝐴′(𝑘) without the 

basis vector 𝛙𝑖, as given by 
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wherein 𝚿𝐴′(𝑘)−{𝛙𝑖}
 denotes the remaining active basis vector matrix when removing 𝛙𝑖  from the 

current active set 𝐴′(𝑘). In addition, the backward selection criterion can also be applied to select the 
insignificant basis vector as 
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where 𝛙𝑖 ∈ 𝐴′(𝑘), and 𝛃̂−𝑖
(𝑘)

 denotes the remaining vector when removing the coefficients of 𝛙𝑖 from 

coefficients estimates vector 𝛃̂(𝑘) calculated by Eq. (12). The two backward selection criteria show a 
slight difference. In terms of the three applications presented in later sections, our proposed criterion 
(Eq. (13)) provides a better performance. 

After the candidate predictor 𝛙𝑖# is selected, we decide whether 𝛙𝑖# can be removed. The increase 

of least squares loss namely 𝛿− is first estimated by 
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where 𝛍̅ is defined as prediction vector of output vector by subtracting the contribution of 𝛙𝑖#  namely 
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 represents the coefficients estimates of basis vectors in current active set 𝐴′(𝑘) without 

the basis vector 𝛙𝑖#, as given by 
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The threshold parameter 𝑣1 is selected by designers to remove the insignificant predictor 𝛙𝑖# when 

the cumulative increase change of squared error 𝑑− is smaller than the threshold value 𝑣1𝑑
+. Here 

𝑑−  is estimated as 𝑑− = 𝑑− + 𝛿− . When 𝛙𝑖#  can be removed from the current active set, the 

prediction vector of output is updated by 

 
( ) ,k =μ μ  (19) 

and the cumulative change of squared error namely 𝑑 is also updated by 𝑑 = 𝑑 + 𝛿−. Otherwise, the 

accumulative increase 𝑑−  of least squares loss should be corrected to subtract the significant 
increase of 𝛿−, i.e., 𝑑− = 𝑑− − 𝛿−. The adaptive forward-backward selection step should be stopped 

once the stopping criterion is satisfied or the universal set Σ′ is traversed. The stopping criterion 

means that the prediction residual error ‖𝐘 − 𝛍(𝑘)‖
2

 is less than the specified criterion 𝜖 . After 

reaching the stopping criterion, a first set of significant predictors is derived. Then, it is noticed that a 
backward checking step is appended after the adaptive forward-backward selection step. The 
purpose of this step is to check all predictors in the active set again. We will remove the insignificant 

predictor 𝛙𝑖# from current active set 𝐴′(𝑘) when the increase of least squares loss 𝛿− is less than 𝑣2𝑑, 
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i.e., 𝛿− < 𝑣2𝑑. The definitions of 𝛿− and 𝛍̅ are the same as in Eq. (16) and Eq. (17). 𝛿− and 𝛍̅ are 

updated when the 𝛙𝑖#  is removed. The procedure of backward checking step is similar with the 

backward selection step. The detailed procedure is showed in Figure 1. 

As a contrast, the forward selection algorithms all share the basic regulation of greedily picking an 
additional predictor at each step to aggressively reduce the squared error. However, a major flaw of 
forward selection algorithms is that it cannot correct mistakes made in earlier steps. For example, 
OMP algorithm is utilized to select the most relevant sparse set of polynomials for building up the PC 

metamodel. OMP starts from initial active set 𝐴(0) = 𝜙 and initial residual vector 𝛄(0) = 𝐘. At each 

iteration 𝑘, OMP identifies only the most correlated basis with the current residual 𝛄(𝑘). The residual 

vector 𝛄(𝑘+1) is updated by subtracting the contribution of selected bases in active set from the output 
vector. The iteration procedure is continued until the residual tolerance 𝜀 is achieved. On the other 
hand, backward greedy algorithms consecutively remove one insignificant basis vector (with the 
smallest contribution or no contribution to the output) from the universal set Σ at each iteration. 

However, as backward greedy algorithm starts with universal set Σ, it is more time-consuming, namely 
𝑁 ≫ 𝑀. In addition, the method often causes over-fitting when 𝑀 ≫ 𝑁, namely any basis function 

cannot be removed from Σ. Therefore, backward greedy algorithm needs to start with a good model 
that contains errors with a small amount of insignificant or redundant basis functions [35]. Therefore, 
the proposed novel adaptive forward-backward selection (AFBS) algorithm shows significant 
advantages over other greedy algorithms. 

 

Figure 1 Flowchart of AFBS algorithm 
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Find 𝑖# = argmin
𝑖

(|𝛙𝑖
𝑇(𝐘 − 𝚿𝐴′(𝑘)−{𝛙𝑖}

𝛃̂𝑖−
(𝑘)

)|/‖𝛙𝑖‖2) 

(Eq. (13)) where 𝛙𝑖 ∈ 𝐴′(𝑘) to get candidate basis vector 𝛙𝑖#.  

Calculate 𝛿−of deleting 𝛙𝑖# by Eq. (16), and 𝑑− = 𝑑− + 𝛿−. 

𝑑− > 𝑣1𝑑
+ ? 

𝑏𝑡 = 0 ? 

𝑑− = 𝑑− − 𝛿− 

𝐴′(𝑘) = 𝐴′(𝑘) − {𝛙𝑖#}. 
Update 𝛍(𝑘) by Eq. (19),  

and 𝑑 = 𝑑 − 𝛿−. 

𝑏𝑡 = 1 

𝛙𝑖# is deleted again? 

Delete 𝛙𝑖# from universal set Σ′. 

Output 

Start (𝑘 = 0) 

𝑘 = 𝑘 + 1 

𝛿− ≥ 𝑣2𝑑 ? 

or 𝐴′(𝑘) = 𝜙 ? 
𝐴′(𝑘) = 𝐴′(𝑘) − {𝛙𝑖#}.  
Update 𝛍(𝑘) by Eq. (19) 

and 𝑑 = 𝑑 − 𝛿−. 

Yes 

No 
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4. Fully adaptive forward-backward selection (FAFBS) method 
The original AFBS algorithm was first proposed in [27]. However, as presented in the AFBS algorithm, 
the sparsity of the final PC representations obtained by the AFBS method is related to the choice of 
the two threshold parameters. The appropriate values of the two threshold parameters can obtain a 
slightly better PC metamodel. Therefore, in this paper a fully adaptive forward-backward selection 
(FAFBS) algorithm is proposed by involving an efficient optimization search algorithm for selecting the 
optimal values for the two threshold parameters. To obtain the optimal sparse PC metamodel and to 
make the reconstructing procedure more convenient for users, a fully adaptive forward-backward 
selection (FAFBS) method is proposed in this paper. As shown in Figure 2, the novel method improves 
the original AFBS algorithm by involving an optimization search process with minimizing the cross-
validation error. Compared with the original AFBS algorithm, the novel method is fully adaptive and 
recovers the most important PC coefficients with the adaptive selection of the two threshold parameters. 

 

Figure 2 FAFBS algorithm for building the optimal sparse PC metamodel 

5. Application to numerical examples and aerodynamic problems 

In this section, two representative cases are dedicated to systematically examine the performance of 
the proposed FAFBS technique. The developed method is first applied to the four-dimensional Park 
function. Then, an aerodynamic problem with high-dimensional RVs is minutely considered to further 
assess the applicability and efficiency of the developed method. The case involves the transonic flow 
over the RAE2822 airfoil with combined geometrical and operational uncertainties. The results are 
presented in detail and compared with those by OMP algorithm and full PC method. 

5.1 Numerical examples 

The four-dimensional Park function[36] is defined as 

  21 4
2 3 1 4 32

1

( ) 1 ( ) 1 ( 3 )exp 1 sin( ) , [0,1]
2

i

x x
y x x x x x x U

x

 
= + + − + + +  

  
X   (20) 

where 𝑥1, 𝑥2, 𝑥3, 𝑥4  are assumed to be uniformly distributed. Park function is widely used for 

benchmarking in uncertainty quantification and sensitivity analysis. The reference statistical 

moments are estimated using Monte Carlo Simulation (MCS) with 1 × 106 Latin hypercube points 

being used. A PC degree of 𝑝 = 9 is used by the developed FAFBS, OMP and full PC methods to 

build the PC approximation for the Park function. The convergence comparison of relative errors in 

standard deviation (𝜎𝑦) and mean (𝜇𝑦) of Park function with the increasing number of samples is 

shown in Figure 3. The developed method, with 𝑣1 = 0.1, 𝑣1 = 0.005, obtains the obvious fastest 

convergence rate of error and the best approximation accuracy for quantity of interest (QoI), thus for 

a given error it requires the far least number of model evaluations, compared to OMP and full PC 

methods. It can be also found that the two sparse optimization approaches for reconstructing PC 

significantly perform better than full PC method which shows the slowest convergence rate of error. 

For example, when given 𝑁 = 70 samples, the FAFBS method achieves the relative errors in 𝜎𝑦 and 

𝜇𝑦 as 0.0696 and 0.0190, respectively, while OMP method gets the corresponding errors of 0.4624 

No 

Generate samples 𝐒 by efficient  

DOE and evaluate their responses. 

Divide the samples into reconstruction sample 

 set 𝐒𝒓 and validation sample set 𝐒𝒗. 

Optimizer 

 

Original AFBS algorithm 

Increase the  

sample size 

Cross-validation  

error 𝜀 ≤ ϵ? 

Yes 

Set the range of 𝑣1 and 𝑣2, and initialize 

Start 

Output optimal PC metamodel 
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and 0.5871 separately. Table 1 gives some detailed results obtained by the three methods. Results 

demonstrate that the developed FAFBS approach obtains a sparser solution and significantly 

outperforms than OMP and full methods. 

 

Relative error in mean (𝜇𝑦) 

 

Relative error in standard deviation (𝜎𝑦) 

Figure 3 Comparison of variation of relative errors in mean (left) and standard deviation 
(right) of Park function using FAFBS, OMP, and Full PC methods. 

Table 1 Comparison of statistical moments obtained using full PC, OMP and AFBS methods 

Methods Sample size Card (𝐴) 
Relative error 

𝑒(𝜇𝑦) 𝑒(𝜎𝑦) 

Full PC 

OMP 

FAFBS 

990 

200 

170 

495 

42 

12 

0.2093 

0.0451 

0.0011 

0.2068 

0.0937 

0.0046 

 

5.2 Transonic RAE2822 airfoil 

The case of the transonic flow over the RAE2822 airfoil is often used for benchmarking uncertainty 
analysis and optimization techniques [24, 26]. It has been widely acknowledged that the complex flow 
field about any of the designed airfoils is sensitive to just about everything [37-40]. This includes the 
flow conditions, geometry error, turbulence model, grid, etc. Such phenomena often lead to the ill 
posed deterministic aerodynamic optimization. In extreme cases, it can yield designs with very 
undesirable aerodynamic characteristics occurring at off-design, and even on-design. The off-design 
nominal flow conditions considered here correspond to a freestream Mach number (𝑀𝑎) of 0.734, a 

lift coefficient (𝐶𝑙) of 0.824 (or angle of attack of 𝛼 = 2.79𝑜), and a Reynolds number (𝑅𝑒) of 6.5 × 106. 
Therefore, the case considering the performance uncertainty is very meaningful for resolving the 
abovementioned issue and very challenging for examining the uncertainty analysis and uncertainty-
based design optimization technique[5, 16, 41].  

In this present study we consider inevitable uncertainties arising from the nominal flow conditions and 
the nominal CAD model [42]. The Mach number and angle of attack are considered as RVs imposed 

on practical operational conditions (𝑀𝑎 = 0.734, 𝛼 = 2.79𝑜, 𝑅𝑒 = 6.5 × 106). They are assumed to be 
uniformly distributed, i.e., 𝑀𝑎 = 𝜇𝑀 + 𝜉𝑀𝜎𝑀 , and α = 𝜇𝛼 + 𝜉𝛼𝜎𝛼 , where 𝜇𝑀 = 0.734, 𝜎𝑀 = 0.01, 𝜇𝛼 =
2.79𝑜, 𝜎𝛼 = 0.2𝑜,  and 𝜉𝑀 , 𝜉𝛼~𝑈(−1,1) . Because of manufacturing variations, no real aerodynamic 
shape exactly conforms to its nominal geometry. As a result, the manufactured mean is clearly 
different from the nominal CAD design intent. The cost of manufacturing is assumed to increase as 
the tolerance scheme is stricter, i.e. less geometric variability is allowed. Therefore, geometrical 
uncertainty resulting from manufacturing error and geometry deformation should be considered to 
impose manufacturing tolerance. 

Geometrical uncertainty is modelled as a RV 𝑒(𝑠, 𝜔) where 𝑠 indexes the spatial location on the 
geometry surface and 𝜔 indexes the probability space. The RV 𝑒(𝑠, 𝜔) describes the error between 
the manufactured surface and the nominal (design intent) CAD surface in the normal direction. The 
manufactured geometry surface can be given as 

 ( , ) ( ) ( , ) ( ) ,X s X s e s n s s S = +    (21) 
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where 𝑛⃗ (𝑠) is the unit vector in 𝑠 normal to the profile 𝑆. 𝑋̅(𝑠) is normal surface. The error function is 
uniquely defined by random variable 𝑒(𝑠, 𝜔) with mean 𝑒̅(𝑠, 𝜔) and exponential covariance function 
𝑅(𝑠1, 𝑠2). The covariance function 𝑅(𝑠1, 𝑠2) describes the smoothness and correlation length of the 
random variable, as given by  

 1 2| |/2

1 2( , ) ,
s s l

R s s e − −
=  (22) 

where 𝜎 is forced to be positive everywhere, since a zero 𝜎(𝑠0) implies no geometric variability at 𝑠0. 

For simplicity, the 𝜎 is constant with a variation of 𝑠. The variables 𝑠1 and 𝑠2 are positions along the 
airfoil, with 𝑠 = 0 at the trailing edge, increase along the lower surface toward the leading edge and 
along the upper surface from leading edge toward the trailing edge. In this case, for initial geometry 
(RAE 2822 airfoil), the maximum value of 𝑠 is 2.032, i.e., 0 ≤ 𝑠 ≤ 2.032.  

The Karhunen–Loève (K-L) expansion is applied to model the random variable 𝑒(𝑠, 𝜔).  

 
1

( , ) ( ) ( ) ( ),i i i

i

e s e s s    


=

= +  (23) 

where 𝜉𝑖(𝜔) are uncorrelated random variables. The mean 𝑒̅(𝑠) is assumed to be zero everywhere, 

and the 𝜆𝑖 and 𝜙𝑖 are the eigenvalues and eigenfunctions of the covariance kernel, respectively. The 
eigenfunctions problem and eigenvalues have analytical solution for such kind of kernel function [43]. 
The order of truncation 𝐾 is chosen so that the truncated series retain the most of the energy of the 
original random process, i.e., 

 
1 1

0.90.
K

i i

i i

 


= =

   (24) 

According present analysis, when correlation length 𝑙 reaches the value of 0.2, the decay rate of 
eigenvalues is mild. In addition, the mode frequency of the eigenfunctions 𝜙𝑖(𝑠) increases with the 
increase in index 𝑖. Combined with Eq. (24), we use a truncated K-L expansion with finite terms to 

represent the RV 𝑒(𝑠, 𝜔). Figure 4 illustrates the 30 different random realizations of RAE2822 airfoil 
shape for 𝜎 = 0.0015 and 𝑙 = 0.2. Figure 5 shows the computed pressure coefficients distributions of 

the 30 random airfoils. A larger 𝜎 will lead to a larger discrepancy of practical shape relative to the 
nominal intent value and larger deviation of pressure distributions from the deterministic values. 
Considering the largely improvement of manufacturing level, we choose 𝑙 = 0.2, 𝜎 = 0.0015  for 
assessing the effect of geometrical uncertainty. It is noted that in order to avoid the intersection at the 
trailing edge of these stochastic airfoils, the standard deviation 𝜎 at the trailing edge is appropriately 
reduced. Further, the first 12 eigenvalues and eigenfunctions are utilized in the truncated K-L 
expansion, which implies that 12 random variables are used to define the geometrical uncertainty. 
They are assumed to be uniformly distributed, i.e., 𝜉𝑖~𝑈(−1,1), 𝑖 = 1,2,⋯ ,12. Therefore, considering 
the operational and geometrical uncertainties simultaneously, a total of 14 RVs (Ξ =
(𝜉𝑀 , 𝜉𝛼 , 𝜉1, 𝜉2,⋯ 𝜉12)) are considered on high-dimensional stochastic space [−1,1]14 for this present 
analysis. 

 

Figure 4. 30 random realizations of 
RAE2822 airfoil shape (𝑙 = 0.2, σ = 0.0015) 

 

 

Figure 5. Pressure coefficients distributions 
of 30 random realizations of RAE2822 
airfoil shape (𝑙 = 0.2, σ = 0.0015). 

Next, the proposed AFBS algorithm is used to reconstruct the sparse PC representations of stochastic 
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performance of RAE2822 airfoil. As a contrast, OMP algorithm and full PC are also utilized to build 

PC metamodel. The reference statistical moments are calculated using MCS based on 104  LHS 
points, as shown in Table 2. Figure 6 gives the comparision of convergence of relative errors in mean 
(𝜇𝐶𝑑

)and standard deviation (𝜎𝐶𝑑
) of drag coefficient using the three methods to reconstruct PC. 

Results reveal that the two sparse reconstruction methods show a faster convergence rate than full 
PC approach. More importantly, the developed method achieves the fastest convergence rate of error 
with increasing number of samples, and obtains the least relative error when given the same sample 
size. As shown in Table 2, given sample size 𝑁 = 190, the AFBS method obtains the errors of 𝜇𝐶𝑑

 

and 𝜎𝐶𝑑
 within 1 count (10−4), while classic full PC and OMP methods get far larger errors of 𝜇𝐶𝑑

 and 

𝜎𝐶𝑑
 than 3 counts even though they utilize more samples. The same findings can be reached in Figure 

7, which shows the relative errors in mean 𝜇𝐶𝑙
 and standard deviation 𝜇𝐶𝑙

 of lift coefficient with 

increasing number of samples. It turns out that, for a specified accuracy of moments propagation, the 
developed method requires far less number of samples than full and OMP methods. Notably, The 
developed method selects the most significant PC terms and builds up sparser PC representations. 

  

Figure 6 Variation of relative errors in 𝝁𝑪𝒅
(𝐥𝐞𝐟𝐭)  and 𝝈𝑪𝒅

(𝐫𝐢𝐠𝐡𝐭)  obtained using the 

developed FAFBS method, compared to OMP and full PC methods. 

  

Figure 7 Variation of relative errors in 𝝁𝑪𝒍
(𝐥𝐞𝐟𝐭)  and 𝝈𝑪𝒍

(𝐫𝐢𝐠𝐡𝐭)  obtained using the 

developed FAFBS method, compared to OMP and full PC methods. 

Table 2 Comparison of relative errors obtained using full PC, OMP and AFBS methods 

Methods 
Sample 

size 

Card 

(𝐴) 
𝜇𝐶𝑑

, 𝑒(𝜇𝐶𝑑
) 𝜎𝐶𝑑

, 𝑒(𝜎𝐶𝑑
) 𝜇𝐶𝑙

, 𝑒(𝜇𝐶𝑙
) 𝜎𝐶𝑙

, 𝑒(𝜎𝐶𝑙
) 

MCS (reference) 

Full PC 

OMP 

FAFBS 

1 × 104 

1360 

210 

190 

-- 

680 

29 

14 

0.018739 

0.061185 

0.044283 

0.003936 

0.003161 

0.170190 

0.100995 

0.014668 

0.798697 
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0.000056 
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6. Conclusion 

In this paper, a novel fully adaptive forward-backward selection (FAFBS) algorithm is developed to 

reconstruct sparse PC efficiently and adaptively. The devised algorithm combines the strengths of 

both forward and backward selection algorithms and avoids their shortcomings. The algorithm starts 

by the forward selection step which adds significant PC terms to the candidate set, and is 

automatically followed by an adaptive backward elimination step which removes redundant 

candidate predictors step by step until all potential PC terms are detected. Compared to classical 

forward selection methods, e.g., LAR and OMP algorithms, the proposed algorithm tends to only 

capture the most significant PC contributions, so as to enhance sparsity and improve accuracy for 

PC approximation when given limited number of samples. The efficiency of the developed FAFBS 

algorithm is successfully validated in several challenging applications compared to OMP method. 

First, one complex analytical function with three normally distributed random variables is considered. 

An in-depth comparison considering the estimated error of moment propagation using the FAFBS 

technique, the OMP algorithm and the full PC is carried out. It indicates that the developed FAFBS 

algorithm builds a sparser and more accurate PC metamodel than other methods given the same 

number of samples. Furthermore, an challenging aerodynamic analysis case is utilized to thoroughly 

examine the performance of the proposed algorithm. It analyzes the aerodynamic performance of a 

transonic airfoil under operational and geometrical uncertainties. Detailed error analysis in moment 

estimation of 𝐶𝐷and 𝐶𝑙are compared. The results reveal the same trend, i.e., the FAFBS algorithm 

always needs the least number of samples than OMP and full PC for a specific estimate accuracy. 

Meantime, to achieve the same estimate accuracy, the OMP and full PC methods will require far 

more samples than FAFBS technique. 
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