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parameters with SLM due to its versatility 
resulting from the good balance between 
mechanical properties, castability, plastic 
workability, heat treatability, and weldability [7]. 
For the SLM technology, the relation between 
microstructure and mechanical properties has 
not been only limited to the as-fabricated 
condition. Heat treatment of AM Ti-6Al-4V for 
different technologies has been extensively 
studied with the purpose of relieving stress and 
achieving an equilibrium microstructure, 
eliminating the metastable α’ martensite phase 
and obtaining a microstructure with exclusively 
α and β phases [7,8]. The SLM process, 
similarly to other AM processes, does not 
completely prevent the presence of porosity in 
the build. Therefore, in order to mitigate the 
disadvantages caused by these defects, the effect 
of HIP treatment has been studied. The interest 
for the study of the mechanical properties in the 
as-hipped condition is that the SLM process 
requires heat treatment to obtain reasonable 
ductility and low residual stresses due to the fast 
cooling rate of the fabrication with the SLM 
process provide the presence of brittle α’ 
martensitic phase from forming in the final 
microstructure, while the proper temperature for 
relieving the residual stress generated during the 
additive manufacturing process and the hipping 
for obtaining a balanced mechanical property, 
moreover, the stability of fatigue life is also 
improved after the hipping which are very 
important for the aerospace components. 

2  Materials and Process 

Ti-6Al-4V alloy powder was produced by the 
gas atomization process and was spherical with 
a maximum particle size 53μm. Ti-6Al-4V alloy 
samples were fabricated on an EOS M280 
machine including a laser unit delivering a 
continuous single mode laser power of 400W, 
which produces a laser beam with a wavelength 
of 1070nm and an intensity distribution of 
Gaussian. The laser spot diameter was 100-
500μm and the maximum scanning speed was 
7m/s. In addition, the layer thickness can be 
selected between 20-100μm and the deposition 
was carried out on a 30mm thick Ti-6Al-4V 
alloy plate. The schematic principle of SLM 

process is shown in Fig.1. During the SLM 
process, the processing chamber will be filled 
with argon in order to maintain the oxygen level 
during the process. The SLM technology 
manufacturing parameters have been 
investigated through a series of planned design 
of experiments. Optimal manufacturing 
parameters were also established in terms of 
densification, surface quality, and mechanical 
behaviour of the alloy systems. Mechanical and 
surface characterization was executed on 
different building directions, and the initial 
information about technology performance was 
determined. 
 

 
Fig. 1.The schematic principle of SLM process 

3  Experimental 

After the deposition with SLM, two post heat 
treatments were applied, firstly, stress relieving 
at 600°C, 700°C, 800°C, 900°C for 2 hours 
followed by furnace cooling (FC) to reduce 
residual stresses were carried out to observe the 
substantial change to microstructure. The heat 
treatments for this study were carried out using 
a Seco/Warwick vacuum furnace. Secondly, 
some of the samples were then hot isostatic 
pressed (HIP) with HIP-200, temperature up to 
1450°C, pressure up to 200MPa to eliminate the 
porosities produced during the fabricating. The 
horizontal and vertical section microstructures 
of the samples were examined using a Leica 
optical microscope and scanning microscope 
(SEM). The chemical composition was carried 
out with the Oxford INCA energy dispersive X-
ray (EDX) microanalysis software. The element 
concentration conforms to AMS 4998 regulation. 
The room temperature tensile property was 
tested according to ASTM E8/E8M. The build 
configuration and SLM reference axis system 
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EVALUATION OF MECHANICAL PROPERTIES OF TI-6AL-4V 
FABRICATED BY SELECTIVE LASER MELTING (SLM) 

on the build platform of the EOS machine is 
shown in Fig.2. The cylindrical specimens 
(Ø10×70mm) are orientated with their 
longitudinal axis perpendicular to the build 
platform (parallel to the build direction/Z axis). 
The rectangular specimens have their 
longitudinal axis perpendicular to the build 
direction/Z axis, 10×10×70mm for horizontal 
samples. In this study, the terms vertical 
orientation and horizontal orientation are used 
to identify samples that are oriented parallel and 
perpendicular to the build direction/Z axis 
respectively. The diagonal samples to the build 
direction/Z axis also were tested as a 
comparison. The tensile test was employed for 
the evaluation of mechanical performance with 
SLM. An investigation using fatigue specimens 

fabricated using SLM were also carried out, 
Fatigue crack propagation testing with force 
controlled constant amplitude axial, the loading 
condition was cyclic tension with R= 0.1 for the 
specimen as HT and HIP. For budgetary reasons 
specimens were fabricated and tested in three 
orientations as stress relief and only X-Z 
directions for hipped condition for the fatigue 
life evaluation. The specimens underwent a 
stress relief heat treatment with exposure to 
800°C for 2 hours in a vacuum furnace as 
specified in the optimization temperature of the 
stress relief heat treatment. Testing 
methodology was carried out according to 
ASTM E 466 standards. The number of failure 
cycles at different stress levels was also 
investigated for the fatigue life. 

 

       
 
 
 

Fig. 2 A schematic drawing of the test pieces 
 

4  Results and Discussion 

4.1 Microstructure Characterization 
Ti-6Al-4V is an α+β alloy because α and β 
microstructural phases coexist at room 
temperature. The α+β alloys are interesting 
because they combine the strength of α alloys 
with the ductility of β alloys, and their 
microstructures and properties can be varied 
widely by appropriate heat treatments and 
thermo mechanical processing [7,8]. The current 
study focuses on understanding the effect of 
different heat treatments on the unique 
microstructure of the SLM Ti-6Al-4V and its 
impact on mechanical properties. The heat 
treatments studied in this work were addressed 
using two approaches. The first investigated the 
effect of the annealing temperature on the 
formation of different microstructural phases 
and their morphology. The second approach 

assessed the effect of hipping on the 
microstructure and properties of the material, 
including fatigue life evaluation. 

4.1.1 Microstructure as Fabricated 
Fig.3 shows the microstructure features of Ti-
6Al-4V alloy fabricated by SLM in the X-Z and 
X-Y sectional directions. The microstructure 
shows morphology as macrostructure of 
columnar prior-grains that are growing 
epitaxially across many layers vertically in 
Fig.3(a). They grow epitaxially during the 
processing and are much larger than the 
individual layer thickness (i.e. typically 30μm). 
Fig.3(a) shows columnar grains of a width of 
200-300μm and very long (>1mm) i.e. involving 
many layers. Martensitic needles are visible and 
disposed according to a herring bone pattern 
within the grains. This type of microstructure is 
a typical of additive manufacturing process, 
which involves partial re-melting of the 

(a) Specimen building 
horizontal direction 

(b) Specimen building 
veridical direction 

(c) Specimen building 
diagonal direction 
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previous layers, resulting in the epitaxial growth 
of the strongly textured grains. Moreover, the 
time the melting pool remains liquid before a 
complete solidification in the β domain, 
depending essentially on the solidification rate 
and the thermal gradient, acts on the epitaxial 
growth and especially the number of nuclei 
formed. A different texture develops on the cut 
plane X-Y of Fig.3(b), where a layer of the X-Y 
directional microstructure seems equal-axis. The 
laser moves with a raster motion on this plane 
and melt locally a material volume by high-
energy pulses. Rounded and fine grains 
(diameter of 100μm) form upon solidification of 
the melt pools. It seems to mean that this 
unidirectional grain growth may also influence 
the anisotropy of properties of the SLM as-built 
alloy. 

4.1.2 Microstructure as post heat-treated 
Fig.4 provides an overview of the 
microstructure for SLM Ti-6Al-4V, influenced 
by the post built-up heat treatments at 600°C, 
700°C, 800°C, 900°C for 2 hours, respectly. It is 
assumed that the fine acicular morphology of 
the annealed SLM Ti-6Al-4V mainly consists of 
a’ (martensite) or alpha due to the fast 
solidification and the overall lower heat input 
during the built-up and heat treatment at 600C 
and 700°C (Fig.4). An α+β lamellar 
microstructure is observed inside the prior β 
grains for planes both perpendicular and parallel 
to the build direction. The width of prior β grain 
is about 100-200μm. The structure of the 
lamellae is mainly Widmanstätten or ‘basket 
weave’, with an occasional colony 
microstructure. As increasing the heating 
temperature, the size of the columnar grains is 
not quantifiable due to the difficulty of grain 
boundary identification. However, the alpha lath 
is getting thicker as increasing the heating 
temperature. The average thickness of 1-1.5μm 
was measured at the 900°C heating temperature. 
The reference values of α lath thickness for the 
as-fabricated condition employed in this study 
are as 0.8μm. 

The time and temperature of the heat 
treatment are the critical factors affecting the 
final microstructure [8]. Fig.5 shows the 
microstructures as fabricated condition, 800°C 

/2 hours stress relief heat treatment and HIP 
heat treatment. Obviously, the microstructure 
has changed as increasing the temperature; first, 
the alpha morphology was changed from 
needle-like to a plate-like morphology after 
hipping, secondly, the alpha lath is about 1.5-
2μm, which is much thicker than the one as 
fabricated and stress relief condition. The beta 
grain size becomes coarser than the other two 
conditions due to re-crystallization occurred 
during hipping. 

4.2 Tensile Testing 

In order to choose the best heat treatment 
parameters for SLM samples, a stress relieving 
heat treatment and hot isostatic pressing two 
categories, a total of 5 kinds of heat treatment 
system, from the room temperature tensile yield 
strength, tensile strength, elongation and 
microstructure evaluation under different heat 
treatment process were carried out as shown in 
Table1. By using optical metallographic 
analysis, scanning electron microscopy (SEM) 
analysis revealed the specimen under different 
heat treatment system, the microstructure 
change accordingly as shown on Fig 4&5, and 
further revealed that as heat treatment process, 
microstructure and mechanical properties show 
that a) in the stress relief temperature range, 
with the increase of heat treatment temperature, 
compared to the fabricated, yield strength and 
tensile strength gradually reduce, the elongation 
increase gradually, the microstructure analysis 
showed that 600-700°C range, alpha 'incomplete 
decomposition, martensite phase shows a higher 
strength, lower elongation; In the range of 800-
900°C, stress annealing was performed, and the 
strength and elongation of the materials 
matched well. b) After hot isostatic pressing, the 
strength of specimen is decreased, however, 
plastic stability of the specimens is in a 
relatively good level, the reason for the good 
comprehensive performance with the hot 
isostatic pressing is that in the process of heat 
treatment, the test specimen under three 
directions to compressive stress, pore closure or 
disappear gradually, sample density increase. In 
addition, after the hot isostatic pressure, the 
microstructure is relatively coarse, resulting in 
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Table1 Ultimate strength and Yield strength and elongation values for the microstructures obtained 
after different heating temperature 

Condition 
Sample 

direction 
YS 

MPa 
UTS 
MPa 

EL
% 

Sample 
Direction

YS 
MPa

UTS
MPa

EL
% 

Sample 
Direction 

YS 
MPa 

UTS
MPa

EL
% 

SLM 

horizontal 
direction 

1040 1201 9.5

veridical
direction

1050 1195 10.2

diagonal 
direction 

1070 1222 9.9
600°C/2H/FC 1085 1177 9.1 1081 1157 9.7 1097 1177 10.2
700°C/2H/FC 1006 1089 12.6 1011 1078 12.5 1025 1102 13.1
800°C/2H/FC 945 1036 14.9 965 1036 14.6 967 1053 16.3
800°C/2H/FC 922 1016 15.7 943 1038 15.7 941 1032 15.1
800°C/2H/FC 924 1019 15.4 935 1014 15.5 933 1027 15.1
800°C/2H/FC 856 967 16.3 876 975 16.2 878 992 15.9

SLM+SR+950°C/ 
150MPa/4H 

867 961 16.1 851 950 15.3 869 976 15.7

SLM+950°C/ 
150MPa/4H 

860 969 16.7 864 968 17.4 870 980 15.8

 
 
 
this trend is same for the fracture toughness due 
to the typical process conditions, (i.e. layer by 
layer generative principle, short energy pulses 
resulting in highly localized melting and 
solidification and strong temperature gradients 
of this manufacturing process), the 
microstructure exhibits strong directionality, 
consequently anisotropic structure, i.e. columnar 
grain structure. The strongly textured 
microstructures results in anisotropy of the 
mechanical properties. Experimental results also 
show that the impact of different heat treatment 
process on the fatigue performance as shown in 
Fig.7, samples as fabricated and annealing heat 
treatment states fatigue life is scattered, but the 
fatigue test performance of the samples after hot 
isostatic pressing treatment the data divergence 
seems small, and the repeatability of the sample 
in each direction is obvious, the analysis 
indicate that the hot isostatic pressing may 
eliminate the sample internal defects such as 
porosity, incomplete fusion, make samples of 
fatigue life and stability are greatly increased. 

The SLM technology was accepted by 
aerospace industry are somehow hampered by 
the relative slow pace of material 
characterization, which is a fundamental 
ingredient of part design and qualification. 
Many work has done to discuss the link between 
process parameters and static mechanical 

properties of SLM Ti-6Al-4V, the fatigue 
strength characterization appears more recently 
in the literature [9-19] Fatigue testing is known 
to be expensive and time consuming as it is 
susceptible to a number of intrinsic and extrinsic 
factors that complicates the data generalization 
and exploitation [16, 17]. On the other hand, the 
fatigue behavior of SLM Ti-6Al-4V is critical 
for sectors, in which high structural integrity is a 
paramount requirement for aerospace. the 
fatigue behavior of SLM Ti-6Al-4V is 
influenced by: microstructure, because it 
introduces a directional effect; defects, that 
being typically located between adjacent layers, 
affect most the direction Z, Thus, a HIP 
treatment was considered to reduce that 
influence of defects but would lower the 
material strength as shown in Table1. Therefore, 
the post-fabrication heat treatment, is not only 
relieves residual stresses but should be selected 
to simultaneously optimize strength, ductility 
and fatigue behavior [18-21]. 

As regards the fatigue performance of 
SLM Ti-6Al-4V in relation to wrought Ti-6Al-
4V, only the clarification and understanding of 
the different affecting factors (internal and 
external) on the material behavior may lead to 
process optimization and full exploitation of 
SLM technology in the design and fabrication of 
durable, safe and cost competitive parts. 
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