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Abstract 

The spatial scheme method and adaptive mesh technique are chosen directly to determine the accuracy of the 
shock capture. Judging the correctness of one scheme by one dimensional Burgers equation is probably not 
enough for some real situation. A benchmark model for checking shock capturing accuracy is built from the 
oblique shock strength rule. Combining with the adaptive mesh technique, the simulation results of different 
discretization schemes are distinguished effectively by the benchmark model. It will provide one single-form of 
discretization schemes verification. 
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Nomenclature 

ROE  = Roe Flux Differencing Scheme 
HLLC  = Harten - Lax - Van Leer Contact wave solver 
HLLE  = Harten-Lax-van Leer-Einfeldt 
AUSM = Advection Upstream Split Method 
AUSMDV = An improved AUSM aiming at removing numerical dissipation of the Van Leer- 

type flux vector splittings on a contact discontinuity 
AUSMPW = AUSM by pressure-based weight functions 
AUSM+UP = Advection upstream splitting method requiring for first order upwind schemes 
AUSM+UP2 = Advection upstream splitting method requiring for 2nd order upwind schemes 
CUSP = Convective upstream split pressure scheme 
VANLEER = Van Leer Flux Splitting Scheme 
STEGER = Steger-Warming scheme 
 

1. Introduction 
A high precision in the description of shock structure is one of the goals for Computational Fluid 
Dynamics (CFD) modelling. In a CFD simulation process, the spatial scheme method and adaptive 
mesh technique chosen directly determine the accuracy of the shock capture. In order to meet the 
computational requirements of different flow fields, a variety of spatial discretization schemes have 
been developed, so how to verify the advantages and disadvantages of a discretization scheme has 
always been an important problem in computational fluid dynamics. Generally, one dimensional 
Burgers equation is used to verify the correctness of the scheme. It is probably not enough, however, 
for some certain real cases. One dimension can basically not representative of higher dimensions. It 
may bring some potential errors when the scheme is dealing with two- or three-dimensional problem. 
In fact, the two-dimensional structure is the most general and typical type of CFD computation, 
because one-dimensional structure is covered by two-dimensional structure and three-dimensional 
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usually can simplify into two. The oblique shock as the most typical shock structure in two-dimension 
problem is very significant for determining the accuracy of the shock capture. 
Recently, an intensity distribution rule for oblique shock wave has been developed. A benchmark 
model for checking shock capture accuracy is built from the oblique shock strength rule. In this paper, 
several frequently used schemes to solve the Euler equations are studied by using the shock strength 
rule. The tested discretization methods will include the ROE, HLLC, AUSM, AUSM+UP, AUSM+UP2 
and CUSP schemes. Adaptive mesh techniques are applied so that all schemes achieve their limits 
in predicting the shock discontinuities. 
In section 2, the shock strength rule is described, and explained the intensity-symmetry property of 
an oblique shock. Some numerical calculation settings are represented in section 3. Discussions for 
CFD result are given in section 4. 

2. Shock strength rule 
Generally, the static pressure ratio before and after the shock wave is used to measure the shock 
intensity. Due to the static pressure ratio is a monotonic increased function of the normal Mach number, 
the normal Mach number can be used as the characteristic quantity of oblique shock intensity. For the 
normal Mach number before the shock wave,  

1 1 sinnM M β= ⋅     (1) 

where M1 is the Mach number before the shock. β is the shock wave angle. Mn1 is the normal Mach 
number. According to the oblique shock relations,  
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equation 3 can be obtained by equation 1 and 2. So equation 3 may be defined as the oblique shock 
strength relation. The oblique shock strength distribution is diagrammed in figure 1.  
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Where θ is the deflection angle. γ is the specific ratio. 

2.1 Equal shock strength expressed by shock angle 
In equation 3, the shock strength is only related to the shock angle β when the deflection angle θ is 
fixed. The normal Mach number Mn1 become the smallest as 2β−θ equal to 90 degrees, which is just 
the control equation of the minimum shock strength line in figure 1. Mathematically, equation 3 also 
shows the symmetrical properties for shock intensity relative to the minimum shock strength value. As 
deflected angle θ is constant, one normal Mach number can obtain two reasonable shock angles by 
symmetry of the sine function. Therefore, one can obtain two shock structure of the same strength if 
the shock angles β1, β2 satisfy the following conditions: 

1 2 2
πβ β θ+ = +                                                                        (4) 

Equation 4 is the control equation of the same shock strength expressed by shock wave angle. It 
means that one can easily design two shock wave structure giving the same impact in flow field when 
the deflection angle is fixed. Combining the oblique shock relations, the related intensity-symmetry 
Mach numbers can be obtained.  
The intensity-symmetry property can be easily understood combining the figure 1. At the both side of 
minimum shock strength line, points representing different shock intensities always appear in pairs 
and the shock angle of pairs is always one above the line and one below, just like looking in a mirror. 
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Figure 1 – Minimum shock strength line on the classical θ-β-M diagram. For a fixed deflection angle, 

Mach number cross the line is the condition to obtain the minimum shock strength. The two equal 
shock strength values are symmetrical regarding the minimum shock strength. 

2.2. Equal shock strength expressed by total pressure loss 
Using the total pressure ratio formula of thermodynamic entropy increase, the formula of total 
pressure loss ratio can be obtained as follows: 
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Take Mn1 as the independent variable, and take the derivative of equation 5, equation 6 can be 
obtained: 
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Since γ=1.4, Mn1≥1, equation 6 is greater than 0, equation 5 is a monotonic increment function with 
Mn1 as its independent variable. In other words, the shock strength can be represented by the total 
pressure loss ratio. When the total pressure loss ratio increase, the strength of oblique shock increases 
correspondingly.  
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As shown in figure 2, because the minimum total pressure loss rate line appears in the middle of the 
weak solution region of the oblique shock wave, under the condition of a fixed wedge angle of the 
wedge, the same total pressure loss rate will result in two groups of different shock front Mach number 
and shock deflection angle in some intervals on both sides of the line of the minimum total pressure 
loss rate. One group is large Mach number and small shock angle; another group of small Mach 
number, large shock Angle. This phenomenon is called a linear symmetric double solution of equal 
total pressure loss rate with respect to the minimum total pressure loss rate. 
The examples of wedge angle of 10 degrees and 20 degrees are provided in figure 2, which describing 
the phenomenon of double-solutions regarding the line for ratio minimum loss of total pressure. For 
example, when the deflection angle is 10 degrees and the loss of total pressure is 2.28 percent, there 
are two solutions, one is the smaller Mach number M1=1.423 and the larger shock angle β=67.44° in 
red box, the other one is the larger Mach number M1=2.438 and the small shock angle β=32.56° in 
blue box. 
Figure 3 shows the corresponding transformation relationship between the shock front Mach number 
and the shock deflection angle during the generation of the double solution of the normal Mn1. Two 
more equivalent shock intensity points are provided (1# and 1##, 3#and 3##) in figure 3. It should be 
noting that the shock wave deflection angle of the double solution value of Mn1 in the figure on the 
right is completely symmetric with respect to the shock wave angle of 50° of the minimum total 
pressure loss rate line. According to the synthesis of Mn1 from M1 and sinβ in the figure on the left, the 
mechanism by which both (small M1, big β) and (big M1, small β) can produce the same Mn1 may be 
explained as two steady state solutions of physical compression (Mach number) and spatial 
compression (shock Angle). 
Therefore, a benchmark case can be constructed for predicting the same shock strength by using the 
two intensity-symmetry Mach numbers or loss of total pressure. 

 

Figure 2 – Double-solutions regarding the line for ratio minimum loss of total pressure in the θ-β-M 
diagram. 
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Figure 3 – The two-solutions properties for corresponding β, M1 at the same Mn1 (θ=10°). 

3. Numerical calculation setting 
In order to make the benchmark case modelling, a wedge model in uniform flow is used in figure 4.  
The supersonic flow through the wedge will generate an oblique shock waves, which can be used to 
test one new scheme. Avoiding the influence caused by the angle between the mesh and the shock 
wave, an oblique mesh is adopted in figure 5. 

 
 

Figure 4 – Wedge model in uniform flow. 

 
Figure 5 – The oblique mesh of wedge shock numerical simulation. 
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The finite volume method is used to calculate the flow field. The main calculation programs are 
Stanford University Unstructured (SU2) and Platform for Hybrid engineering simulation of flows 
(PHengLEI). Both SU2 and PHengLEI are open source aerodynamic calculation program, which are 
relatively mature in compressible flow field calculation and aerodynamic optimization. Of course, due 
to their open source characteristics, various numerical methods can be modified conveniently.  
For SU2, six up-wind schemes convection term discrete methods are provided among the numerical 
methods. They are respectively Roe, HLLC and Cusp, AUSM, AUSM+UP and AUSM+UP2. The 
highest spatial format is the second order, and the approach of MUSCL (Monotone Upstream - 
Centered Schemes for Conservation Laws) is adopted. The limiter is Venkatakrishnan type, and the 
coefficient is 0.005. For PHengLEI, it supports Roe, Van leer, AUSM, steger-warming and so on, which 
are listed in the table 1. 
This paper mainly calculates the physical model with wedge angle of 3, 5 and 7 degrees, the 
calculation points of Mach number are in 1.1957 ~ 2.3000 with total of 9 state points. The equal shock 
strength cases are selected on purpose. 

Table 1 – The discretization schemes supported by SU2 and PHengLEI 
Schemes  Roe AUSM AUSMDV AUSMPW AUSM+UP AUSM+UP2 Vanleer Steger HLLC HLLE CUSP 

SU2            
PHengLEI            

 

4. Illustrative results 
To measure the accuracy of shock strength capture by various discretization schemes, the ratio of 
static pressure increment Ρ= (p2-p1)/ p1 is used to describe the shock strength. For an oblique shock 
wave, the shock strength can be defined as follows. 

( )2
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2 1
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γ +
Ρ = −                                                               (7) 

As a basic test example, high-precision experimental results from the Delft University supersonic wind 
tunnel are applied to check the theoretical model at a deflection angle of three degrees in Figure 6a. 
Some theoretical benchmark results, CFD computed results and wind tunnel results are compared in 
Figure 6b. Further studies will cover the other shock strength quantities for the several previously 
mentioned spatial schemes (ROE, HLLC, AUSM, AUSM+UP, AUSM+UP2 and CUSP) and 
corresponding adaptive mesh techniques. 

  

Figure 6 – A comparison of computational and experimental model data for shock intensities from 
several sources including Euler and NS CFD simulations and experimental results from Delft 

University. 
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4.1 Example by SU2 
4.1.1 Wedge angle of 3 degrees 
It can be seen from figure 6 that the result of Euler equation solution is very close to the theoretical 
value, indicating that in the inviscid flow, the intensity symmetry of oblique shock wave can be well 
reflected. However, the intensity of oblique shock wave calculated by N-S equation is larger on the 
whole, and the experimental value also conforms well to a certain extent. 
To obtain the more detailed differences, we calculate a set of result by SU2 focusing on the inviscid 
flow. As shown in figure 7, it can be seen that the numerical results calculated by SU2 in different 
discrete schemes are very close to the theoretical Euler results, and the differences between spatial 
schemes are also very small. In order to better identify the differences, we provide Table 2 and Table 
3. The table 2 gives the details of shock strength calculated by different discretization schemes. The 
table 3 lists the relative errors, in which the number representing the relative errors is ten thousand 
fractions. Among the nine selected data points, the average relative error of CUSP scheme is the 
smallest, while the average relative error of HLLC scheme is the largest. The performance of 
AUSM+UP2 scheme is not as good as AUSM+UP scheme, indicating that the second-order upwind 
scheme is not better than the first-order upwind scheme in all cases in a way. On the other hand, it 
also shows that the oblique shock model has ability to distinguish the differences between various 
discretization schemes. 

 
Figure 7 – The result of 3 degrees of deflection angle using six spatial schemes by SU2 program 
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Table 2 –  Theoretical value and shock intensity of 3 degrees of deflection angle calculated by 
different schemes (SU2) 

 
 

Table 3 – The relative error of different schemes in 3 degrees of deflection angle (SU2) 
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4.1.2 Wedge angle of 5 degrees 
 

 
Figure 8 – The result of 5 degrees using six spatial schemes by SU2 program 

 

Table 4 – Theoretical value and shock intensity of 5 degrees of deflection angle calculated by 
different schemes (SU2) 
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Table 5 –  The relative error of different schemes in 5 degrees of deflection angle (SU2) 

 
4.1.3 Wedge angle of 7 degrees 

 
Figure 9 –  The result of 7 degrees using six spatial schemes by SU2 program 
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Table 6 – Theoretical value and shock intensity of 7 degrees of deflection angle calculated by 
different schemes (SU2) 

 
 

Table 7 – The relative error of different schemes in 7 degrees of deflection angle (SU2) 
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4.1.4 Wedge angle of 10 degrees 

 
Figure 10 – The result of 10 degrees using six spatial schemes by SU2 program 

 

Table 8 – Theoretical value and shock intensity of 10 deflection angle calculated by different 
schemes (SU2) 
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Table 9 – The relative error of different schemes in 10 deflection angle (SU2) 

 
 
In order to make the result more convincing, the CFD results of wedge of 5, 7 and 10 degrees are 
supplemented, as shown in table 4 to 9 and figure 8, 9, 10. With the increase of wedge Angle, the 
absolute value of the relative error tends to increase, such as the absolute value of relative error of 
Roe scheme is increasing from 3.0080‱ to 36.9498‱. The differences between the various 
schemes are also amplified, which is beneficial for verifying a new scheme. The calculation results of 
different schemes at different deflection angles cannot always maintain the best effect. For deflection 
angle of 3 degrees, the CUSP scheme has the smallest relative error, however for deflection angle of 
5 degrees, the AUSM+UP2 scheme is the smallest. That is to say, discretization schemes would have 
their own ranges of applicability, some have the better efficiency for small disturbance, others for 
bigger deflection angle.  
The level of disturbance can also affect the performance of various discretization schemes in CFD 
process. When the disturbance reaches a certain degree, some discretization schemes start to 
become sensitive, and a small change in wedge angle may lead to a large change in the calculated 
relative error.  
An interesting phenomenon should be mentioned. In the case of equal shock intensity, the relative 
errors calculated by various discretization schemes at large shock angle and small Mach number are 
generally larger than those calculated at small shock angle and large Mach number. This is especially 
obvious at large deflection angle. 

4.2 Example by PHengLEI 
PHengLEI is a structural/unstructural general purpose CFD open source program, whose calculation 
range covers low speed, subsonic, transonic and hypersonic. More importantly, this program also 
supports higher-precision schemes such as Weight compact nolinear scheme (WCNS). This section 
will show the CFD results of the wedge of three degrees, including the shock strength and entropy, 
which is supplemented and compared with the results of SU2.  
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Figure 11 – The result of 3 degrees using six spatial schemes by PHengLEI program 
 

 

Figure 12 – The relative errors (ten thousandth) of shock intensity calculated by the six discretization 
schemes at different incoming Mach numbers when wedge angle is three degrees 
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Table 10 –  Theoretical value and shock intensity of 3 degrees of deflection angle calculated by 
different schemes (PHengLEI) 

 
 

Table 11 – The relative error of shock intensity calculated by different schemes in 3 deflection angle 
(PHengLEI) 
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Figure 13 – The entropy production across the shock wave calculated by the six discretization 
schemes when wedge angle is three degrees 

 

 

Figure 14 – The relative errors (percentage) of entropy production calculated by the six discretization 
schemes at different incoming Mach numbers when wedge angle is three degrees 
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Table 12 –  Theoretical value and entropy production of 3 degrees of deflection angle calculated by 
different schemes (PHengLEI) 

 
 

Table 13 – The relative error of entropy production calculated by different schemes in 3 deflection 
angle (PHengLEI) 

 
Similarly, to SU2, the difference between the calculated shock wave intensity and the theoretical value 
is very small under the six schemes, which are all less than 0.026%. It cannot tell the differences via 
figure 11. According to figure 12, we can find that differences do exist between the different schemes. 
Compared with other schemes, the average error of HLLE scheme is the largest. Overall, AUSMDV 
scheme had the best effect, with an average relative error of only 0.00028%. Another interesting 
phenomenon is that, in the trend, the relative errors of the six schemes all reach the peak at Mach 
number 1.35. Perhaps there is some incentive at this Mach number that leads to the maximum errors 
of the six schemes at the same time. One can get more information from table 10 and 11. 
Be different from the ratio of static pressure increment P, the entropy increase across shock wave has 
obvious difference in figure 13. It presents a state of incomplete uneven. The relative error also 
becomes more diacritical (figure 14), which proves that entropy increase can be a good metric for 
measuring discrete one new scheme. More details of data are provided in table 12 and 13. 
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