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Abstract 

Validation of Discontinuous Galerkin method designed for unsteady computations is presented. Explicit 4th 

order 5-stage strong stability-preserving Runge–Kutta scheme is used in conjunction with global time 

stepping. Shape functions are orthonormal polynomials in physical space of order K of up to 5, formally 

giving a K + 1 accuracy order of the scheme. Bassi & Rebay 2 approximation of viscous fluxes is adopted. 

Implicit Large Eddy Simulation technique (ILES) is used as well as Delayed Detached Eddy Simulation 

(DDES, 2006) with an option of employing the wall functions. Test cases used for validation are Taylor–

Green vortex, NASA axisymmetric jet, and periodic hill flow. The results include accuracy vs. computational 

cost comparisons and scalability assessment on up to 50 000 CPU cores. 

Keywords: Discontinuous Galerkin method, High-Order, ILES, DDES, Taylor–Green vortex, periodic hill flow, 
axisymmetric jet. 

 
 

1. Introduction 

Discontinuous Galerkin (DG) method is considered to be one of the most promising high-order 
methods (HOM) for large eddy simulations in industrial aerodynamic problems. It is easily 
implemented in the case of unstructured meshes suitable to approximate complex geometries and 
is resistant to weaknesses in mesh quality. It can be easy implemented for parallel computer 
systems with large number of cores due to the compact stencil consisting only the nearest cell 
neighbours. High order may be achieved on smooth solutions using appropriate base functions. Its 
finite element nature matches well with finite volume properties. For example, like in Godunov 
scheme, DG method takes into account the direction of disturbance propagation when 
approximating the fluxes through the interfaces between the cells. It allows to obtain stable solution 
without adding artifitial viscosity to the equations. 

In this paper we present the current level of  the technology development in Central 
Aerohydrodynamic Institute (TsAGI, Russia). It is worth mentioning that TsAGI in-house code EWT 
has been developed since 1996 for different types of problems and DG solver was implemented to 
make code more flexible for practical simulations. Now it is focused on simulating the unsteady 
aerodynamics of turbulent flows, among other areas. Available base allowed TsAGI to take part in 
European H2020 project TILDA (“Towards Industrial LES/DNS in Aeronautics”, reference number 
635962) and obtain new results which are presented in this paper. 

The structure of the paper is as follows. In section 2, equation system is presented and formulation 
of the numerical scheme is described. Special attention is paid to the balance between accuracy 
and code efficiency. In section 3, the test cases selected in TILDA project are studied, such as 
Taylor-Green Vortex (from DLR), Periodic Hill Flow (from ERCOFTAC) and NASA axisymmetric jet. 
Also, the problem of code efficiency is considered in details. As an example, scalability test is 
performed on HPC cluster containing 50,000 CPU cores. Efficiency of the algorithm is disscussed 
together with quality of results. Final conclusions in section 4 summarize the results of this research. 
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2. Numerical Method 

2.1 Equation System 

Navier–Stokes equation system describing a gas flow in the domain D  is written in conservative 

form, 

 
U

(U, ) 0
t


 


F G , (1) 

where  
T

, , , ,U u v w E      is conservative variable vector, F  is mass, momentum and energy 

flux vector, and UG  is gradient vector. Specific total energy E  is defined as 

 
2 2 2

2 1

u v w RT
E



 
 


,  

where 287.065 J / (kg K)R    is air gas constant and 1.4   is adiabatic exponent. Perfect gas 

equation of state is used, p RT .Flux vector is splitted into two terms corresponding to different 

physical processes: conv diff F F F . Convective fluxes along a coordinate axis k  are given by a 

formula 

  
T

, , , ,conv

k k k xk k yk k zk k kF u uu p vu p wu p Eu pu            .  

Diffusive fluxes due to molecular viscosity action are 

  
T

0, , , ,diff

k xk yk zk xk yk zk kF u v w q         .  

Momentum and energy molecular fluxes are defined as 

  
2

,
3 Pr

j pi

ij T ij k

j i k

u Cu T
div q

x x x


   

  
       

    

V .  

Viscosity coefficient is supposed to be constant, 51.72 10 kg / (m s)    . Prandtl number Pr  is taken 

to be 0.71 while specific heat capacity 
pC  is  / 1R   . 

Navier-Stokes equation system is used for Direct Numerical Simulations (DNS) of turbulent flows 

and for underresolved Implicit Large Eddy Simulations (ILES). The latter case corresponds to zero 

value of subgrid viscosity, 0T  . If a Delayed Detached Eddy Simulation [7] is to be used instead, 

the hybrid eddy/subgrid viscosity is determined from an additional equation in the equation system. 

 

A discretized counterpart of (1) is solved in a domain 
hD . It approximates the equations with 

accuracy order 
hD . The domain is divided into 

eN  non-overlapping elements, 

 
1

eN

h i

i

D


  .  

In the present paper, two types of elements are used, namely “linear” and “quadratic” hexahedrons. 

A “linear” hexahedron is defined by the coordinates of its 8 vertices, see Fig. 1, a. Using these 

coordinates, a serendipity transformation [1] of a standard cube [ 1,1] [ 1,1] [ 1,1]      into the 

hexahedron may be formed, 

  
      , , , , , , , , .x x y y z z             
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In physical space, the faces and edges of the hexahedron are supposed to be the maps of the 

corresponding faces and edges of a standard cube. 

A “quadratic” hexahedron is defined by 20 points, see Fig. 1, b. In addition to 8 vertices, 

coordinates of the centers of its 12 edges are used. The edges of a “linear” element are straight 

line segments while the edges of “quadratic” element are parabolic curves. 

Serendipity transformations are polynomials. They are used to distribute the Gauss points and their 

weights in the volumes of the elements and on their faces, and also to determine normal vectors to 

the faces. In DG solution, in each element i  is approximated by an expansion over basis 

functions. Let us expand the conservative variables as follows: 

 
1

U( , ) u ( ) ( )
fK

j j

j

t t 


x x . (2) 

After this discretization, expansion coefficients 
u j  become the main unknown values of the 

method. Let us take ( )j x  functions, 1, , fj K , to be the polynomial basis with elements of 

degree up to K  in physical space, which is expected to provide accuracy order  1K   for smooth 

flow fields.  In this case, the number of basis functions 
fK  is related to K  by the formula 

   1 2 3 / 6fK K K K    . Following the approach developed in Ref. 11, let us form an orthogonal 

and normalized basis function set. At the first step, we determine the barycenter coordinates of 
i  

element: 

 0 0 0, ,

xd yd zd

x y z
d d d

  

  

  

  
  

  

  
.  

After that, we calculate the components of inertia tensor of 
i : 

 

 

 

 

2 2

2 2

2 2

y z d xy d xz d

xy d x z d yz d

xz d yz d x y d

  

  

  

 
      

 
 

      
 
 
      
  

  

  

  

I .  

Here 
0x x x  , 

0y y y  , and 
0z z z   are the coordinates in the frame translated to the element 

barycenter. From symmetry and positive definiteness properties of I  it follows that its unit 

eigenvectors 
1e , 

2e , 
3e  are mutually orthogonal. Let 

1e , 
2e , 

3e  be a right-hand triple, then the 

transformation 

 
a) b) 

 

Figure 1. Elementary hexahedrons and their mappings: a) “linear”, b) “quadratic” 
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
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
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
     
             

specifies a rotation of the frame T( , , )x y zx  to the frame T( , , )x y z   x  of principal axes of the 

element. In 
x  frame, let us define the preliminary basis functions ( )j x  to be monomials of the 

form 

 
1( ) , , , , 0 .j j j

j j j j j j j js x y z K
  

      

         x   

The factor 

  
2

j j j

js x y z d
  

  



    

is introduced to guarantee the fulfillment of the normalization condition 

 2 ( ) 1j d 



  x .  

Next, we orthogonalize the function set  ( )j x  using the Gram–Schmidt process. This will result 

in a basis  *( )j x  with the following orthogonality and normalization property: 

 * *( ) ( )i j ijd   



  x x .  

In the initial Cartesian frame, basis functions are then defined as 

  
11 12 13

*

21 22 23 0

31 32 33

( ) ( ( )), ( )j j

e e e

e e e

e e e

   

 
 

  
 
  

x x x x x x x .  

All the described transformations preserve the polynomiality of the basis. Orthogonalized and 

normalized basis built as presented above is resistant to round-off errors, especially in the cases of 

stretched and strongly curved elements which is crucial for DG method [2]. Returning to the 

determination of expansion coefficients, let us multiply (1) by a basis function ( )i x  and integrate 

the resulting expression over the volume of the element: 

 U
0, 1, ,i fd i K

t




 
    

 
 F .  

Substituting the expansion (2), replacing   iF  by  i i   F F , and applying the 

Ostrogradsky–Gauss formula, we arrive at the equation system 

 
u ˆi

i i

d
d d

dt
 

 

      F n F , (3) 

where the property 

 
i j ijd 



    
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has been taken into account. Here, Σ is the surface of the element and n is its outward unit normal 

vector. Numerical flux F̂  is introduced due to the possibility of solution discontinuities on element 

faces. This flux depends on the solution at both sides of a face, UL
 and UR

, and also on n. To 

compute the convective numerical flux, Roe formula [3] is adopted: 

  
U U1ˆ (U ) (U )

2 2

conv conv conv R L

L R n


    F n F F n A . (4) 

In this formula,   / Uconv

n    A F n  is Jacoby matrix of convective fluxes normal to the face 

calculated using the following weighted mean values: 

 , , ,
L L R R L L R R L L R R L L R R

L R L R L R L R

u u v v w w H H
u v w H

       

       

   
   

   
,  

where /H E p    is specific total enthalpy. 

Let  i  be the eigenvalues of 
nA , and 

nT  be the matrix formed by right eigenvectors of 
nA . Let us 

introduce the matrix  n idiag L , then nA  in (4) can be expressed as 1

n n n n

A T L T . 

In (4),   is a coefficient which controls the artificial dissipation. It can take values from 0 (central 

difference scheme without artificial dissipation) to 1 (a standard upwind Roe scheme). In Taylor–

Green vortex test case, it was set to be 0.1 to minimize the artificial viscosity of the scheme. In 

periodic hill flow test case, a value of 1 was used to maximize the stability of simulations. 

Diffusive fluxes at the element face are calculated with the symmetric formula 

  
1ˆ (U , ) (U , )
2

diff diff diff

L L R R F F G F G . (5) 

The gradients which enter 
diff

F  in (5) are calculated according to Bassi–Rebay 2 scheme [4]. 

The surface and volume integrals in (3) are evaluated using the Gaussian quadratures. Cartesian 

products of one-dimensional Gauss–Legendre (GL) quadrature points are distributed in a standard 

cube [ 1,1] [ 1,1] [ 1,1]      and in a standard square [ 1,1] [ 1,1]   , which are then transformed into 

physical space by serendipity transformations associated with corresponding elements. In Taylor–

Green vortex test case, we use ( 1)K  -point one-dimensional GL quadratures due to simplicity of 

the mesh structure which consists of only cubic cells. In periodic hill flow test case, we adopt 

overintegration with ( 2)K  -point GL quadratures for better treatment of curvilinear cells. 

Consider temporal approximation of (3). Let us transfer the surface integral in (3) to the right hand 

side of the equation, which then becomes a residual. Denoting the residual vector by R  and 

unknown coefficient vector by U , we arrive at the following form of (3): 

 
d

dt


U
R . (6)

  

Focusing on unsteady simulations, let us use explicit M -step Runge–Kutta approximation of (6): 
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c c t
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c c c c t





  

   

     



U U

U U R

U U U R

U U U U R

U U

  

Here, superscripts without brackets indicate time step number while superscripts with brackets 

indicate internal Runge–Kutta step number. 

Within a t  time step, M  Runge–Kutta steps are done, after which the last state of unknown 

vector ( )MU  is assigned to a new time level 1nU .  The residual ( )kR  is recomputed at each Runge–

Kutta step. The coefficients  ,kl mc c  are constant. 

The choice of M  and  ,kl mc c  determines the temporal order of the scheme. In the present 

implementation, a 5-step 4th order strong stability preserving Runge–Kutta scheme [5] is 

employed. 

The explicit scheme used is stable only when a number of time step restrictions associated with the 

approximation of the flux and source terms is satisfied. The time step restrictions have been 

chosen on the basis of the following conditions: 

1) Courant-Friedrichs-Levy restriction related to the approximation of convective fluxes: 

 aV

hconv




||


, 

Here h  is the smallest distance between the cell barycenter and the centers of each cell faces, a  

is local sound speed; 

2) restrictions associated with the approximation of diffusion fluxes: 

 
 T

diff h









16

3 2

, 

 eddy viscosity coefficient T  to be determined later; 

3) restrictions associated with the interaction of convective and diffusive fluxes: 

 
 2/411

4

convdiff

diff
flux










; 

4) restrictions associated with the approximation of the source terms: 

 
1

max | |i

sou

i

rce 
 

  , 

 where maximum is taken over all negative eigenvalues of the corresponding Jacobi matrix. 

The final time step restriction has the following form: 

 
 sourceflux

stabC  ,min
,  

where stabC  is the stability coefficient. In the DG method, it depends on the maximum degree of the 

base polynomials K  and it has been determined experimentally. 

2.2  “Law of the wall” boundary condition (wall functions) 

In the simulations of near-wall turbulent flows using the non-slipping boundary condition, it is 
necessary for the grid to provide possibility to resolve the main elements in the near-wall zone. It is 
important to get the correct solution in the viscous sublayer (it determines the viscous friction and 
heat flux to the wall) and in the buffer zone (where the most of turbulence production takes place). 
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However, the viscous sublayer thickness is about 0.1% of the total boundary layer thickness. To 
resolve the processes in the viscous sublayer, it has to contain from 5 to 10 cells. As a result, the 
size of the near-wall cell should be about 0.01% of the boundary layer thickness. In the case of the 
DG, this condition must be satisfied at least for the first Gauss point. This reduces the requirements 
for the first cell size to about 0.1% of the boundary layer thickness: the number of Gauss points in 
one direction is equal to K+1, and the distribution of Gauss points is non-uniform in vertical 
direction with a concentration to the wall.  

However, even 0.1% of the boundary layer thickness is a very strong requirement for the mesh. 
Such meshes reduce the efficiency of high-order accuracy methods. If an explicit scheme is used 
in the simulation, a strong concentration of the grid lines to the wall results in a significant decrease 
of the convergence rat even when convergence acceleration methods are used such as a local 
time step. To take full advantage of the high-order accuracy scheme, it is desirable to have the size 
of the first wall cells up to Y+=50-100. It can be achieved by the adoption of wall function method. 
This numerical boundary condition is based on the “wall law", i.e. on a given profile of velocity and 
other parameters of the boundary layer. It is usually assumed that the flow in a small neighborhood 
of solid walls can be described using the same self-similar solution as the flow in the boundary 
layer on the plate. It permits to perform the simulations with much larger near-wall cells than using 
a non-slipping boundary condition. In the present research, wall law formulation is based on [16]. 
 

3. Test Cases 

3.1 Taylor–Green Vortex Test Case 

The Taylor-Green vortex at the Reynolds number 1600 is a standard test for the code to check its 
ability to perform the direct numerical simulation of the turbulence [8]. This flow at an initial time 
moment is defined as a set of large vortices that divided gradually and produce a small-scale 
quasi-isotropic turbulence (Fig. 2). It is assumed that the simulation will reproduce all the scales of 
turbulent motion that arise during the evolution of the initial field. 

 

 
Figure 2. The initial flowfield (pressure isosurface) and the field that is a result of the Taylor-Green 

vortex evolution  

 

In this paper, the Taylor–Green vortex has been simulated in a cubic computational domain 
3[ , ]L L   with periodic boundary conditions. The grid inside the computational domain has a 

constant step and it is consisted of identical cells. The simulations have been performed on the 

grids of 
364 , 

396 , 
3128 , 

3192 , 
3256 , 

3384  and 
3512  cells. The Reynolds number is defined as 

Re /V L    in this problem, the viscosity coefficient is taken as constant 51.72 10
kg

m s
 

  


 (it is 

independent of temperature), the initial values of density  , velocity V , pressure p , and length 

scale L  are chosen so as to reach Re 1600  and to obtain the characteristic Mach number 

/ / 0.1M V p     . At that, the flow can be considered as incompressible. Below, all variables 

are dimensioned on a combination of parameters  , V  and L . 
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The initial state of the Taylor–Green vortex is described by the following relations: 

 

0 sin cos cos
x y z

u V
L L L

 ,   
0 cos sin cos

x y z
v V

L L L
  ,   0w  , 

2

0 0

0

2 2 2
cos cos cos 2

16

V x y z
p p

L L L

   
     

  
. 

 

The main characteristics of this non-stationary flow are the dissipation rate of the turbulence kinetic 

energy E /kd dt , which is connected with the turbulent fluctuations that can be resolved by the 

grid, and enstrophy  , which is proportional to the energy dissipation at the level of the smallest 

vortices resolved by the grid. The kinetic energy and entropy are determined by the formulas 
21

E
2

k d





 
 

V
, 

21

2
d







 
 

ω
 

where   is the computational domain volume,   is average density in the computational domain, 

rotω V  is vorticity vector. In the simulations, the time dependences of the dissipation rate and 

enstrophy have been obtained. 

The results of the work [9] obtained using the spectral method on a very fine grid are chosen as the 

reference data. Figure 3 shows a comparison of the results for DG with different degrees of basis 

polynomials on a grid with 
364  cells. Figure 3, left presents comparison of the turbulence kinetic 

energy dissipation rate. It looks acceptable for all tests with K > 1. The main contribution to this 

value is given by large vortices. The time variation of the enstrophy, which is proportional to the 

energy dissipation at the level of the smallest vortices resolved by the grid, depends on K more 

strongly than energy (Fig. 3, right). 

 

Figure 3. Simulations of the Taylor-Green vortex on a grid of 
364  cells:  

the left picture – the dissipation rate of the turbulence kinetic energy, the right picture - enstrophy 

 

Table 1 summarizes the results obtained using finite volume (FV) and DG methods. The 

simulations on a grid of 
3128  cells with different reconstructions show that it is impossible to 

achieve an acceptable accuracy using schemes "Central" and "WENO5". Therefore, further 

simulations have been performed using "WENO9" only. It should be noted that in the FV method, 

the number of freedom degrees is equal to the number of grid cells. The second number in each 

cell indicates the physical simulation time on a cluster that consists of 16 nodes with 32 cores (512 

cores in total). The third number (error level) is the difference between the enstrophy maximum 

obtained in the simulation and the maximum of the reference solution.  

If one compares the best solution obtained using the finite volume method ("WENO9", grid of 5123 

cells) and the DG solution obtained in approximately the same physical time (K = 4, grid of 963 

cells), one can see that the DG solution is almost twice as accurate. 
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Table 1. Results of Taylor–Green vortex simulations  
 64

3
 96

3
 128

3
 192

3
 256

3
 384

3
 512

3
 

FV, 

«Central» 

  2.1∙10
6
, 

0.36 h., 

68% 

    

FV, 

«WENO5» 

  2.1∙10
6
, 

0.49 h., 

45% 

    

FV, 

«WENO9» 

2.6∙10
5
, 

0.03 h., 

63% 

8.8∙10
5
, 

0.13 h., 

50% 

2.1∙10
6
, 

0.56 h., 

38% 

7.1∙10
6
, 

2.3 h., 

23% 

1.7∙10
7
, 

9.6 h., 

16% 

5.7∙10
7
, 

39 h., 

8.0% 

1.3∙10
8
, 

153 h., 

4.7% 

DG, K = 1 1.0∙10
6
 

0.23 h. 

60% 

3.5∙10
6
 

1.0 h. 

45% 

8.4∙10
6
 

3.7 h. 

37% 

    

DG, K = 2 2.6∙10
6
 

1.8 h. 

25% 

8.9∙10
6
 

9.1 h. 

13% 

2.1∙10
7
 

32 h. 

6.9% 

    

DG, K = 3 5.2∙10
6
 

10 h. 

10% 

1.8∙10
7
 

52 h. 

4.2% 

4.2∙10
7
 

159 h. 

2.2% 

    

DG, K = 4 9.2∙10
6
 

39 h. 

5.0% 

3.1∙10
7
 

198 h. 

1.7% 

7.3∙10
7
 

623 h. 

0.89% 

    

DG, K = 5 1.5∙10
7
 

136 h. 

2.2% 

        

 

The table data are presented as a graph in Fig. 4. It can be seen that the DG of the second 

accuracy order (K = 1) is unacceptable for this problem. DG, starting from the third order, 

demonstrates better efficiency than FV "WENO9". This difference will increase as the required 

accuracy of the enstrophy calculation increases. 

 

Figure 4. Convergence of the enstrophy peak over the grid and the degree of the DG polynomials 

 

One can conclude that TsAGI code based on the DG K = 3 permits to reduce the error in the 

enstrophy down to 1-2%. It should be noted that using HOM (K ≥ 3), from the viewpoint of code 

efficiency, is equivalent to implementation of low order scheme on larger grids but requires less 

computational time, making HOM an attractive option, especially when the problem is solved with 

high accuracy goal. 

3.2 Parallel version of computational code and scalability 
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The Taylor-Green vortex test case was also employed to assess the scalability of the presented 

method on an HPC cluster. 

The upper level of the parallel program model is based on geometric parallelism. The 

computational domain consists of a set of cells (finite elements) and relationships between them. 

For a numerical scheme, grid data are defined by a set of three types: cell data, cell side data and 

node data. The topology of cell connections is described by a dual grid graph, where the vertices 

are the cell borders, and the edges are the faces between the vertices. The grid data structure is 

supplemented with a set of boundary sides. The computational domain is divided between parallel 

processes into subdomains by rational decomposition of the grid graph. The decomposition is 

performed with the use of the ParMETIS library. For each grid cell, the number of the owner 

process is determined. So, the cells are distributed among the subdomains. For each subdomain, 

when starting the simulation, new cells are added, so-called fictitious cells, intended to store the 

data from neighboring subdomains. The calculation in these cells is not performed. 

The middle level of the parallel program model involves shared memory exchange within a multi-

thread parallel system. OpenMP library is commonly used for this purpose, although MPI can also 

be employed for simplicity of implementation. 

One of the main advantages of the Galerkin method with discontinuous basis functions is the 

compactness of the numerical scheme stencil. The calculation of viscous flows is performed using 

the BR2 method [4] which also uses a compact template. Therefore, the code creates only one 

layer of the fictitious cells. After each internal stage of the Runge–Kutta procedure, data are 

exchanged between the processes. Such a simple organization of the parallel computing 

algorithm, together with the high computational costs of the method per cell, which increases with 

the growth of K, permits to achieve a highly efficient implementation. 

The scalability test, i.e. the acceleration measurement depending on the amount of computing 

resources used, has been performed on a supercomputer [10]. All computing nodes were identical, 

each of them had 12 CPU cores. The simulation grid for the Taylor–Green vortex contained 1283 

(2 097 152) cells. 

The resulting graphs of acceleration are shown in Figure 5 on a logarithmic scale. For clarity, the 

lines are drawn corresponding to the parallel efficiency of 100% (max, red dotted line), when each 

doubling of the core number results in acceleration of 2 times, and of 90% (desired, black dashed 

line), when each doubling of the core number results in acceleration of 1.9 times. The results are 

shown for K = 3 and for K = 4. 

The green curves correspond to the parallel model, where MPI is used at both the upper and 

middle levels. There is a tendency to a significant decrease in efficiency when the number of cores 

exceeds 2 thousand. This shows that the overhead associated with the implementation of 

exchanges and the imbalance in the process load begins to prevail over the gain due to increase of 

computing resources. Transition to a parallel model, where OpenMP is used at the middle level, 

helps to reduce this overhead. It can be seen that the blue curves corresponding to this model 

demonstrate a high level of parallel efficiency (at least 90%) up to 6 thousand cores in the case of 

scheme K = 3 (350 grid cells per core) and up to 12 thousand cores in the case of scheme K = 4 

(175 grid cells per core). To achieve high efficiency with more CPU cores, an additional research is 

necessary. Apparently, the main reason of the efficiency decrease with a larger number of cores is 

the increase of overhead costs due to insufficient power that has been used in the computational 

grid tests: the number of grid cells per CPU core becomes less than 150, and the time of useful 

calculations becomes comparable to the time spent on data exchange between processes. If this 

assumption is correct, then the efficiency of simulations on several dozens of thousands of cores 

will increase in the case of solving the problems with a significantly larger number of grid cells. 

A comparison of the graphs in Figure 5 on the left (K = 3) and on the right (K = 4) shows that with 

an increase in K, the code scalability improves, and, in this case, it permits to use efficiently (with 

an acceleration of about 1.8) twice as many CPU cores. It is a natural consequence of the fact that 

as K increases, the computational cost per cell increases, and the overhead increases more slowly 

due to the compactness of the scheme mentioned above. 
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Figure 5. Scalability of the solver code in the Taylor-Green vortex problem. The simulation grid 

contains 1283 cells. The left figure corresponds to scheme K=3, the right figure to K=4 

 

3.3 Simulation of a circular subsonic jet in stagnant surroundings  

The high Reynolds number of this test case, ReD ≈ 5×105, does not allow to conduct a DNS. 

Instead, the ability of TsAGI code to perform an underresolved simulation was studied in this test 

case. The explicit subgrid stresses were switched off since their influence in turbulent jets is usually 

not decisive. This corresponds to ILES method. 

The outflow of a circular subsonic jet from a single-contour nozzle into a stagnant air has been 

considered. The jet, which was investigated experimentally in NASA Glenn Research Center [14], 

was simulated to obtain the "reference" data on jets at high Reynolds numbers that are 

characteristic for passenger aircraft engines (Mach numbers from 0.5 to 1.0, the ratio of static 

temperatures jetT T  from 0.83 to 2.70, the nozzle pressure ratio c  from 1.1 to 1.9). Among the 

available regimes, the cold subsonic flow regime SP3 has been selected: Mach number at the 

cross section 0.513, jetT T  = 0.950, c  = 1.197. 

The nozzle geometry, the computational grid for RANS-based modeling and experimental data are 

available on the NASA website [15]. The data contains the axial distributions of the dimensionless 

average velocity jetU U  and the kinetic energy of turbulence 

2

jet

222

2

jet 2U

wvu

U

k 
 , 

as well as the transversal profiles of the velocity components jetU U , jetV U , shear stresses 

2

jetUvu   and kinetic energy of turbulence 
2

jetUk . 

For ILES, a cylindrical computational domain that covers a full circle in the azimuthal direction has 

been taken. The length of the computational domain from the nozzle exit to the outlet is 40D, 

where D = 5.08 cm is the nozzle exit diameter. The radius of the computational domain varies from 

25D to 30D. In the computational domain, a structured hexahedral second order (piecewise-

parabolic) grid is generated, as shown in Fig. 6. It contains 100 thousand cells. To save the 

computational resources, it has been decided to exclude the simulation of the boundary layer. It 

relaxed the requirements for concentrating the mesh lines near the nozzle surfaces. The grid 

allows to resolve the structure of large vortices at the distance of 20D from the nozzle. It 

corresponds to the range of available experimental data. 
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a) 

b) 

c) 

Figure 6. Simulation grid for DG (round jet): a) the cross-section of the grid with the x-y plane, b) a 

part of this cross-section near the nozzle edge,  

c) the cross-section with the y-z plane near the nozzle edge 

 

The inflow boundary condition with a weak superimposed flow M = 0.01 is chosen at the inlet 

boundaries outside the jet, and the constant pressure boundary condition is chosen at the outlet. p0 

and T0 are specified at the inlet inside the nozzle, and slip wall boundary condition is chosen on the 

nozzle walls. 

The simulations have been performed with K = 2 and K = 3. The simulations have started from a 

uniform mean field. Turbulence has not been generated artificially at the inlet boundary: it emerged 

in the mixing layers of jet due to the evolution of round-off errors on the basis of Kelvin-Helmholtz 

instability. The instantaneous fields of the Mach number M in the steady-state flow regime are 

shown in Fig. 7 and 8. In the simulation with K = 3, smaller vortex structures are resolved than in 

the simulation with K = 2. 

After the flow regime has been established (5 flow passes along the distance of 20D), the 

accumulation of statistical data (the average fields of gas parameters and correlations jiuu  ) has 

begun, which lasted during the time corresponding to 200 flow passes through the computational 

domain. The fields of M  and jet

2 /Uu  obtained in the simulation with K = 3 are shown in Fig. 9 

and 16. A peak in the pulsation level is visible at the beginning of the mixing layer. It corresponds 

to the evolution of the jet from a flow that does not contain pulsations in the near-wall zone of the 

nozzle. In this case, the growth rate of the jet mixing layer width is locally overestimated. 
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Figure 7. Instantaneous field of the Mach number in a circular jet. Simulation with K = 2 

 

Figure 8. Instantaneous field of the Mach number in a circular jet. Simulation with K = 3 

 

 

Figure 9. The field of the average Mach number. Simulation with K = 3 

 

 

Figure 10. Field 
2

jet

2 /Uu . Simulation with K = 3 

Figure 11 shows a comparison of the axial velocity distributions jet/UU  obtained in the simulations 

for K = 2 and K=3 with the experiment and simulations of other authors, and Figure 12 shows a 
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similar comparison of the axial distributions of the turbulence kinetic energy 
2

jet/Uk  (Fig. 10) and 

the level of streamwise velocity pulsations 
jet

2 /Uu . It is obvious that the resolution of the chosen 

grid is not sufficient for the simulation with K = 2. The length of the initial region, which is equal to 

the distance between the nozzle exit and the section where the axial velocity decreases by 1% of 

the velocity in the jet core, is underestimated by 29%. The maximum kinetic energy level is also 

overestimated by an amount of about 35%. With the transition to K = 3, both profiles significantly 

approach the experimental data. 

In Figures 11 and 12, in addition to the experimental data [14] and numerical data [16, 17, 18] on 

an almost identical jet (Mach number at the exit is 0.58, temperature ratio jetT T  = 0.97, nozzle exit 

diameter D = 5.08 cm) are plotted. The axial distributions of the mean velocity in the two 

experiments are almost identical. In all LES data, the length of the initial part is underestimated by 

10-30%. DG simulations with K = 3 are closest to the experimental data (underestimation of the 

initial part length by 12%). The same conclusion can be made when the distributions 
jet

2 /Uu  

along the jet axis are compared. The SST turbulence model for RANS gives the result that is the 

farthest from the experimental data. It significantly overestimates the length of the initial part of the 

jet (by 51%) and does not describe a smooth growth of pulsations on the jet axis at the boundary 

between its initial and transition parts. The maximum value of the turbulence kinetic energy on the 

jet axis in the ILES simulation with K = 3 is overestimated by 3.5%, and in the RANS/SST 

simulation by 22.5%. 

 

 

Figure 11. Axial distributions of velocity in a circular jet. Simulations with K = 2 and K = 3 and 

their comparison with the experiment and with simulations of other authors using the RANS and 

LES methods 
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а) 

b) 

Figure 12. Axial distributions of velocity pulsations in a circular jet. Simulations with K = 2 and K = 3 

and their comparison with the experiment and simulations of other authors using the RANS and 

LES methods. a) distribution of the turbulence kinetic energy; 

b) distributions of the root-mean-square pulsations of the streamwise velocity 

 

Finally, in Fig. 13 and 14, the transverse profiles of velocity, turbulence kinetic energy and shear 

stresses 
2

jet/Uvu   are compared with the experiment. The characteristic sections x / D = 5 (the end 

of the initial section of the jet) and x / D = 10 (the transition section) are taken. 
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a) 

 

b) 

 

c) 

Figure 13. Transverse profiles of the average velocity (a), the turbulence kinetic energy (b) and 
2

jet/Uvu   (c) in the section x / D = 5. Designations as in Fig. 11 

 

 

a) 

 

b) 

 

c) 

Figure 14. Transverse profiles of the average velocity (a), the turbulence kinetic energy (b) and 
2

jet/Uvu   (c) in the section x / D = 10. Designations as in Fig. 11 

 

In the section x / D = 5, the influence of the overestimated turbulence level in the simulation is 

visible: the width of the mixing layers and the profiles of the turbulence parameters are distorted. 

The transition from K = 2 to K = 3 reduces the level of discrepancies by at least half. 

In the section x / D = 10, the turbulence reaches the equilibrium level corresponding to the 

experimental data. On the other hand, the jet width, especially in the simulation with K = 2, is 

overestimated due to the incorrect velocity of the mixing layer development upstream. 

As for the results of RANS simulations, one can note that the turbulence kinetic energy and shear 

stress levels are described correctly in the initial part and it are overestimated by 20-30% in the 

transition section. The jet width of the in both zones is simulated satisfactorily. 
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The data obtained confirm the applicability of DG-based ILES in high Reynolds number jet flow.  

Higher accuracy in comparison with RANS was demonstrated in describing the initial and transition 

jet regions. The presented results were at least of the same quality as FV LES simulations of other 

authors. For the considered grid power, it is recommended to conduct the jet simulations with K 

equal to at least 3 to satisfactory resolve the vortex flow structure. 

3.4 Periodic Hill Flow Test Case  

The final test case is Periodic hill flow [11]. Compared to the previous flows, this test case deals 

with the solid walls, which is the most common situation for aerodynamic flows. Important feature 

of this test is pressure-induced separation which is rarely modeled in RANS computations 

correctly. From another viewpoint, this test is very convenient to validate LES/DES solvers. Well-

described boundary conditions, including periodic law in streamwise direction, make this test case 

easily formulated in a scale-resolving simulation. 

Three kinds of simulations were performed, namely ILES, DDES without wall functions and DDES 

with wall functions. The aim of the test case was to assess the accuracy of different techniques in 

describing the near-wall features of the flow. 

A flow over a set of identical smooth-shaped hills was studied. The geometry of the hills was 

formulated by means of cubic polynomials [9]. Let us take specific length h  to be hill height, then 

the channel height above the hill crest is 2.035h , distance between the hills is 9h , and spanwise 

length is 4.5h . Characteristic (bulk) velocity 
bU  is the mean velocity of the flow over the hill crest, 

characteristic time is 9 /c bt h U . Bulk Mach number /b c wM U RT  is set to be 0.1, where 
wT  is 

wall temperature. Reynolds number Re /bU h   is 10595 , where   is mean density of the fluid 

over the flow domain. To support the specified mass flow rate, a dynamically adjusted streamwise 

pressure gradient ( / )impdp dx  was added to the momentum equation according to the formula 

 

  
1

* 11
2

n n

n n

V V V

imp imp

dp dp
MFR MFR MFR

dx dx t



   
      

    
,  

 

where   is computational domain volume, t  is time step, n is current step number, *

VMFR  is 

required mass flow rate averaged over the whole computational domain, while k

VMFR  is actual 

mass flow rate at time step k . From our viewpoint, this method is more robust than averaging only 

over hill crest, which can produce oscillations of mass flow rate. 

8 ILES simulations were performed: K = 1, 2, 3, 4, 5 on 32x16x16 mesh and K = 1, 2, 3 on 

64x32x32 mesh. 4 DDES simulations without wall functions were K = 2, 3 on 32x16x16 mesh and 

K = 2, 3 on 64x32x32 mesh, and the same simulations were repeated with wall functions. All 

meshes were obtained by coarsening a baseline 512 256 256   mesh from Ref. 12. The element 

edges were taken to be piecewise-parabolic, see Fig. 15. 

 

       
Figure 15. Computational meshes: 1688 (left) and 321616 (right) 
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All simulations were started from uniform initial flow field. Statistically steady flow appeared within a 

time period of 30 ct . After 30 ct t , mean fields of velocity components and correlations between 

their fluctuations were averaged during a period of 100 ct . After temporal step, additional averaging 

over span (z axis direction) was performed. 

A series of velocity and turbulence profiles in three cross-sections was extracted from the 

computational flow fields. The cross-sections are shown in Fig. 16. The first one at / 0.05x h   

corresponds to hill crest, the second at / 3x h   is taken near the end of separation zone, while the 

third at / 6x h   is placed in the recovery region. The results of LES computations from Ref. 13 

were used as the reference data. 

In Fig. 17, velocity profiles obtained with ILES on 32x16x16 mesh are compared to the reference 

data. Almost converged solution is observed with K ≥ 3. Recirculation zone length is slightly 

underestimated which may be due to deficiency of ILES approach near the walls. In Fig. 18, 

transverse Reynolds stress profiles 
2v  are depicted. Polynomial convergence is seen to be slower 

for the second moments than for the mean field. From Fig. 17 and 18 it is also seen that K = 1 

solution is incompatible with the chosen mesh density. 

  

   
Figure 16. Cross-sections selected for comparison with reference data 

 

 

   
 

Figure 17. Mean streamwise velocity profiles, ILES simulations on 32x16x16 mesh. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right) 

 

In Fig. 19 and 20, mean velocity and transverse Reynolds stress fields obtained in ILES on 

64x32x32 mesh are compared. It is seen that K = 3 solution on a finer mesh closely corresponds to 

K = 5 solution on a coarser mesh. On both meshes, K = 1 solutions are too underresolved. 
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Figure 18. Transverse Reynolds stress profiles 
2v , ILES simulations on 32x16x16 mesh. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right). Designations as in Fig. 8 

 

 

   
Figure 19. Mean streamwise velocity profiles, ILES simulations on 64x32x32 mesh. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right) 

 

   

Figure 20. Transverse Reynolds stress profiles 
2v , ILES simulations on 64x32x32 mesh. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right). Designations as in Fig. 10 
 

Finally, in Fig. 21 and 22, DDES solutions are compared with ILES and the reference data. 

Introduction of explicit subgrid model clearly improves the solution in terms of mean profiles in 

separation zone. On the other hand, switch from no-slipping boundary condition to wall functions 

results in deterioration of the solution, particularly in reducing the of separated zone length. 

Attached flow regions are relatively insensitive to wall treatment. This result indicates the limitations 

of wall functions near the separation and reattachment points. 
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Figure 21. Mean streamwise velocity profiles, ILES vs. DDES, 64x32x32 mesh, K = 3. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right) 

 

   

Figure 22. Transverse Reynolds stress profiles 
2v , ILES vs. DDES, 64x32x32 mesh, K = 3. 

Cross-sections: x / h = 0.05 (left), x / h = 3 (middle), x / h = 6 (right). Designations as in Fig. 10 
 

 

To sum up, performed Periodic Hill Flow simulations look promising because they allowed to obtain 

results similar to reference data with DG K=3 on as coarse mesh as 32x16x16 cells. This setting 

corresponds to 1.63 x 105 degrees of freedom while the reference 2nd order simulation was 

performed with 13.1 x 106 degrees of freedom. 

4. Conclusion 

Unsteady Discontinuous Galerkin method presented in the paper was studied in parallel scale-

resolving simulations of three turbulent flows. 

In Taylor–Green vortex test case, advantage over finite volume schemes (WENO and centered) 

was demonstrated in CPU cost needed to obtain the required enstrophy prediction accuracy. This 

advantage becomes greater as the accuracy requirements grow. The most efficient schemes in 

this test case were DG with polynomial orders 3K  . Scalability was assessed on a 50,000 core 

HPC cluster. It was shown that speed-up was nearly linear, about 1.9 times with each CPU core 

number doubling, up to 12,000 cores, and was probably limited by the size of the test problem.  

In subsonic jet test case, the simulations based on the developed methodology in the ILES 

framework provided higher accuracy, compared to RANS, in describing the initial and transition jet 

regions. The simulation with K = 3 predicted the potential core length with an underestimation of 

about 10% compared to 50% overestimation of the corresponding RANS simulation based on the 

SST turbulence model. The maximum kinetic energy of turbulence on the jet axis in the simulation 

with K = 3 was predicted with 3.5% error as opposed to 22.5% error in RANS/SST simulation. The 

presented results demonstrated at least the same quality as FV LES simulations of other authors. 

In periodic hill flow, DG simulations on 32 16 16   mesh with DG 3K   compared favorably against 

reference data despite 10 times lower number of degrees of freedom. Explicit subgrid model 
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improved the prediction of the separation zone. On the other hand, wall functions spoiled the 

solution in recirculation region, indicating the limitation of this approach under separated flow 

conditions. 

Obtained results allow to consider the developed DG method as promising for practical 

applications. 
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