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Abstract 

An approach is presented that improves fatigue life estimates and at the same time reduces the requirements 
for the volume of experimental data, which is based on determining the parameters of the fatigue resistance model 
from tests with typed loading programs for the structure under consideration. The versions of the developed 
approach usage are shown for the nominal stress and local stress-strain approaches to fatigue life estimates of 
aircraft structures. 
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Introduction  
The aim of the work is to improve the accuracy of the fatigue life estimates and, at the same time, to 
reduce the requirements for the volume of necessary experimental data based on the determination 
of the parameters of the fatigue resistance models under the typified loading conditions of the structure 
under consideration. Fatigue life of the structure depends on many factors. Usually, fatigue properties 
are determined under regular cyclic loading (with constant stress limits) to determine fatigue life and 
then special models are used to schematize the actual irregular loading as a set of cycles with constant 
parameters. The main disadvantage of this approach is the need to experimentally obtain a large 
amount of data required by these models. For example, our research showed that the power κ in the 
generalized Oding formula (also called the Walker formula), which takes into account for the asymmetry 
of loading (1), varies from 0.1 to 0.9 under different loading conditions, that is, the equivalent value of κ 
depends on the combination of loading modes in the program loading and/or in service: 

( ) ( ) ( ) ( )1 12 2- -
eqv a a m a maxs s s s s sκ κ κ κ= + =      (1) 

Thereby, we need to experimentally obtain this value for all loading modes. The same is true for the m 
- slope of the fatigue curve (2): 

( )0
m

f eqvN C= σ       (2) 
We propose another way, which is to use the selected models as a basis for determining the parameters 
of the fatigue resistance of the structure. In order to calculate the required parameters, special 
procedures for determining the so-called "model curves" have been developed. Their description is 
given below for two cases: determination of the fatigue properties of aircraft structures in nominal 
stresses and calculation of fatigue life based on local stresses and strains. 

1. Determination of the characteristics of fatigue properties of aircraft structures by 
nominal stresses 

The fatigue properties of aircraft structures under regular and irregular loading can differ significantly. 
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This change can be considered, for example, by constructing the fatigue curves of typified panels 
 loaded with typified spectra for the structure under consideration with different scaling factors of these 
spectra. The disadvantages of this method include its high cost, as well as the difficulty of applying a 
large number of loads with low-amplitude in these spectra. The latter is due to the fact that panel testing 
requires large-scale testing machines or stands, the amplitude-frequency characteristics of which do 
not allow providing high loading frequencies and, therefore, reproducing a large number of low-
amplitude loads in an acceptable time frame. 
In the proposed approach, the fatigue properties under irregular loading are proposed to be determined 
for typified stress concentrators in an aircraft structure, and the fatigue life of the structure under 
consideration should be evaluated by considering the effect of nominal stresses in the zone in which 
this concentrator is located. Implementation of this approach requires testing samples with a typified 
stress concentrator, for example, a plate with an open hole, with several variants of typified loading 
programs at nominal stresses for the structure under consideration. As such a program, in many cases, 
we propose to use modifications of typified programs such as TWIST [1], FALSTAFF [2] and others. 
The modification is carried out in order for the integral distribution of completed cycles to correspond to 
the range of integral distribution of the loading of the aircraft structure under consideration. 
Let us demonstrate the performed procedures for the case when the characteristics of fatigue strength 
are modeled by equations (1) and (2), as well as by the hypothesis of linear summation of damages - 
(3) (Miner's rule): 

1
1

M
i

i f i

n
N=

=∑       (3)  

where i – is the index of the loading mode, that is, the index of the completed cycle with the same values 
maxσ and aσ ; n – the number of completed cycles in a given loading mode; M – number of completed 

cycles in a given loading mode number of loading modes in a typified program. 
Testing with these programs with different scaling factors gives the constants 0C  and m in equation (2), 
variation of the asymmetry of their “Ground-Air-Ground” cycle gives the constant κ in equation (1). 
The loading program is represented according to the rainflow method [3] according to the original 
algorithm [4]. As a result of representation, we get a table of completed cycles (Figure 1). 

i maxσ  aσ  in  
1    
2    
…    
M    

Figure 1 – View of the original table of completed cycles 

Then, for each tested specimen, we bring all loading modes to one j-th mode. The most frequently 
encountered mode is usually selected as such a mode. The reduced number of cycles in the j-th mode 
is determined according to the linear summation hypothesis of fatigue failures by the formula (4): 

1 1

m
M M

i f j eqv i
j i

i if i eqv j

n N
N n

N= =

 ⋅ σ
= =   σ 
∑ ∑      (4) 

Thus, we get a set of points on the S-N curve ( )j eqvjN ,σ , from which we can determine the parameters 

of the S-N curve (in the general case, using the least squares method). For the selected model of fatigue 
resistance, to obtain a system of linear equations, finding the logarithm of formula (2) is performed, if 
we want to determine the constants 0C  and m. If we want to determine the constant κ, we must 
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additionally find the logarithm of equation (1). Since the reduction to the j-th mode requires the presence 
of fatigue resistance characteristics, which are determined as a result of this procedure, the problem of 
their determination is solved by the iterative method, in which the characteristics determined from the 
test results under regular loading are usually taken as the initial values 
For carbon fiber reinforced polymer (CFRP), a similar procedure is applied, which differs in that in the 
compression region the generalization of the Oding formula (1) proposed by A. Pankov [5] and fatigue 
curves for the areas of tension (left branch) and compression (right branch) are applied. Thus, the 
following formulas are used to take into account the influence of cycle asymmetry: 

- for the right branch - the formula (1); 
- for the left branch - the formula (5): 

( ) ( )12eqv a a m
−κ κσ = σ σ − σ      (5) 

fatigue life at the parameters of the cycle of the i-th stage according to the expressions (6): 
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  (6) 

The procedures for determining the constants for CFRP and metal from a mathematical point of view 
coincide only for cases when all loading modes lie only in the compression region (the first expression 
in (6)) or in the tension region (the third expression in (6)). Otherwise, more complex mathematical 
methods must be used (see below). 

2. Calculation of fatigue life based on local stresses and deformations 
Numerous studies of the fatigue process have shown that this process is very localized, that is, it is 
determined not by the general stress-strain state, but by stresses and strains acting in a very small 
area. Fatigue analysis based on local stresses and strains consists in determining the sequence of local 
stresses and strains at the point of failure and using these sequences to determine fatigue life. This 
method makes it possible to determine the residual stresses at the point of failure after high loads 
and thus take into account the interaction of loads under random loading. Usually, the use of this 
method requires the determination of the S-N curves of "smooth" samples, that is, samples with a 
minimum stress concentration factor, and cyclic stress-strain curves. In industrial use, obtaining these 
data is difficult, since the bulk of experimental data on fatigue are obtained on specimens in the form 
of a plate with an open hole, joints, and other types of structural elements. In accordance with the 
proposed approach, the S-N curves of "smooth" samples are obtained from the S-N curves of structural 
elements, which additionally allows taking into account stress gradients, manufacturing technology, and 
other factors. Our analysis has shown that cyclic deformation of a material in aircraft structures can be 
approximated by a combination of elastoplastic static deformation curves and cyclic stress-strain curves 
if we use a material “memory” model to describe the transition from static to cyclic stress-strain curves. 
Unfortunately, the need to take into account for plasticity and other nonlinear effects associated with it 
requires calculating half cycle after half cycle. Considering that the fatigue life of modern structures is 
measured in thousands and even millions of cycles, the use of the finite element method (FEM) for 
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these calculations becomes almost unreal. For example, the calculation time for 1000 loading cycles of 
finite element models designed to determine the parameters of the elastoplastic stress-strain state 
using the ABAQUS/CAE 6.13 4 complex varies from 38 hours to 5 months. Methods for calculating 
fatigue life, taking into account local elastoplastic stress-strain state, began to develop intensively 
starting from the end of the 60s of the last century and by the beginning of this century were widely 
used in industry [6-10]. A number of approximate solutions to the elastoplastic problem have been 
proposed to assess the fatigue life taking into account for the local elastoplastic stress-strain state. 
Stress-strain curve is usually approximated in a power-law form (Ramberg-Osgood equation [11]): 

n

a a
a

a

C
s se
E C

 
= +  

 
     (7) 

where ae  - amplitude of local strains; as  - amplitude of local stresses; E - elastic modulus; nC  – 
exponent in power-law approximation of the stress-strain curve; aC  – constant of the material in the 
power-law approximation of the stress-strain curve in terms of stress amplitudes. 
We propose another version of the approximation of the stress-strain curve for calculations: 
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   (8) 

where e∆  – strain range; s∆  – range of stresses; E – elastic modulus; eS  – proportional limit with 
plastic deformation tolerance 0.01%. nC  – power in power-law approximation of the stress-strain curve; 

aC  – constant of the material in the power-law approximation of the stress-strain curve in terms of strain 
amplitudes; dC   – constant of the material in the power-law approximation of the stress-strain curve in 
terms of strain ranges (static curve). 
The second expression in (8) is used for calculations along the static stress-strain curve, the third 
expression in (8) is used for the cyclic curve. 
Advantages of the used approximation variant:  
-  in the elastic region, a purely elastic solution is used; 
- the stress-strain curve will have a linear section, which does not require solving a nonlinear 

equation, and at the same time continuous, which will eliminate problems with its use in an iterative 
process; 

- constants in formulas (6) and (7) can be determined by reference values 0 2.S - yield stress, bS  - 
ultimate strength and δ - elongation at fracture: 

( ) ( )0 2

0 002b

n
b e . e

Slg lg( . )
EC

lg S S lg S S

 δ − − 
 =
− − −

; 0 2

0 002n

. e
a C

S SC
.
−

=  

where 0 2.S – is the yield point with a tolerance for plastic deformation 0.2%. 
Accordingly with Masing's principle [12] (a cyclic stress-strain curve is obtained from a static one if it is 
considered recorded in amplitudes): 

12 n nC C
a dC C −=       (9) 

(according to the Masing's principle, the value becomes the proportional limit for the amplitudes). 
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The determination of local stresses and strains by approximate methods is based on the use of 
hypotheses about the relationship of an elastic solution with an elastoplastic solution. Two ways are 
available: 
Application of Neuber's formula [13], that relates elastoplastic stresses and strains at the maximum 
loaded point with nominal stresses – (10): 

2
t a

a a
(K σ )(e s )

E
⋅

⋅ =      (10) 

where tK  – elastic coefficient of stress concentration (for joints, the difference in stress concentration 
coefficients in tension and compression should be taken into account); aσ  – amplitude of nominal 
stresses (of completed cycle, determined using the method of completed cycles or "rainflow" [3]). 
Application the Molski-Glinka approach [14], which is similar to the theory of the J-integral in fracture 
mechanics, it is assumed that the elastic strain energy in the fracture zone is equal to the energy 
expended during elastic-plastic strains. In this case, the formula can be obtained by integration using 
the approximation of the strain-stress curve (9). We obtain an equation with respect to the as  in the 
form (11): 

( )212
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For comparison, a similar equation for the Neuber formula is written in the form (12): 

( )212

1 0
n

n

C
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C
a

K σs s
E C E

+

+

⋅
+ − =      (12) 

Determination of the elastoplastic stress-strain state is reduced to solving the nonlinear equation (11) 
or (12) with respect to as  and finding the deformations from the used approximation of the strain-stress 
curve. As a numerical method, it is recommended to use Newton's iterative method [15], taking as a 
zero approximation the elastic solution. The end of the iterative process occurs when the specified 
computation accuracy is reached or when the specified maximum number of iterations is exceeded. 
A comparison of these formulas with the solution obtained by the FEM for a plate with an open hole is 
shown in Figure 2. 

 
Figure 2 - Dependence of local stresses locs on nominal stresses noms  
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Figure 3 – locs - noms  dependences under static load for various concentrators encountered in 
aircraft structure. Dependencies were obtained using the FEM - red line and according to the 
proposed method - blue line ((a) – plate with an open hole; (b) - fillet transition; (c) – cylindrical 
specimen with a circular groove; (d) – end part of the stringer with an optimized wall shape (the 
most loaded point is selected at the edge of the hole) 

For a closer approximation to a more accurate FEM solution, we proposed a generalization of the 
Neuber and Molski-Glinka approaches for approximating the strain-stress curves (8) in the form (13):  
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where the constant -ρ  is determined by comparison with the FEM solution. The Neuber and Molski-
Glinka formulas can be obtained from formula (13) as special cases. 
A comparison was made between the calculation of the FEM and the result obtained by the proposed 
method for various typified stress concentrators found in aircraft structures [16]. The elastic-plastic 
nature of the material deformation in the calculations of the FEM was modeled using ABAQUS tools, 
and the approximation of the strain-stress curve by points was used. To obtain the intermediate points 
of the strain-stress curve, equations (8) were used. The values of all used mechanical characteristics 
were taken from the reference book [17]. 
The calculation and comparison were carried out for four variants of geometric concentrators: plate with 
an open hole, fillet transition, cylindrical specimen with a circular groove, and holes in the structure of 
the end part of the stringer with an optimized wall shape. The constant - ρ  in formula (5) was selected 
according to the maximum stress values. Figure 3 shows the locs - noms  dependences for the calculated 
variants obtained by the proposed method (in blue) and by processing the FEM calculation (in red). The 
average discrepancy between the results in the area of plastic deformations is about 2%. 

In our approach, local stresses and strains are determined using formulas (6) and (5), while in 
formula (5) the amplitudes of completed cycles aσ  are used. The obtained history of local stresses and 
strains is schematized using the "rainflow" method, resulting in a table of completed cycles, similar to 
Table 1 for nominal stresses (Figure 4). 

i maxs  ae  in  
1    
2    
…    
M    

Figure 4 – View of the table of completed cycles for the proposed method 
The fatigue resistance model of "smooth" samples is taken similar to that used for testing samples with 
concentrators at nominal stresses. The asymmetry is taken into account using equation (14): 

( ) ( )12eqv a maxe e s−κ κ=      (14) 

where eqve – is the equivalent strain, maxs  - is the maximum stress, ae  – amplitude of strains. Equation 
(19) is used for the S-N curve: 

em

e
f

eqv

CN
e

 
=   
 

      (15) 

Therefore, further procedures for determining the characteristics of the fatigue resistance of "smooth" 
samples are similar to those used to determine the parameters of fatigue resistance for calculations 
using nominal stresses. 

3. Mathematical methods 
Since the number of samples is usually greater than the number of parameters to be determined, the 
least squares method can be used to obtain the fatigue resistance characteristics. Using this method 
requires determining the minimum of a function of several variables. In the simplest case, to find the 
minimum, we can obtain a system of linear equations from an experiment with scaling loads and load 
asymmetry variations, using the linear summation hypothesis of fatigue failures (3) to obtain the basic 
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equation. Using the iterative method, we can compute the parameters m, 0С  and κ of the fatigue life 
model for a typified service load.  
For more complex models of fatigue life (for example, with a fatigue limit), a method developed at TsAGI 
is used, which makes it possible to determine the global minimum and avoid local minima. In very 
complex cases, the parameter space exploration method is used. This method was developed to solve 
engineering optimization problems [18]. 

4. Conclusions 
The proposed approximation of the static and cyclic strain-stress curves, obtained on the basis of 
standard material constants and the Masing principle, will reduce the cost of obtaining the initial data 
for calculating local stresses and strains under cyclic loading. The proposed formula for determining the 
dependences of local stresses and strains on the nominal stresses for typified concentrators provides 
obtaining the necessary dependences close in accuracy to the results determined by the finite element 
method. Considering the fact that the calculation speed according to formula (5) is several orders of 
magnitude higher than the calculation speed using FEM, and the complexity of the proposed approach 
is several times less, the use of this formula will allow us to develop effective methods for calculating 
fatigue life based on taking into account for local elastic-plastic stresses and deformations under multi-
cycle loading, typified for aircraft structures. 
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