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Abstract 

Paper describes advanced weak solutions of time dependent compressible fluid flows containing strong 

shocks and other entropy growth effects at the presence of aerodynamic heating. Our theoretical and 

computational results are closely related to famous one proposed by P.D. Lax and S.K. Godunov. The novel 

feature of our numerical results shown here is the use of the conservation form of hydrodynamic equations 

which give not only shocks but also smooth aerodynamic heating solutions with total pressure losses and 

entropy growth. There are shown aerodynamics and astrophysics examples of great heating. 

Keywords: advanced weak solutions, compressible flows, shocks, entropy growth, heating.   

 

1.  Introduction 
At hypersonic airspeeds, aerodynamic heating is one of the concerned problems. In such flow 

changes in the chemical nature of the gas can occur due to the very high temperatures. Further, 

because the temperature rises at the surface are so high in hypersonic flow, convection and radiation 

heat transfer become very important. Attentions will here be restricted integral heat value addition δQ 

in the energy conservation law and consideration corresponded advance weak solutions of 

hydrodynamic equations. In this connection there are described advanced week solutions of time 

dependent compressible fluid flows containing strong shocks and other entropy growth effects at the 

presence of aerodynamic heating. Our theoretical and computational results are closely related to 

famous one proposed by P.D. Lax (see [1, 2]) and S.K. Godunov (see [3, 4]).  

Here it should be emphasized modern theoretical physics has no answer on entropy growth nature 

for isolate thermo and fluid dynamic systems. In the famous 10-volume course on theoretical physics 

argues: "The question of the physical basis of monotonic increase of entropy thus remains open" 

(Landau and Lifshitz. Stat. Phys.1996, p. 52, [5]). On the problem of increasing entropy soviet 

academician V. L. Ginzburg also puts in first place among the outstanding "three great challenges": 

"First, we are talking about the increase of entropy, irreversibility and the "arrow of time"" [6]. 

The first part of our paper demonstrates advanced weak solutions of initial quasi-linear fluid dynamic 

equations and physics of entropy growth with inextricably related losses of total pressure. The 

analysis bases on conservation laws of mass, momentum and energy. Following by Ladyzhenskaya’s 

methodology [7] we can write for one dimensional unsteady case the conservation law energy. 

The second part of our paper presents a lot of number numerical results for internal and external 

aeronautics problems with heating. As example we show the flow in scramjet channel with intensive 

heat addition (all detail see [8]). 

We present the nature of entropy connection with time arrow (i.e. the irreversibility of time) in some 

technical problems. Entropy is considered as a state function of nature dominant radiate medium. 

The consideration allows introducing the full thermo dynamical gaseous medium description. 

Dominant radiate medium in the nature has temperature, pressure, density, internal energy and a 

finite particle mass. A complete system of conservation laws of mass, momentum and energy is 

written for two component medium of air and radiation. 

  

https://en.wikipedia.org/wiki/Hypersonic
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1.1 Weak Solutions for Rayleigh’s flow   

The Rayleigh flow refers to frictionless, non-adiabatic stream through a channel with a constant area, 

where the influence is taken into account by the addition or removal of heat. This model has many 

analytical applications, especially in relation to aircraft engines. For example, the combustion 

chambers inside turbojet engines usually have a constant area, and the addition of fuel mass is 

negligible. These properties make the Rayleigh flow model applicable for adding heat to the flow 

during combustion, assuming that the addition of heat does not cause the air-fuel mixture to 

dissociate. The total pressure losses present for one dimensional steady case the relations 

 

 

 

 

 

As typical application of a week solution for the Rayleigh flow model we show one dimensional 

unsteady case, following by Ladyzhenskaya’s methodology [7]. The conservation energy law has the 

view 
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Here and below conventional variables are used. After differencing we lightly have 
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When η и λ → 0 the relation (1) gives 
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(2) 

For week solutions the equation (2) can be divided on two equations for entropy growth 
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(3) 

and total pressure losses   
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(4) 

We can see closed connection between the entropy growth (the relation (3)) and total pressure 

losses (the relation (4)). If σ = 0 applying the multiple 1/T we get from (3) the additional law of entropy 

conservation   

  

  
    

 

Although the method was shown here to deal with one dimensional problem it may be used to 

construct solutions of initial value problems for simulations in any number of space variables at 

aerodynamic heating. 

Now we can introduce aerodynamic heating as specific integral heat value δQ in right part of energy 

conservation law (2) and considerate corresponded advance week solutions of hydrodynamic 

equations. Dividing δQ =δQ1+ δQ2 we have 
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demonstrating closed connection between entropy growth at presence δQ1 and inextricably related 

total pressure losses at presence δQ2 .  

The conservation energy law for unsteady Rayleigh’s flow is  
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The law (5) hold true for any dimension case. 

 1.2 Diagrams for Rayleigh’s flow 

We also illustrate this process by demonstrating the change in the total pressure. Figure 1 shows the 

heat supply diagram in the Brayton cycle for the one-dimensional case in the same plane (p, 1/ρ) 

under relations (2) - (4) and the total pressure loss. The segment ОА corresponds to a constant total 

pressure as heat Q is supplied. The segment ЕС corresponds to the supply of the same amount of 

heat Q to the moving flow without the total pressure loss (an analog of Riemann's error). The 

segment ЕG corresponds to the real-life heat supply process with the total pressure loss. The 

segment ОВ shows the change in the total pressure loss for the heat supply process with the total 

pressure loss, and the line АВ corresponds to the constant deceleration pressure; the curves e, f, and 

g are adiabatics. 

 
Figure 1 – Diagram of heat supply in the plane (p, 1/ρ). 

 

The fact that the design of the core engine units in modern and promising high-temperature bypass 

turbofan engines requires the use of high compression ratios is explained by these considerable 

losses.  

2. Entropy Growth Simulation   

2.1 Some Experimental Data    

The growth of entropy determines the energy part, which is dissipating in external space, in 

particular, as thermal radiation energy. We consider in detail thermal radiation of supersonic jets and 

internal shocks. It should be emphasized that a non-equilibrium radiation associated with the 

chemical reactions of fuel combustion in our cases gives a little contribution to the cumulative 

intensity of emission (thermal radiation) since chemical reactions to this points almost ended. The   

cumulative intensity   of   this radiation can be approximately estimated by the well-known law by the 

Stefan-Boltzmann U=T4
. 
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With special experiments we have shown that a visible eye glow shock waves and the glow of the jet 

occurs at a sufficiently high temperature braking of the gas flow - in excess of 1000 K, and this glow 

can match the traditional equilibrium of a continuous thermal radiation spectrum (the spectrum of 

blackbody radiation). 

First of all we present well known black-body spectrum for various temperatures (Fig.2). For 

temperature T < 1000 K spectral radiant region lies out of visible region. The eyes light registration of 

shock waves may be only at more temperature values. With special experiments we have shown that 

a visible eye glow shock waves and the glow of the jet occurs at a sufficiently high temperature 

braking of the gas flow - in excess of 1000 K, and this glow can match the traditional equilibrium of a 

continuous thermal radiation spectrum (the spectrum of blackbody radiation). 

 
Figure 2 – The black-body spectrum for various temperatures. 

 

The experiment was carried out at the high temperature test cell CIAM in the temperature range 500 

– 2500 K and at pressures of several atmospheres. High temperature off-design supersonic jet with 

the Mach number at the nozzle exit M0=1.3 in the flooded outer space with the usual atmospheric 

pressure. When the stagnation temperature of the flow was below 1,000 K in jet, the jet lighting is not 

observed. When the stagnation temperature was near 2000 K the luminous jet was in the visible 

range and we can see the radiate hot boundaries. Typical photo of a glowing test jet is shown in 

Fig.3. Clearly visible two of the Mach disk, the first three "barrel" of the jet and its external borders. 

The usual spectrum of the equilibrium thermal radiation meets the surroundings in the visible range at 

temperatures of about 2000 K. 

  

 
 

Figure 3 – Photo of thermal radiation shock waves in high temperature test jet. 

 

Visible light 
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2.2 Entropy growth in conservation law system 

It is known that the basic laws of mechanics, laws of electrodynamics and quantum mechanics are 

reversible in time. Change the character at the independent variable t on -t does not alter the 

equations of motion, expressing these laws. Said effectively means that any elementary physical 

process, describing these laws can be made as time progresses in the forward direction (from the 

past to the future), and returned direction.  

At the same time, the direction of time flow strictly allocated for irreversible physical processes. 

Equations, including description of diffusion of a substance, the dissipation of momentum, a heat and 

any energy losses are irreversible in time. Change the character at time t on -t leads to other 

equations of motion with opposite signs of diffusion coefficients, viscosities and thermal conductivity. 

Thus, natural physics processes have a specified irreversible time. In the most general form of thrust 

in time of irreversible processes expresses the law of entropy growth.  

Let us now give a careful theoretical analysis of the problem of entropy growth and show the 

inextricable connection between the increase in entropy in adiabatic processes and the loss of the 

total pressure of the working medium of the process under consideration. In this case, we will use the 

full system of the original conservation of mass, momentum and common energy (internal and 

kinetic). We have balance integral equations [8,9] for a time-constant volume ω with the boundary γ 

in the form 
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This system of equations is a thermodynamically consistent system of integral conservation laws that 

allows us to determine the value of heat losses (total pressure losses) when heat is supplied to a 

moving gas stream.    

The integral law of energy conservation leads to the differential law 

 

.
t

Q
)

2
()

2
(

22







 





















 qp
qdiv

q

t
                  (7) 

 

The differential relation (7) in divergent form is valid for week solutions of gas dynamics equations.   

When performing the continuity equation, reducing by ρ and moving to the full derivative, we come to 

the relation 
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This form is taken by the differential law of energy conservation in the case of smooth solutions. 

Taking into account the continuity equation, the relation (8) is easily reduced to the form  
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Relation (9) shows that the heat applied to a medium moving is spent on increasing the specific 

internal energy, changing the work (term dtpd /)/1(  ), changing the specific kinetic energy (with 

speed dtqd )2/( 2
), and changing the value /)(gradpq .  

 

3.  Examples of Simulation for Week Solutions with Heating     

3.1   Air-Breathing Engines 
We illustrate discussed above weak solutions using the calculation of the thermodynamic process in 

the flow passage of air-breathing engines that use the Brayton cycle. The computation thoroughly 

took into account all significant losses and thermal emission. Figure 4 shows the flow pattern in the 

form of Mach number constant lines in the flow passage of a ramjet without heat supply (а) and under 

the intensive heat supply (b). Under the intensive heat supply, the flow with a system of   

compression shock jumps into the air inlet is realized in the flow path of the combustion chamber. 

 

           
(а) 

 

 
(в) 

 

Figure 4 – Mach number constant lines in the absence of combustion (a) and under the engine 

operating conditions with combustion (b). 

 

The next results refer to simulating the process realized after a combustor in the complete path of an 

aviation gas turbine consisting of a one-stage high pressure turbine, two-stage low pressure turbine, 

and an output diffuser. Figure 5 shows the pattern of the velocity distribution along the engine flow 

passage. The computation thoroughly took into account the total pressure loss. 

 

 

 
 

Figure 5 – Pattern of velocity distribution in the turbine flow passage. 

 

The described above approaches were used also for investigation of steady and unsteady working 

points of the bypass gas turbine engine (fig. 6). The engine was investigated in detail experimentally. 

Both the whole engine and the core engine were tested. Different design and off-design working 
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points were studied and compared with the test results. The experiments demonstrated significant 

discrepancy between the tested and design engine parameters for a number of working points in 

cases if considered radiate effects don’t include into account. When we have integrated the system 

(6) the correlation between numerical and experimental data was more satisfactory.  

 

 

            
 

Figure 6 – Example of flow simulations in small bypass gas turbine engine. 

 

The fact that the design of the core engine units in modern and promising high-temperature bypass 

turbofan engines requires the use of high compression ratios is explained by these considerable 

losses. Presently, these losses are most often ignored in the thermodynamic calculations of turbofan 

engines. 

 

3.2   Reentry Shuttle Problems   

In this section, we present weak solutions with aerodynamic heating for external reentry shuttle 

problems. Flow structure and surface temperature distribution for two typical shuttles show on Fig.7. 

On simulate regime the flight Mach number equals 5 with the angle of attack 5 (see, in detail, in 

[10]).   

 

                  

          
 

Figure 7 – Flow structure and surface temperature distribution for two typical shuttles. 

 

4.  Conclusion 

Week solutions describe the irreversibility effect of thermal processes and total pressure losses. They 

should be carefully taken into account when solving applied aerothermodynamics problems. In 

particular, the analysis helps justify the choice of design parameters for new high-temperature air 

breathing engines that use the Brayton cycle and external reentry shuttle problems. 
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