

Aircraft Cruise Performance Design Integration Based On System Engineering

BIHAI HE¹, ZHEN HUA²

¹Shanghai Jiao Tong University,Shanghai, ²Shanghai Aircraft Design & Research Institute, Commercial Aircraft Corporation of China, Shanghai

Abstract

This paper summary the lesson learn from certain civil Aircraft practical cruise design and taking certain aircraft as example, Integration for aircraft cruise performance based on system engineering process is proposed: need-function-requirement-proposal. The stakeholder needs for aircraft cruise performance are captured in this paper. The aircraft cruise performance integration function list is summarized and the critical functions are identified as cruise thrust rating, anti-icing bleed, engine thrust limits, RVSM requirements, Cost, pilot work load. Considering the core internal and external constraints for cruise performance Integration, the operational scenario is further analyzed. The integration design requirements are allocated therefore. Three optional proposals are compared based on the cruise performance requirements. The final cruise performance proposal shall balance the cost, performance, human factors, schedule and choose best proposal, which suits itself under the aircraft safety premise.

Keywords: Cruise, Performance, Integration, System Engineering

1. System Engineering Analysis Process

Aircraft Cruise Performance integration follow needs capture–Function Analysis–Requirement Analysis–Design Integration process as shown in figure 1 below.

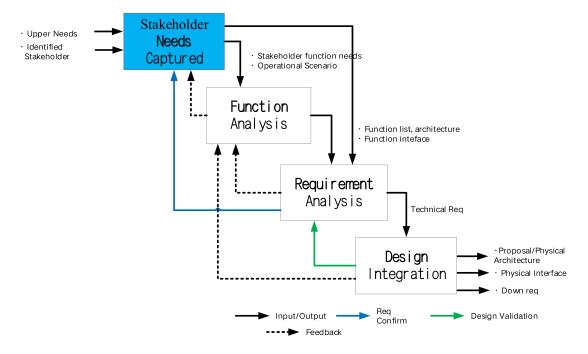
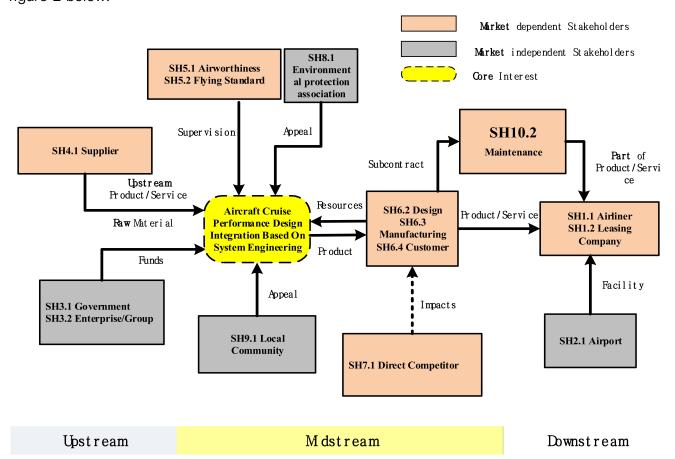



Figure 1 System Engineering Analysis Process

2. The Stakeholder Needs Captured

2.1 Stakeholder Identified

The aircraft cruise performance design Integration stakeholders are identified as shown in figure 2 below.

Figure 2 stakeholder identified

2.2 Needs Captured For Aircraft Cruise Performance Design Integration

The needs for aircraft cruise performance design integration are captured and the core interest is concluded by the importance level as shown in table 1 below.

Table 1 Summaries for The needs for aircraft cruise performance design Integration

Stakeholder Type	Stakeholder	Needed Captured	Importance
SH1.Customer	SH1.1 Airliner	1.Aircraft continues safety flight in specified flight envelope	
		2.Faster, Higher, Better Fuel Efficient	
		3.Less Aircraft Auto Cruise Operation Constraint is	
	SH1.2 Leasing Company	1.Better Aircraft Auto Cruise performance, fuel efficient, Competitiveness	***
	SH1.3 Pilot	1.Less Pilot Concern	***
		2.Lower Work Load, Better Human Factors	
	SH1.4 Maintenance	1.Low System Failure and Better Maintenance	公公
	Crew	2.Easy Procurement for Aviation Material	
	SH1.5 Flight Attendant	1.Safety Flight and Comfortable	***
SH2.Airport	SH2.1 Air Traffic	1.Flight Altitude Level Resource Allocated Easily	***
	Control	2. Stable Horizontal Vertical Separation	
SH4.Supplier	SH4.1 Design	1.Low Risk and Easy Implemented	\$\$
	Supplier	2.Low Proposal Development Cost	
		3.Short Program Schedule	

Stakeholder	Stakeholder	Needed Captured	Importance	
Туре				
SH5.Supervision	SH5.1	1.Comply With 25.1309 Regulations	***	
	Airworthiness	2. Comply With RVSM 300 meters		
		Vertical Separation		
		Requirements(AC-21-3)		
		3.Comply with RVSM Vertical		
		Separation Airspace		
		requirements(AC-91-FS-2018- 007R1)		
		4.Comply with CCAR-91 91.80		
		regulations about airspace operation		
		requirements		
	SH5.2 Flight	1. Air Operator shall meet the	***	
	Standard	operation requirement and provide		
		operation support and guarantee		
SH6.Aircraft	SH6.2 Design	1.Limits reduction and satisfy the	***	
Manufacturer		commonality		
		2.Less Design Change		
		3.Short Change Schedule		
		4. High Technical Maturity		
	SH6.3	1.Easy Product Procurement		
	Manufacturing	2.Easy Assembly and Test		
	SH6.4	1. Detailed Design Information and		
	Customer	guide the publication update		
	SH6.5 Flight	1.Easy Flight Test, less flight and	**	
	Test	Low Risk		
		2.Avoid special Environment Limit		
		and Instrumentation		
SH7.Competitor	SH7.1 Direct	1. No Patent interference with	**	
	Competitor	Competitors		

3. Function Analysis For Aircraft Cruise Performance Design Integration

By analysis the need list and the activity sequence diagram below, the stakeholder core functional needs are summarized below:

- 1) High, faster, better fuel efficiency
- 2) Fewer Auto cruise constraints
- 3) Less cross the flight altitude level.

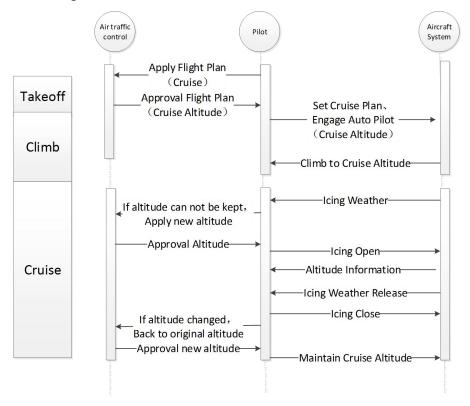


Figure 3 Activity Sequence Diagram For aircraft cruise performance design Integration

The function list related with aircraft cruise performance design Integration is summarized as shown in the picture below: aircraft related Functions, system related functions and related physical systems.

Function Field

Physical Field

Aircraft Function System Function

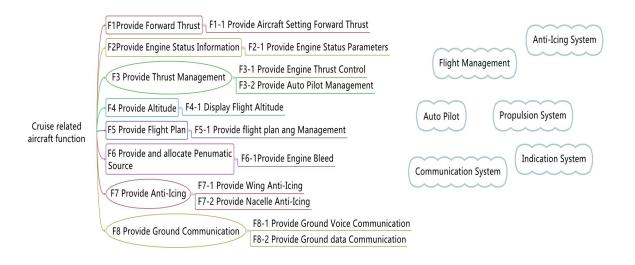


Figure 4 Related Functions and Physical System for Aircraft cruise performance design integration

4. Requirement Definition For Aircraft Cruise Performance Design Integration

4.1 Core Constants Summary

Before the requirement definition for identified functions, the core constraints for cruise performance design Integration are summarized in table 2 below.

Table 2 Core Constraints Summary

Aircraft cruise performance design Integration Constraints Analysis			
Internal Constraints	Outside Constraints		
Better Aircraft Auto Cruise Performance	CCAR 121 RVSM requirements		
Engine Thrust Limit	CCAR 91 RVSM requirements		
Anti-Icing Requirements(impact thrust)	Pilot Concerns and Work Load		
Program Schedule and Cost	Less Aircraft Auto Cruise Operation Limits		

4.2 Further Study About Aircraft Operational Scenario

Combined with the certain aircraft design parameters and capability, and after the analysis for aircraft operational environment as shown in figure 5 below, the stakeholder needs are transferred into the design object below:

1) During non-icing condition, Aircraft shall able to auto cruise(Ma 0.78, 35000ft) with 42 ton;

2) During Icing condition, Aircraft shall able to maintain cruise altitude

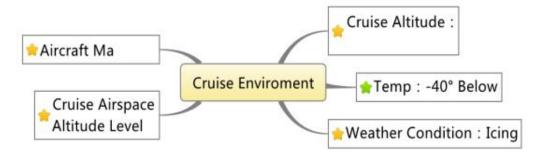


Figure 5 Further Study about aircraft operation scenario

4.3 Requirement Definition

After the further analysis on the aircraft operational scenario, the requirements tailored to aircraft cruise performance Integration are flown down as shown in table below:

Table 3 Requirement Definition following Function Analysis

Functional Requirements			
Functional	Deguinement Definitions	Requirement Allocation	
Requirements	Requirement Definitions		
	RE1: Engine shall provide enough		
	thrust to maintain Ma 0.78, 35000ft	Engine	
	cruise during normal operation		
Provide Forward Thrust	RE2: Engine shall provide enough		
	thrust to maintain cruise altitude in		
	RVSM cruise altitude during anti-	Engine	
	icing system is opened(>28000ft)		
	RE3: Engine N1 speed shall not	Engine	
Provide Engine Status	exceed Limits	Engine	
Parameters	RE4: Engine EGT shall not exceed	Engine	
	limits		
	RE5: Cruise thrust rating shall be		
	auto selected during Cruise	Flight Management	
	Condition		
Provide Thrust	RE6: Auto Pilot shall adjust cruise		
Management	thrust and maintain cruise altitude	Auto Pilot	
Ivianagement	following cruise target		
	RE7: Autopilot and auto throttle		
	shall be used to maintain Ma 0.78,	Auto Pilot	
	35000ft.		

	RE8: Engine shall provide enough			
	Wing Anti Icing Flow during Icing	Engine		
Dravida Fasias Dlass	Condition			
Provide Engine Bleed	RE9: Engine shall provide enough			
	Nacelle Anti Icing Flow during Icing	Engine		
	Condition			
	RE10: Pilot shall be informed when	Anti-icing		
Provide Wing Anti-	Icing weather is encountered.			
lcing	RE11: Pilot shall open Wing Anti	Audi inium		
	Icing when receiving Icing alert	Anti-icing		
Provide Nacelle Anti-	RE12: Pilot shall open NACELLE	Anti joing		
lcing	Anti lcing when receiving lcing alert	Anti-icing		
Non-Functional Requirements				
Factors	Requirement Definitions			
	RE13:Pilot shall have the highest			
Pilot	priority to select thrust rating no			
	matter in any scenario			
	RE14:The Flight Crew shall select			
Pilot	the cruise rating in the specified			
	range of flight performance manual			

5. Integration Proposal

Taking certain aircraft parameters and capability as example, and combined with certain specified requirements to optimize aircraft cruise performance, three different integration proposals comes out. The decision shall consider the balance among Aircraft cruise thrust rating, anti–icing bleed, engine thrust limits, RVSM requirements, Cost, pilot workload. Optional Proposal:

- 1) Only highlight pilot need to adjust manually thrust when open anti-icing in high altitude in flight crew manual.
- 2) Optimize aircraft thrust management logic to make sure crew could select higher thrust than cruise rating in anti-icing condition and avoid the altitude loss by auto throttle
- 3) Update Engine FADEC thrust management schedule

The tradeoff for 3 proposals are as shown in table 4 below.

Table 4 Tradeoff for 3 proposals

	Table 1 Hadeeli lei e proposale			
Proposal	Strengths	Weakness		
1	Almost no additional change cost,	1) Crew need to check the performance		
	only update the crew manual	table during operation, sometimes		

				need to do interpolation calculation
			2)	When Auto throttle is disengaged, the
				cruise control accuracy would be
				impacted, risky to meet RVSM
				requirements
			3)	It is hard to reach 35000ft, M 0.78
				cruise condition when auto throttle is
				engaged
2	1)	No Need to change engine	1)	When Cruise thrust is not enough,
		FADEC and anti-icing logic		pilot still need to operate manually to
	2)	Flight crew is free to select		get the higher thrust than cruise. If
		thrust rating and improve the		pilot operation is late, aircraft speed
		thrust selection flexibility.		would loss
		When cruise thrust is not	2)	Manually changed the cruise thrust to
		enough, MCT thrust can be		higher thrust, such as Climb, MCT,
		used and the engine		aircraft can get the better cruise
		performance potential is		speed, but may bring worse fuel
		developed		consumption and engine deterioration.
3	1)	No need to update aircraft	Eng	gine would be used in high power in
		side thrust logic, only update	lon	g time, ENGINE EGT in cruise status is
		FADEC thrust schedule	rec	duced and engine life potentially
	2)	Updated Cruise thrust by	im	pacted
		FADEC can meet almost all		
		scenario		
	3)	No need additional flight crew		
		operation.		

6. Summary

Taking certain aircraft as example, this paper summary the lessons learn from certain civil aircraft practical cruise design, following the critical process of system engineering, the potential integration proposals are concluded. Aircraft cruise performance design is actually very comprehensive topics, it provide a clear ways for aircraft to choose design Integration proposal, which suits itself under the aircraft safety premise. It is also wished the topics shown in this paper could also provide reference for related engineering field.

Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material included in this paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.