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Abstract

Approximate scaling laws for downstream prop-
erties of a swirling turbulent jet are estimated
using the boundary layer approximations to the
Navier-Stokes equations. The swirling jet is
found to behave similarly to an equivalent non-
swirling jet for low to moderate azimuthal ve-
locities; in this regime the chief difference be-
tween swirling and non-swirling jets is an in-
creased spreading rate and an increase in entrain-
ment of ambient fluid for the former when com-
pared to the latter. As azimuthal momentum flux
increases, the flow becomes unstable and vortex
breakdown occurs beyond a "critical" condition.
Up until the critical point, the mean velocity pro-
files of this flow as a function of downstream dis-
tance can be predicted as a function of swirl using
a hybrid length scale model; the predictions of
this model match the available experimental data
with reasonable accuracy.

1 Introduction

1.1 Overview

This report will present the scaling analysis of
turbulent jets with swirl. Section 2 simplifies
the Reynolds-averaged Navier-Stokes equations
in cylindrical coordinate system and simplifies
them using boundary layer approximations. Sec-
tion 3 is dedicated to deriving the scaling analy-
sis based on the assumption of an undetermined
similarity solution. Unlike the analyses of pre-
vious work, the influence of swirl is considered
and used to obtain the scaling relationships for

mean velocity profiles. Section 4 presents com-
parisons between the scaling analysis and exper-
imental data to verify that the analysis is reason-
able.

1.2 Background

The swirling jet is a flow of great practical inter-
est, particularly in the field of combustors for gas
turbine engines, where the presence of swirl en-
hances turbulent mixing of fuel and air. However,
the problem is not generally well-understood
as the presence of azimuthal velocity compli-
cates the familiar problem of the non-swirling
jet. The combination of free jet and rotating
flows presents several unique phenomena. Ex-
periments indicate that weak to moderate levels
of swirl increase the spreading rate of the jet, rep-
resented by a shift in the flow’s virtual origin and
increased entrainment of ambient fluid into the
jet. As azimuthal velocity increases further, the
jet forms a peculiar counter-rotating core, where
fluid several jet diameters downstream moves
with a reversed azimuthal motion. Beyond a cer-
tain "critical" point, the azimuthal velocity be-
comes overpowering. The bulk swirling motion
of the jet distorts the vortex lines of the flow,
resulting in a self-induced axial motion which
cause the vortex lines to wrap around the jet and
break up, leading to a total collapse of the vorti-
cial structure of the jet.

1.3 Prior Work

Due to the inherent complexity of both generat-
ing and measuring a swirling jet, work on the
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topic has been relatively scarce; certainly, the
flow is less well-understood than its more famil-
iar non-swirling cousin. Chigier and Chervin-
sky [1] presented what is arguably the most com-
prehensive work on the topic, investigating the
effect of swirl on velocity distribution. They
showed that for low swirl numbers, axial velocity
distributions took the expected Gaussian shape;
however, at higher swirl numbers a counter-
rotating vortex core formed resulting in reversed
azimuthal flow which displaced the maximum
velocity from the jet axis; for very strong swirl,
reversed flow was measured. These trends can be
seen clearly in Figure 1 below, taken from their
1967 paper.

Fig. 1 : Axial velocity profiles downstream of a
swirling jet for different values of swirl number
S, from Chigier & Chervinsky [1]

A series of experimental studies by Facciolo
[2] showed that swirl introduced into the jet flow
increased both the entrainment of ambient fluid
and the rate of spreading. This study also found
that the decay of centerline velocity is signifi-
cantly higher than for an irrotational jet and that
it increases with higher swirl numbers. Facci-
olo also compared data from a Direct Numeri-
cal Simulation (DNS) to an earlier work by Rose
[3] which measured a swirling jet using Laser
Doppler Velocimetry (LDV). The two sets of data
generally agreed, indicating that the introduction
of swirl leads to a faster decay of axial velocity
in jet flow.
In the experimental study of Shiri and George [4],
it was shown that at low swirl numbers (approx-
imately S < 0.25), there is no significant effect

on the flow as compared to a non-swirling vor-
tex; however, clear differences appear at higher
swirl numbers. Other works suggest that beyond
a certain critical value of swirl, vortex breakdown
occurs and the flow can no longer be charac-
terized as a coherent swirling jet. However, in
the intermediate range of swirl which lies be-
tween the non-swirling case and vortex break-
down, the jet behaves similarly to an irrotational
jet but with slightly different scaling of velocity,
width, and turbulence parameters. This scaling
has not been well-characterized beyond qualita-
tive observations made in these experiments.
Several investigators have studied the problem of
vortex breakdown in highly swirling jets; Ruith
et al. [6] performed a numerical simulation
which aptly demonstrated the phenomenon - the
flow becomes increasingly helically disturbed at
higher swirl Reynolds numbers, ultimately be-
coming fully chaotic. An experimental investi-
gation by Billant et al [7] studied vortex break-
down in swirling jets, which explained the oc-
currence of reversed flow. They showed that a
critical quantity of swirl exists, and that it is in-
dependent of Reynolds number and jet diame-
ter. When the jet reaches this degree of swirl,
breakdown starts - a stagnation point appears in
the downstream turbulence region and gradually
moves upstream to reach an equilibrium position.
Their experiments also verified the critical swirl
number to be in good agreement with the crite-
rion derived in Escudier and Keller’s theory [8]
based on vortex breakdown in a tube. The criti-
cal swirl number can be predicted by:

1
2

ScJ1(Sc)

J2(Sc)
=

1
(rt/rc)2−1

Where Sc is the critical swirl number, J1 and J2
are Bessel functions of the first and second kind,
respectively, and rt and rc are the radii of the tube
and the core vortex, respectively. For the case of
the swirling jet, rt can be regarded as the radius
of the jet exit.
D. Ewing [9] obtained similarity solutions for
round turbulent jets with swirl. His paper showed
that the axial velocity and the radial velocity are
of the order of magnitude 1/x, and the order of
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magnitude of azimuthal velocity is 1/x2. Al-
though his result demonstrated that the azimuthal
velocity decays faster than the velocities on other
two direction, his solution did not show the influ-
ence of swirl. This is the chief objective of the
current study.

2 Governing Equations

The basis for this analysis is the Reynolds-
Averaged Navier-Stokes Equations in cylindrical
coordinates (x, r, θ). We define the axial ve-
locity, azimuthal velocity and radial velocity as
(U,V,W), respectively. We then proceed with a
Reynolds velocity decomposition,

U = u+u′

V = v+ v′

W = w+w′

where the lowercase letters with bars denote
the mean velocity and primed letters are fluctuat-
ing variables.
Assuming incompressible flow, the density ρ

should be constant; we also assume that the flow
is axisymmetric and steady. Thus, ∂()/∂t = 0 and
∂()/∂θ = 0. In addition, for high Reynolds num-
ber turbulent flow, the molecular viscous term
can be neglected in comparison with the turbulent
viscous term. Based on the assumptions above,
the Reynolds-averaged Navier-Stokes equations
simplify as follows:

1
r

∂(rv)
∂r

+
∂u
∂x

= 0 (1)

(2)
v

∂v
∂r

+u
∂v
∂x

+
∂v′2

∂r
+

∂u′v′

∂x
− 1

r
(w2+w′2−v′2)

= −1
ρ

∂p
∂r

(3)u
∂w
∂x

+ v
∂w
∂r

+
wv
r

+
∂u′w′

∂x
+

1
r2

∂(r2v′w′)
∂r

= 0

u
∂u
∂x

+ v
∂u
∂r

+
1
r

∂(ru′v′)
∂r

+
∂u′2

∂x
=−1

ρ

∂p
∂x

(4)

Boundary layer approximations allow us to
simplify the equations further. We start by
nondimensionalizing the equations(*= dimen-
sional quantity):

u = u∗/U∗0
v = v∗/U∗0
w = w∗/U∗0
r = r∗/L∗0
x = x∗/L∗0
p = p∗/ρ∗U∗0
δ = δ∗/L∗0 << 1,

Choosing u = O(1), ∂

∂x = O(1) Assume

u′2 ∼ v′2 ∼ w′2 = O(q2)

and q = q∗/U∗0 << 1. According to the continu-
ity equation,

1
r

∂(rv)
∂r

=−∂u
∂x

= O(1)

L∗0
δ∗

δ∗

∂r∗
∂

∂(r∗/δ∗)
(

r∗

δ∗
v∗

U∗0
) = O(1)

Thus,

u =O(1)
∂

∂x
=O(1)

v =O(δ)

∂

∂r
=O(

1
δ
)>> 1

For equation (4),

u
∂u
∂x

∼ O(1)

v
∂u
∂r

∼ O(1)

1
r

∂(ru′v′)
∂r

∼ O(q2/δ)

∂u′2

∂x
∼ O(q2)
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We can see that for the terms to all be of the same

order of magnitude, O(q2)∼O(δ). The term ∂u′
2

∂x
can be neglected. Equation (4) thus becomes:

u
∂u
∂x

+ v
∂u
∂r

+
1
r

∂(ru′v′)
∂r

=−1
ρ

∂p
∂x

(5)

Meanwhile, for equation (2):

v
∂v
∂r
∼O(δ)

u
∂v
∂x
∼O(δ)

∂v′2

∂r
∼O(1)

∂u′v′

∂x
∼O(δ)

w2

r
∼O(1)

w′2

r
∼O(1)

v′2

r
∼O(1)

v∼O(
√

δ)

So v∂v
∂r ,u

∂v
∂x ,

∂u′v′
∂x are negligible. Equation (2) be-

comes:

∂v′2

∂r
− 1

r
(w2 +w′2− v′2) =−1

ρ

∂p
∂r

For equation (3):

u
∂w
∂x
∼ O(

√
δ)

v
∂w
∂r
∼ (
√

δ)

v ·w
r
∼ O(

√
δ)

∂u′w′

∂x
∼ O(δ)

1
r2

∂(r2v′w′)
∂r

∼ O(1)

Then, equation (3) becomes:

1
r2

∂(r2v′w′)
∂r

= 0

Thus, the boundary-layer approximation pro-
vides us with the following equations:

Axial Momentum:

u
∂u
∂x

+ v
∂u
∂r

+
1
r

∂(ru′v′)
∂r

=− 1
ρ

∂p
∂x

(6)

Radial Momentum:

∂v′2

∂r
− 1

r
(w2 +w′2− v′2) =− 1

ρ

∂p
∂r

(7)

Azimuthal Momentum:

1
r2

∂(r2v′w′)
∂r

=0 (8)

3 Scaling Analysis

A useful metric to analyze the degree of swirl
present in a flow is the ratio of azimuthal to ax-
ial momentum flux. These two quantities can be
calculated by integrating the axial and radial mo-
mentum boundary layer equations derived above:

d
dx

∫
∞

0
r
(

u2− w2

2

)
dr =

d
dx

Gθ =0 (9)

d
dx

∫
∞

0
r2(u)(w)dr =

d
dx

Gθ =0 (10)

The ratio of these momentum fluxes nondimen-
sionalized by the jet exit radius R gives a dimen-
sionless swirl number, S:

S =
Gθ

GxR

The swirl number is convenient nondimensional
parameter which can describe the degree of swirl
present in different flows.

Axial Velocity

For a non-swirling jet, the centerline velocity can
be expressed as a function of the axial distance
downstream through the use of a similarity func-
tion:

Uc(r,x) =Uc(x)F(η)
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where
η =

r
δ

However, the introduction of swirl adds a second
relevant length scale characterized by the ratio of
azimuthal to axial momentum flux:

L =
Gθ

Gx

If we assume that this swirling length scale is rel-
evant to the scaling of the axial centerline veloc-
ity, then we can write a general expression for η

as follows:
η =

r

[δnLm]
1

m+n

This can be substituted into the axial conserva-
tion of momentum:

d
dx

{∫
∞

0

∫ 2π

0
ρu2rdθdr

}
= 0∫

∞

0

∫ 2π

0
ρu2rdθdr =C

∫
∞

0

∫ 2π

0
ρU2

c F2
η[δnLm]

1
m+n dθ[δnLm]

1
m+n dη =C

2πρU2
c [δ

nLm]
2

m+n

∫
∞

0
F2

ηdη =C

U2
c [δ

nLm]
2

m+n =C

Uc[δ
nLm]

1
m+n =C

Thus, we can deduce the following about the
scaling of Uc:

Uc ∼ [δnLm]−
1

m+n

Since for the no-swirl case, we know that the so-
lution must collapse to Uc δ−1, we can assume
that n = 1 and, for the case of Gθ = 0, m = 0.
This gives us the following relationship:

Uc ∼ [δLm]−
1

m+1 (11)

Logically, the exponent m should have some de-
pendence on the swirl number, as the effects of
swirl should be more pronounced in a flow with

stronger swirl. While the swirling length scale
L obviously has swirl dependence too, m must
be a function of the swirl number to ensure that
the swirling length scale drops out for the non-
swirling case; we assume that m(S) = 0 for S = 0.
We can find this relationship by rearranging the
above expression:

Uc =C1[δLm]−
1

m+1

1
Um+1

c Lm
=C1δ

1
(UcL)m =C1Ucδ

1
C1Ucδ

=(UcL)m

log
(

1
C1Ucδ

)
=m log(UcL)

m =C2

log
(

1
Ucδ

)
log(UcL)

(12)

Radial Velocity

An analagous analysis procedure can be applied
to the scaling of the radial velocity. At the cen-
terline, symmetry requires that the radial velocity
vanish, that is v = 0 at r = 0. Thus, we will use
the maximum radial velocity instead of the cen-
terline radial velocity (as was done for the axial
velocity analysis), assuming that the radial veloc-
ity at an arbitrary point is the product of the local
maximum vm and a similarity function G(η).

v(r,x) = vm(x)G(η)

Writing out the conservation of radial mo-
mentum flux using the similarity expressions for
u and v results in the following:∫

∞

0

∫ 2π

0
ρuvrdrdθ =C

2πρ

∫
∞

0
ruvdr =C

2πρ

∫
∞

0
ucFvmG(η)η [δLm]

1
m+1 [δLm]

1
m+1 dη =C

2πρucvm[δ
nLm]

2
m+n

∫
∞

0
FGηdη =C

ucvm[δ
nLm]

2
m+n =C
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Assuming from above that n=1 and Uc ∼
[δLm]−

1
m+1 , we obtain the scaling of vm:

vm ∼ [δLm]
−1

m+1 (13)

Azimuthal Velocity

The same procedure can be followed for az-
imuthal velocity. We assume that the azimuthal
velocity can be expressed as the product of the
maximum azimuthal velocity at a given point,
w(x), and a similarity function H(η).

w(r,x) = wm(x)H(η)

Introducing u, v and η into the momentum equa-
tion (10), we can simplify as follows:∫

∞

0

∫ 2π

0
ρr2uvdθdr =C

2πρ

∫
∞

0
r2uvdr =C

2πρ

∫
∞

0
η

2 [δLm]
2

m+1 UcFWmH [δLm]
1

m+1 =C

2πρUcwm[δ
nLm]

3
m+n

∫
∞

0
FHηdη =0

Ucwm[δ
nLm]

3
m+n =C

Assuming from above that n=1 and Uc ∼
[δLm]−

1
m+1 , we obtain the scaling of wm:

wm ∼ [δLm]
−2

m+1 (14)

Work by Shiri [4] and others suggests the
same order relationship between the spreading
rate of the asymptotic jet and the downstream dis-
tance; as in the non-swirling case, the jet grows
linearly (albeit with a different rate constant).
Chigier and Chervinsky suggested a linear rela-
tionship between swirl number and jet half-angle
(δ = Ax) although their data are not wholly con-
sistent with this model, as seen in figure 2.

Fig. 2 : Half-angle of jets with varying degrees of
swirl, from Chigier & Chervinsky [1]

Experimental data from several authors sug-
gests that as in the case of the non-swirling jet,
jet width δ increases linearly with downstream
distance x [2][4][9]. Hence, in the above scal-
ing analysis, δ can be replaced by x.
According to the solution, we can find that all
velocity components decrease as the increase of
x. And when x approaches to infinity, v de-
cays as 1/x

2
m+1 , while u decays as 1/x

1
m+1 . Thus,

the azimuthal velocity decays significantly be-
fore the axial velocity - specifically, the rate of
decay of azimuthal velocity is the square of the
rate of decay of axial velocity, as suggested by
Ewing [9], meaning that it can be neglected at
large downstream distances. At this point, the the
flow should be almost indistinguishable from the
non-swirling jet, except for a change in flow half-
angle and virtual origin.

4 Comparison to Experimental Data

Although detailed experimental data on jets with
varying swirl number are scarce in the literature,
the work done by Chigier and Chervinsky pro-
vides an opportunity to evaluate the proposed
scaling model. Their data cover a range of jets
with swirl numbers from 0.066 to 0.640. Using
equation 12 as derived above, it is possible to plot
the swirling length scale exponent m against the
swirl number S and deduce an approximate rela-
tionship. Doing this for the lower swirl numbers
(up to 0.416, beyond which swirl enters the "crit-

6



A Hybrid Length Scale Similarity Solution for Swirling Turbulent Jets

ical" range), reveals a power-law relationship.

m = 2.29882
(

1− 1
1+( x

0.15741)
1.01540

)
(15)

0.0 0.1 0.2 0.3 0.4 0.5

Swirl Number (S)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m

Exponent m vs Swirl Number

Fig. 3 : Power-law fit of scaling exponent m with
respect to swirl number S.
.

In conjunction with equation 11, this function
for m allows for comparison of the axial velocity
decay profile for varying levels of swirl. This is
shown below in figure 4.

Fig. 4 : Comparison of scaling law with experi-
mental data [1]

The overall trend of the predicted decay pro-
file seems qualitatively accurate, although rel-
atively minor discrepancies seem to manifest
themselves at higher swirl numbers. The region
in the immediate vicinity of the jet exit - perhaps

0-5 jet diameters - encompasses the development
of the flow; that is, the flowfield is evolving to
a point of self-similarity, but has yet to reach it
(much like a more canonical similarity solution
such as the Blasius boundary layer or the non-
swirling jet). Farther downstream from this re-
gion, the flow seems to achieve self-similarity,
and the predicted decay rates of axial velocity ap-
pear to provide an accurate model for the physical
flow.

Note that a higher degree of accuracy may be
possible with higher-fidelity experimental data.
Accurately measuring the azimuthal jet velocity
is challenging - as this velocity is an order of
magnitude or more less than the axial velocity,
it requires highly sensitive instrumentation with
very precise positioning capabilities. Indeed, a
contemporary paper by Pratte and Keffer [5] cited
concerns with the accuracy of the Chigier and
Chervinsky data and their swirl numbers. Al-
though neither work calculates experimental un-
certainty, it seems reasonable to suspect that the
likely errors incurred by measuring azimuthal ve-
locity profiles could have led to an inaccurate
calculation of swirl number for one or more of
the jets. Since the proposed similarity solution
has a relatively strong dependence on the swirl
number, a small discrepancy in this measurement
could significantly change the expected scaling
behaviour; in this case, more rigorous measure-
ment of the azimuthal velocity may increase the
accuracy of the similarity solution at higher swirl
numbers.

In any case, it appears as though the proposed
scaling of the axial velocity shows an accurate
trend in the relatively far-field (where the flow
would be expected to become self-similar). With-
out more experimental data to reference, it is dif-
ficult to put the proposed solution on a more solid
footing, but the data from Chigier and Chervin-
sky suggest cause for optimism.

Using the value of m calculated from the axial
decay data, it is also possible to apply the scaling
model to the azimuthal velocity. Recalling equa-
tion (13) from above, we expect the following re-
lation to hold:
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wm ∼ [δLm]
−2

m+1 = x

Given the limited data available from Chigier
and Chervinsky, we find a least-squares linear fit
given by wm = −2.4x+ 4.5. This relationship is
shown in the figure below.
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Fig. 5 : Azimuthal velocity measurements plotted
against proposed scaling parameter [1]
.

Indeed, the scaling appears to be approxi-
mately linear (although with so few data points it
is hard to draw firm conclusions). Unfortunately,
the limited data from Chigier and Chervinsky are
all that could be found in the literature. Regard-
less, it would appear that the azimuthal velocity
decays an order of magnitude more rapidly than
the axial or radial velocities.

5 Conclusions

Based on the available experimental data, the
boundary layer scaling analysis presented in this
work appears to offer a reasonable description of
the far-field decay of swirling jets. As mentioned
previously, the scarcity of detailed experimental
data is a significant limitation, but the proposed
solution based on a hybrid length scale comprised
of the jet width δ and the swirling length scale
L appears to match the available data with rea-
sonable accuracy. The decay of axial velocity is
well-predicted by the model for low and moder-
ate values of the swirl number.

As Chigier and Chervinsky only provide
three usable measurements for the decay of az-
imuthal velocity at sub-critical swirl numbers, it
is difficult to draw a definite conclusion regard-
ing the validity of this scaling theory. However,
given the limitations of the available data (their
scarcity as well as the equipment and instrumen-
tation used to collect them), the fit between ex-
perimental data and the scaling solution is en-
couraging.

Overall, the scaling analysis presented in this
report appears to present a credible model for the
scaling of velocity profiles in a turbulent swirling
jet. As other authors have noted, the scaling of
mean axial and radial velocity profiles is linear in
x as in the case of the non-swirling jet; the key
differences for the flow of the swirling jet are a
higher decay constant and the obvious addition
of azimuthal velocity; this decays at a higher rate
than the axial and radial velocities which is deter-
mined by the nondimensional swirl number.

The chief limitation of this theory is the lack
of experimental data available for rigorous com-
parison. As noted above, several authors have
studied the case of the swirling jet experimen-
tally; however, the different methods used by
each have resulted in a wide variety of relatively
narrow data sets rather than the more comprehen-
sive measurements of flow properties which are
necessary to validate the proposed similarity so-
lution. Few works in the literature study jets with
a variety of swirl numbers; few present compre-
hensive data on the decay of each velocity com-
ponent and profiles throughout the far field; only
one work presents both in enough detail for prac-
tical use in this setting. In addition, different ex-
periments in the literature use varying approaches
to generate and measure swirl. All of these fac-
tors greatly complicate the evaluation of this the-
ory, and further experimental work or a series of
DNS computations could greatly elucidate the re-
maining uncertainty surrounding the question of
the swirling jet. Nonetheless, based on the avail-
able data, the hybrid length scale similarity solu-
tion appears to be a relatively accurate model for
describing the scaling of swirling turbulent jets in
the mid- to far-field domain.

8



A Hybrid Length Scale Similarity Solution for Swirling Turbulent Jets

6 Acknowledgements

The author would like to thank Professor Greg
Blaisdell for his guidance during the course of
this work, Professor Jonathan Poggie for being
a supportive advisor and mentor, and fellow stu-
dent Ang Li for his unpublished contributions to
the project. The author would also like to ex-
press his gratitude to the American Institute of
Aeronautics and Astronautics (AIAA) for choos-
ing this paper for submission to ICAS 2018.

7 References

References

[1] Chigier N and Chervinsky A. “Experimental In-
vestigation of Swirling Vortex Motion in Jets,”
Journal of Applied Mechanics, Vol. 34, No. 2,
pp.443-451, 1967.

[2] Facciolo L, Tillmark N, Talamelli, A. and Hen-
rik, A.P.“A Study of Swirling Turbulent Pipe
and Jet Flows,” Physics of Fluids, Vol.19, No.3,
pp.35-105, 2007

[3] Rose, W. “A Swirling Round Turbulent Jet: 1 -
Mean-Flow Measurements,” Journal of Applied
Mechanics 29.4 pp. 615-625, 1962.

[4] Shiri A, George W, and Naughton W. “An Ex-
perimental Study of the Far-Field of Incom-
pressible Swirling Jets,” AIAA Journal, Vol. 46,
No, 8. pp. 2002-2009, 2006.

[5] Pratte B and Keffer J. “The Swirling Turbulent
Jet,” Journal of Basic Engineering, 94.4, pp.
739-747, 1972. ASME Paper 72-FE-18.

[6] Ruith M, Chen P, Meiburg E, and Maxwor-
thy T. “Three-dimensional vortex breakdown in
swirling jets and wakes: direct numerical sim-
ulation,” Journal of Fluid Mechanics Vol. 486,
pp. 331-378, 2003.

[7] Billant P, Chomaz J, and Heurre P. “Experimen-
tal Study of Vortex Breakdown in Swirling Jets,”
Journal of Fluid Mechanics, Vol. 376 pp. 183-
219, 1998.

[8] Escudier M and Keller J. “Vortex Breakdown: a
Two-Stage Transition,” Brown Boveri Research
Center, Baden, Switzerland, 1983.

[9] Ewing D.“Decay of Round Turbulent Jets with
Swirl,” Fourth International Symposium on En-

gineering Turbulence Modelling and Experi-
ments, pp. 461-470, Ajaccio, Corsica, 1999.

[10] Batchelor G. “Steady Axisymmetric Flow with
Swirl,” An Introduction to Fluid Dynamics,
Cambridge University Press, Cambridge, 2002.

8 Contact Author Email Address

geoffreymgandrews@gmail.com

Copyright Statement

The authors confirm that they, and/or their company
or organization, hold copyright on all of the origi-
nal material included in this paper. The authors also
confirm that they have obtained permission, from the
copyright holder of any third party material included
in this paper, to publish it as part of their paper. The
authors confirm that they give permission, or have ob-
tained permission from the copyright holder of this
paper, for the publication and distribution of this pa-
per as part of the ICAS proceedings or as individual
off-prints from the proceedings.

9

mailto:geoffreymgandrews@gmail.com

	Introduction
	Overview
	Background
	Prior Work

	Governing Equations
	Scaling Analysis
	Comparison to Experimental Data
	Conclusions
	Acknowledgements
	References
	Contact Author Email Address

