

1

Abstract
Small Unmanned Aircraft Systems (UAS)

have become ubiquitous over the past decade.
This is in part due to the convergence of many
new technologies relevant for UAS applications.
This offers opportunities for new architectures
and new designs of UAS not previously feasible.
As engineering and acquisition organizations
focus on small UAS as possible solutions to
bridge capability gaps identified in future
operational environments, a need has emerged to
better understand the relationships between
requirements, system architectures, and
technologies. An integrated and executable
system analysis capability featuring requirement
analysis, automated design, as well as rapid
prototyping and manufacturing through additive
manufacturing, has been developed. It relies on
an executable framework based on a model-
based systems engineering approach to the
design of small UAS. A use case is demonstrated
with the design and manufacture of a small UAS
satisfying the need of expeditionary forces for
rapid development of tailor-made capabilities.

1 Introduction
The past decade has seen a dramatic increase

in the number of small Unmanned Aircraft
Systems (UAS) being used for recreational,
commercial, and military applications. The
number of applications suitable for small UAS
operations runs a gamut never previously
anticipated, from automated package delivery to
remote sensing and weapon delivery. According
to recent estimates from the Federal Aviation
Administration [1], there are currently more than
750,000 small UAS operating in the National

Airspace System. Focusing more closely on U.S.
Army small UAS operations, these systems are
deployed mostly to support tactical operations
through the collection of intelligence,
surveillance, and reconnaissance information.
Owing to the time-sensitivity of these operations,
these systems would be best deployed on-
demand to acquire intelligence in real time. In
fact, the U.S. Army UAS roadmap for 2010-2035
[2] recommends that UAS be used to enable
decentralized decision-making stating that:

“UAS require and enable accelerated multi-
echelon, decentralized decision-making, and

execution, significantly changing the tempo and
dynamics of operations. Lower echelon

leadership must be empowered with authority
and bandwidth to employ UAS as their changing

situation dictates, operating at a tempo that is
faster than higher echelon leadership can

affect.”

However, the logistics involved with
procuring small UAS means that latencies are
introduced, which can adversely impact the
gathering of intelligence ‘on-demand’. A
paradigm shift is needed so that small UAS can
be designed, deployed, and operated at the lower
echelon of leadership to ensure an appropriate
level of reactivity. In this context, an ‘on-
demand’ solution is a solution for which an asset
appropriate for the mission is made available
within a reasonable time-frame. Because
equipping users with small UAS assets able to
meet unforeseen needs poses design and
logistical challenges, ‘on-demand’ solutions also
require on-demand requirement analysis, ‘on-
demand’ design, and ‘on-demand’

ON-DEMAND SMALL UAS ARCHITECTURE
SELECTION AND RAPID MANUFACTURING USING A

MODEL-BASED SYSTEMS ENGINEERING APPROACH

Cedric Justin*, Arun Ramamurthy*, Nathan Beals**, Eric Spero**, Dimitri Mavris*
*Georgia Institute of Technology, **United States Army Research Laboratory

Keywords: Systems Engineering, On-Demand Design, Manufacturing

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

2

manufacturing. Consequently, to ensure that the
needs of users are properly identified and met,
the following capabilities need to be developed:

• A process to elicit and analyze customer
requirements

• A process to generate designs in close to real-
time

• A process usable by customers unfamiliar
with the design of small UAS

• A manufacturing process usable near the
point-of-need to limit transportation delays

• A visualization interface to convey the need
for the relaxation of requirements when
requirements are conflicting
Within the U.S. Army aviation community,

engineering and acquisition organizations are
beginning to focus on small, hand-held, portable
UAS as materiel solutions to capability gaps
envisioned in future complex operational
environments. What is lacking however is an
understanding of the relationships between
requirements, UAS architectures, and
technologies which can support the assessment
of these systems in future environments. An
integrated system analysis capability based on
analysis, prototyping, and experimentation can
provide a hands-on way for a wide range of
decision-makers to gain a quantitative
understanding of how design decisions drive and
are driven by the technologies on-hand.

Leveraging existing efforts in the fields of
automated design and rapid manufacturing, this
research aims at providing a framework bringing
together requirements analysis, automated
design using model–based systems engineering
techniques, visualization highlighting the
capabilities of various UAS architectures, rapid
prototyping to verify and validate requirements,
and finally, rapid manufacturing to deploy assets
on-demand.

 Literature Review
The capability to perform automated design

given a set of requirements has been previously
investigated. Cheng et al. [3] study the use of
component models to generate feasible
multicopter designs using a model-based systems
engineering approach. Fisher et al. [4] investigate
the use of a modular design process in order to
generate a family of multicopter and fixed-wing

vehicle designs meeting specific mission
requirements. Fisher et al. [5] and Locascio et al.
[6] further refine the modular design process
using model-based systems engineering
techniques to automate the design process.

One enabler of an ‘on-demand’ solution is the
ability to perform in-situ prototyping and
manufacturing. New manufacturing techniques
such as additive manufacturing, enable both the
rapid manufacturing of unique systems and the
forward-deployment at the point-of-need. In turn,
this enables users to rapidly create prototype
solutions to address unforeseen or unanticipated
problems. Additive manufacturing applied to
rapid prototyping and manufacturing has been
previously investigated by Mangum et al. [7] for
small multicopters using a simple hover-based
energy and endurance analysis.

While research has been carried out to
develop model-based representations of small
UAS and to automate design and manufacturing
processes, few previous efforts have focused on
understanding the capabilities of various UAS
architectures and the impact of future
technologies on these capabilities.

 Problem Formulation
Owing to the modularity of small UAS,

investigating the capabilities offered by different
architectures requires a flexible framework in
which design and configuration changes can be
traced and evaluated quickly. Established
approaches to the design of complex systems
typically involve multiple analysis tools where
documents describing the system being analyzed
are passed around. Given the modularity of UAV
systems, this approach can be slow and tedious
owing to the necessity for manual configuration
of the numerous documents involved. The nature
of the documents as well as their possible lack of
readability may limit transparency, thus
hindering the ability of designers to immediately
assess when and where parameters of interest are
changed.

To address this possible lack of transparency
during design, researchers [4] [5] [8] [9] have
proposed a model-centric approach which
ensures that a set of ‘models’, defined by and
visible to the designer, dictates the flow of
information during the design process. An

3

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

inherent feature of the model-centric approach is
the ability to create models at multiple levels of
abstractions and have these models interact with
each other. This multi-layered abstraction
approach enables quick replacements of modular
entities, thereby enabling the investigation of
‘variants’ of existing designs [5]. The following
subsections detail the implementation of an
executable model-centric framework and its
application to design space exploration and
probabilistic analyses of various UAS concepts.

 Description of Application
Throughout this research, a single set of

requirements defining a UAV mission is used to
illustrate the proposed approach. The customer is
an expeditionary warrior who describes the
intended reconnaissance mission using natural
language as highlighted in Table 1. The UAV is
launched during a covert mission and retrieved
later at a home base.

Table 1: Use Case Mission Description
Phase Description

Manufacture The UAV shall be manufactured within
48 hours.

Take-off The UAV shall be hand launched and shall clear
a 10 m high forest canopy within 50 m.

Cruise
Climb

The UAV shall climb to a height of 100 m above
ground level at a rate of 1.5 m/s within 600 m.

Cruise The UAV shall fly a distance of 1,800 m within
2 min.

Loiter The UAV shall loiter over the point of interest
for at least 5 minutes.

Cruise The UAV shall fly a distance of 2,700 m to a
retrieval point within 3 min.

Landing The UAV shall land within 15 m on a turf field
without damage.

All The UAV shall weigh at most 5 kg and shall
carry a payload of 0.15 kg

2 Model-Based Systems Engineering
Approach

A Model-Based Systems Engineering
(MBSE) approach [10] builds on the model-
centric view established by Model-Based
Engineering (MBE) [11] and extends it to the
realm of systems engineering. The model-centric
view of MBE uses models as an integral part of
establishing a baseline. The MBSE approach
relies on the development of a baseline made of
elements necessary to the life-cycle management
of a product. This includes activities such as
requirements analysis, performance analysis,
design optimization, as well as requirements

verification and validation. Thus, the MBSE
framework accounts for all the elements of the
life-cycle of the product, from the beginning of
the conceptual design phase with the definition
and handling of requirements, to the detailed
design and manufacturing, and to the later life-
cycle phases of validation, operations support,
and maintenance. Overall, an MBSE framework
improves communication across development
teams, reduces design cycle times, and reduces
risks through the identifications of failures earlier
in the design cycle [12].

2.1.1 SysML and Object-Oriented Systems
Engineering Methodology

While MBSE provides a framework to
perform systems engineering-oriented design, a
language and a methodology are needed to
enable the development of a product life-cycle
model. A comprehensive survey of
methodologies for the application of MBSE is
provided by Estefan [13]. A review of modeling
languages suitable for MBSE implementation is
performed by Reilley [14]. Based on their
findings, the Systems Modeling Language
(SysML) is selected for this research in order to
model small UAS as it provides a modeling
language through the extension of a subset of
Unified Modeling Language (UML) protocols.
The four key pillars of SysML are:
• The structure elements and diagrams, which

describe the components making up the
system and provides a definition of permitted
interactions between these components

• The behavior element and diagrams, which
dictates the functional and behavioral aspects
of the system

• The requirements, which captures the desired
characteristics in terms of system behavior,
design, and operation

• The parametrics, which defines relationships
and bindings between the different attributes
of the structure package

2.1.2 Towards an executable SysML-based
MBSE Framework

SysML is not inherently executable which
forces the utilization of external applications and
model converters to perform the various
activities pertaining to the design process [5]
[14]. Moreover, design engineers may not always

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

4

be familiar with the fundamentals of systems
engineering, which means that the adaptation to
the new paradigm of SysML-enabled MBSE can
be challenging. Given the popularity of the
Python programming language within the
engineering community, a light-weight
executable modeling framework is developed in
Python to implement the MBSE-enabled design
and manufacturing of small UAS. This choice of
programming language as well as the
architecting of the framework are influenced by
past research efforts [15]. The new
implementation makes nevertheless substantial
modifications over previous work.

First, owing to the nature of engineering
design, the framework merges the behaviors and
parametrics into a single ‘process’. The process,
formulated as a design structure matrix (DSM)
[16], defines both behavioral and evaluation
analyses similarly to the approach adopted in the
structure elements and diagrams. DSMs are the
accepted standard for the representation of
processes in the engineering community [17].

Next, elements of the system are represented
using an abstract data structure named a ‘tree’.
Interactions between tree elements are defined by
a new type of standard attribute called ‘interface’
added at each node in the tree. This attribute
dictates the way one node interacts and interfaces
with another. User-defined functions describing
interactions are allowed to ensure flexibility in
the definition and representation of the interface.

This modified data structure, the
implementation of design processes as DSMs,
and the executable nature of the framework,
enable the rapid re-creation of traditional design
processes, within the model-centric view,
without the need for intermediate model
converters. This enables designers to bypass the
learning curve associated with traditional SysML
practices during the development of models.

3 Methodology
3.1.1 Modeling UAS

The modeling of UAS per the specifications
of MBSE requires the development of
computational representations of the
requirements, the system structure, the
component interfaces, and the processes
associated with the design and manufacturing

activities. The following sections detail the
development of models necessary to analyze the
capabilities of different UAS architectures, to
evaluate their suitability for specific missions,
and to study the propagation of technological and
technical uncertainties to system-level metrics of
interest.

3.1.2 Requirements Modeling
The traditional Forsberg and Mooz Systems

Engineering ‘Vee’ model [18] relies on having
independent processes for the decomposition of
requirements, and their verification during
manufacturing and testing. While requirements
verification and validation are essential elements
in the automation of design processes, the
decoupled approach to the performance
verification present numerous issues such as the
need for fabrication prior to the start of the
verification, the lack of transparency in the
requirements flow and during decisions, and an
increase in design cycle time and cost. The
presence of an executable MBSE framework, in
which requirements are directly mapped to
metrics of interest, has been identified as a means
to mitigate the challenges associated with this
decoupled approach. Indeed, when models are
updated, analyses associated with these updated
models are automatically triggered and yield
updated metrics of interest indicating whether
requirements are satisfied.

For the development of the requirements, two
additional prerequisites are imposed:
• Requirements are stated in natural language,

which means they need to be translated from
natural to engineering language using
appropriate metrics.

• The framework needs to be capable of
establishing relationships between elements
of the model and stated requirements.

The elicitation of requirements often leads to
a description of the vehicle’s desired
functionality which can be used to derive the
vehicle’s target performance measures. For
instance, users may specify requirements in
terms of the mission profile which are then
converted into engineering metrics for the design
process. To achieve these goals, natural language
processing (NLP) [19] and text parsing are used.
The process used to translate mission attributes

5

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

into verifiable requirements is illustrated in Fig.
1 with the mission highlighted in Table 1 and
using the cruise segment description:

“The UAV shall fly a distance of 1,800 m
within 2 min.”

First, a dependency tree [20] is built to
identify the elements of the sentence, thereby
breaking complex requirements into sets of
simpler requirements. In the above example,
there are two objects of prepositions. Thus, the
cruise requirement can be decomposed into two
requirements: one deals with the range associated
with the attribute ‘distance’ and corresponding
value ‘1800 m’, while the other deals with the
duration associated with an implicit attribute
‘time’ and corresponding value ‘2 min’.

Second, once a requirement is decomposed
into its constituents, a vector embedding [21] is
generated for each individual constituent. This
vector represents the projection of the natural
language requirement into an n-dimensional real
space where similar requirements occupy a
common region of the space. This is exploited to
identify the nature of the requirement using a pre-
trained classifier. This classification algorithm
provides a description of the nature of the
requirement which is then passed downstream to
subsequent steps.

Third, a parameter and value identification
algorithm is used to identify numerical
parameters. A dependency tree is generated to
identify the ‘nummod’ tags [22] which

corresponds to values associated with parameter
modifiers. For instance, the numbers 1,800 and 2
are identified as the values of interest, and for
each, the association of a parameter is attempted.
Both the parameters ‘distance’ and ‘time’ are
identified via a mapping of the objects of
prepositions associated with their numerical
values to a predetermined set of parameters. The
algorithm relies on the use of a set of pre-
specified mappings to identify appropriate
parameters for unspecified requirement
parameters. The nature of the requirement serves
as an input to this algorithm to handle special
cases where requirement parameters are not
cardinal numbers. This is for instance the case for
the vehicle launch mechanism (hand launch) or
the type of landing surface (turf).

Finally, the relationships that exist in the
given description are used to identify the source
node. This process of identification of the source
node enables the extraction of the validation
relationship for the requirement. In the above
example, the relationship extraction algorithm
identifies that for both requirements, distance and
time, the nominal subject is the noun ‘UAV’.
This noun should match one node in the
structures package whose name or description
matches the target identified by the relationship
identification algorithm. Corresponding
parameters (distance and time) or their mappings
(distance mapped to range) on that node can then
be populated accordingly.

Fig. 1. Algorithm for the processing of requirements using Natural Language Processing

“The UAV shall fly a distance of 1,800 m within 2 min.”

DET
The UAV

PROPN
shall
VERB

fly
VERB

a
DET

distance
NOUN

of
ADP

1,800
NUM

m
NOUN

within
ADP

2
NUM

min.
NOUN

det nsubj xcomp dobj
det prep

prep
pobj

nummod

pobj
nummod

STEP 1:
Decomposition of
complex requirements
using dependency graphs

“The UAV shall fly a distance of 1,800 m.” “The UAV shall take time 2 min. to satisfy •.”

ℝ𝑛 ℝ𝑛
(vector embedding) (vector embedding)

STEP 2:
Generate vector
embedding to predict
nature of requirement

duration = 𝟐 mindistance = 𝟏,𝟖𝟎𝟎 m
STEP 3:
Extract parameter,
value, comparison

STEP 4:
Extract relationship
and structure node

UAV → distance → range UAV → time

ClassifierClassifier

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
 MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

6

With this information, the requirement tree is
ready to be populated with the new subtree
constructed from the specified description. The
leaf nodes of this subtree are assigned a unique
semantic ID and have the attributes of
description, parameter, value, relationship and
source.

To verify the satisfaction of requirements, a
two-stage approach is taken. First, if a
requirement has an associated source, parameter,
relationship, and value, then the evaluated value
of the parameter of the source node is checked to
see if the requirement is satisfied. The
requirement is satisfied, if and only if, its
children are evaluable and satisfied. Upon
satisfaction, the evaluation proceeds to a sibling
requirement node. This is highlighted in Fig. 2
for the take-off requirement. This recursive
approach is employed to identify how
requirements flow from the leaves to the root of
the tree, therefore providing users with a clear
picture of the source of infeasibility, if any.

Fig. 2. Process flow for the validation of the

requirements tree
The diagrams in Fig. 3 show the SysML

equivalent of the generated requirement based on
the description of the cruise requirement of Table
1. The current natural language processing
capability is highly tuned to the problem under
consideration since the lexicon (corpora) used to
train the algorithm is specific to the small UAS
application under consideration.

Fig. 4 on the following page details the
requirements breakdown that serves to guide the
evaluation of any design generated. The
requirements specification is comprised of the
mission requirement (mission profile, system-
level requirements such as weight, payload etc.),
and the manufacturing requirement
(manufacturing time and cost).

Fig. 3. SysML-like representation for the

generated cruise requirement

3.1.3 Structure Modeling
One aim of the research is to contrast different

architectures of UAS meeting a set of ‘must-
have’ requirements. Consequently, a quick
evaluation of the different variants is necessary
and metrics related to their overall design,
capabilities, and manufacturing performance are
used for benchmarking purposes.

Each design variant is defined as a
combination of a set of compatible components
and a set of values for the scalable design
parameters. The purpose of decomposing the
vehicle is not only to enable the transition from
one design variant to another by replacement of
one modular component with another, but also to
establish the interface specifications for these
components. The methodology used in the
modeling of structural elements of the system is
similar to the one established by Fisher [5]. A
functional and physical decomposition of the
vehicle is carried out to identify the nature of the
vehicle and the set of possible alternatives for the
components of the system. In parallel, an
enumeration of the manufacturing alternatives is
performed to identify the machines that can be
used to manufacture the product. These
decompositions form the first layer of the
‘structure tree’ shown in Fig. 5 and comprised of
two children: the design and the manufacturing.
The design child is further decomposed into the
component systems and architecture alternatives.

root

Take-off
Other

Requirements
Subtree

Take-off
Subtree

Hand
Launch

Constraint

Obstacle
Clearance

Take-off Subtree

• Is root requirement satisfied?
 Is Take-off requirement satisfied?

 Is Hand Launch Constraint satisfied?
 Is Obstacle Clearance cleared?

 Is Other Requirements Subtree satisfied?
 Trigger recursive validation

<<Requirement>>
Cruise Requirement

Id: 1.3
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value: -
Constraint: -
Parameter: -
Units: -

<< Requirement >>
Cruise Requirement (A)

Id: 1.3.1
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value: 1,800
Constraint: =
Parameter: “range”
Units: m

<< Requirement >>
Cruise Requirement (B)

Id: 1.3.2
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value: 2
Constraint: <=
Parameter: ”time”
Units: min

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
 MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

7

Fig. 4. Requirements breakdown driving the design process for the UAV

Fig. 5. Coupled functional and physical decomposition of the UAV

Unmanned Aerial Vehicle

Architecture
Vertical

Take-off & Landing
Conventional

Take-off

Design Manufacturing

System
Propulsion System Flight Controls System Payload System

Prusa
MK2

Prusa
MK3

Prusa
MK2 MM

Quadcopter
(Scalable)

Hexacopter
(Scalable)

Endurance
Fixed-Wing

(Scalable)

Agility
Fixed-Wing

(Scalable)

Propeller

Battery

ESC Servo
Motor

LIDAR

SONARTelemetryMotor

Ailerons
(Scalable)

Rudder
(Scalable)

Elevators
(Scalable)

Opt.
Camera

Autopilot IR
Camera

GPS

Requirement 1: Mission Requirement
• The UAV shall complete successfully

the mission as per the mission
description.

Requirement 2: Manufacturing Requirement
• The UAV shall be manufactured within

48 hours.

Requirement 1.1: Take-off requirement
• The UAV shall be hand-launched and

shall clear the 10 m high forest canopy
within 50 m.

Requirement 1.1.1: Take-off requirement (A)
• The UAV shall be hand-launched.

Requirement 1.1.2: Take-off requirement (B)
• The UAV shall clear an obstacle of 10 m.

Requirement 1.1.3: Take-off requirement (C)
• The UAV shall satisfy the climb requirement within 50 m.

Requirement 1.2: Climb requirement
• The UAV shall climb to a height of 100 m

above ground level at a rate of 1.5 m/s
within 600 m.

Requirement 1.2.1: Climb requirement (A)
• The UAV shall climb to a height of 100 m above ground level.

Requirement 1.2.2: Climb requirement (B)
• The UAV shall climb at a rate of at least 1.5 m/s.

Requirement 1.2.3: Climb requirement (C)
• The UAV shall satisfy the climb requirement within 600 m.

Requirement 1.3: Cruise requirement
• The UAV shall fly a distance of 1,800 m

within 2 min.

Requirement 1.3.1: Cruise requirement (A)
• The UAV shall fly a distance of 1,800 m.

Requirement 1.3.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 2 min.

Requirement 1.4: Loiter requirement
• The UAV shall loiter over the point of

interest for at least 5 min.

Requirement 1.5: Cruise requirement
• The UAV shall fly a distance of 2,700 m to

a retrieval point within 3 min.

Requirement 1.5.1: Cruise requirement (A)
• The UAV shall fly a distance of 2,700 m.

Requirement 1.6: Landing requirement
• The UAV shall land within 15 m on a turf

field and without damage.

Requirement 1.6.1: Landing requirement (A)
• The UAV shall land within a distance of 15 m on a turf field.

Requirement 1.6.2: Landing requirement (B)
• The UAV shall not be damaged during landing.

Requirement 1.7: Payload requirement
• The UAV shall carry a payload of 0.15 kg.

Requirement 1.8: Weight requirement
• The gross weight of the UAV shall not

exceed 5kg.

Requirement 2.1: Manufacturing requirement
• The manufacturing time for the UAV shall

not exceed 48 hours.

Requirement 1.5.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 3 min.

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
 MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

8

The architecture subtree is then decomposed
into alternatives, namely the fixed-wing and the
multicopter platforms. Each of these platforms is
further decomposed into two specific product
families, namely agility-focused and endurance-
focused families for the fixed wing platform and
quadcopter and hexacopter for the multicopter
platform.

The components subtree is functionally
decomposed into the constituent subsystems: the
propulsion subsystem, the flight-control
subsystem, and the payload subsystem. These are
further physically decomposed to identify the
constituent components. The propulsion system
is decomposed into motor, battery, electronic
speed controller, and propeller. The flight-
control subsystem is decomposed into servo
motor, electronic speed controller, battery, and
control surfaces. Since the flight-control system
and the propulsion system share power from the
battery, an interface relation is established for
these subsystems to enforce the shared relation
between these components. An additional
interface is defined at the multicopter level which
dictates the multiplicity for a set of components.
Similar exercises are undertaken for the payload
subtree in order to generate the structure tree.

While this decomposition process defines
completely the architectural and design space, it
does not yet account for interactions between the
different components. These interactions can be
modeled as physics-based or compatibility-based
constraints established through the interface
mechanism. For example, a certain motor may
require a specific nominal voltage. An interface
constraint restricting the selection of batteries
unable to provide this voltage can be established
for this motor, thereby reducing the set of
possible variants. One final extension made to
the structure tree is the indication that multiple
payloads can be selected. Indeed, it is assumed
by default that each of the leaf node children of a
given subtree is incompatible with its siblings, (if
a vehicle has a battery of a given type, then it
cannot have a battery of another type as well).
Such behavior can nonetheless be changed by
overriding the compatibility interface between
the components or by specifying the possibility
of multiple selections at any subtree.

Having decomposed the entire system, key
attributes of components are gathered and
classified into two groups. The first contains
commercially-off-the-shelf alternatives while the
second contains specifically designed parts.
Databases containing specifications are
established for the commercial off-the-shelf
alternatives such as batteries, motors, propellers,
electronic speed controllers and payloads. These
configurable databases are then used to populate
the leaf nodes for the appropriate component
node. The final step in the decomposition is the
identification of the design parameters for the
components classified as being specifically
designed. These, in addition to the design
parameters at the architectural level, dictate the
set of scalable parameters that are to be
considered during the design process. In contrast
to the methodology established by Fisher [4],
mappings between scalable parameters are not
defined within the structure package. Instead,
they are handled by the processes package and
the associated design structure matrix.

Fig. 6 provides a representation of one of the
component sets providing the SysML-like
representation for the motor alternatives (only
two amongst many motors are shown). This
approach uses a separate section in the block
diagram for the interfaces assigned to the
component.

Fig. 6. SysML-like representation of a motor
and its alternatives

While the definition of the structure tree and
the interfaces within are created manually, these
need to be defined only once for each system
under study. Indeed, when a component instance
is created, it is stored in the database at which

<<ComponentNode>>
Motor

+ uuid: str {id}
+ name: str
+ weight: float [N]
+ kv_rating: float [RPM/V]
+ max_power: float [W]
+ max_current: float [A]
+ diameter: float [mm]
+ resistance: float [Ohm]
+ cost: float [$]
+ compute_power_reqd(rpm: float, load: float)float

<<ComponentInterface>> Battery: voltage

<<ComponentNode>>
Cobra 2814/12

+ name: str = “Cobra 2814/12”
+ weight: float [N] = 1.04967
+ kv_rating: float [RPM/V] = 1390.0
+ max_power: float [W] = 600.0
+ max_current: float [A] = 40.0
+ diameter: float [mm] = 28.0
+ resistance: float [Ohm] = 0.045
+ cost: float [$] = 37.99

<<ComponentInterface>> Battery: voltage >= 7.4

<<ComponentNode>>
Turnigy D2836/11 750KV

+ name: str = “Turnigy D2836/11 750KV”
+ weight: float [N] = 0.69651
+ kv_rating: float [RPM/V] = 750.0
+ max_power: float [W] = 220.0
+ max_current: float [A] = 20.0
+ diameter: float [mm] = 28.0
+ resistance: float [Ohm] = 0.160
+ cost: float [$] = 14.86

<<ComponentInterface>> Battery: voltage >= 7.4
<<ComponentInterface>> Battery: voltage <= 11.1

Node Description

Node Attributes

Evaluation Interfaces

Component Interfaces

9

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

point it can be called upon to recreate the element
in the structure tree during subsequent use.
Modifications to already created components are
possible and result in the creation of a separate
instance of the component node in the database.
The ability to modify existing components to
create new component instances can significantly
reduce the design cycle time and the workload
when modeling complex systems.

3.1.4 Parametrics Modeling
Traditionally, the function of parametrics in

SysML is the modeling of physics-based
relations defining the behavior of elements of the
system. While such models are applicable to the
design of a system during the conceptual and
preliminary phases, detailed design of a system
often requires discipline-centric (or even multi-
disciplinary) analyses in which multiple
components and their interactions are
considered. Given the fact that analyses within
each discipline can be carried out at different
levels of fidelity, an extension to the parametrics
is needed. In order to simplify the computational
representation of the design workflow, a tree data
structure is retained. This is a result of the multi-
layered abstraction of the design process. This
multi-layered abstraction or hierarchy is divided
into three levels:
• Workflows, which define the evaluation

sequence of nested entities and the data flow
between them

• Disciplines, which indicate the disciplinary
analysis that can be performed

• Analyses, which represent the set of
alternatives within any disciplinary analysis
In order to represent the processes involved

during engineering design, an attempt is made to
mimic an established standard for their
representation using design structure matrices.
Design structure matrices provide a
representation of the flow of information
between disciplines and are visually appealing
for convoluted workflows with numerous
parameters passed around.

The workflow element of the framework can
be viewed as a container which is associated with
an algorithm. A library of algorithms is provided
such that a variety of numerical computations can
be performed, such as design of experiments,

numerical optimization, and uncertainty
quantification. This library feature is exploited to
perform both the capability exploration and the
uncertainty quantification. Prior to defining the
characteristics of the workflow, it is nevertheless
necessary to define the actual process that the
algorithm will operate on. The workflow can host
a set of interconnected disciplines, a set of nested
workflows, or a combination of both. The
discipline functions as a container for a set of
analysis owing to its multi-fidelity nature. For a
discipline to be evaluated, there has to be exactly
one analysis that is active at any instant of time.
If a discipline does not need to be evaluated, logic
can be included to deselect any constituent
analysis at which point the execution of the
discipline is skipped until a selection is turned
back on again. The final layer of the hierarchy is
the analysis node. The analysis represents the
actual computation that is performed in the
workflow. These, in addition to the workflows,
represent the executable components of the
framework.

The executable nature is achieved by the
registration of an evaluation source for every
evaluation node which are represented by the
created workflows and analyses. In the case of
the workflow, the evaluation source would be an
algorithm, while in the case of the analysis the
evaluation source would represent some
numerical computation. These evaluation nodes
are then linked to the evaluation ports, which are
abstract methods definitions on the structure.
This linkage definition ensures that attributes of
the structural node are visible to the evaluation
source. Optional interface specifications, in the
form of value bindings, can be specified for the
evaluation sources. The bindings efficiently map
parameters from the evaluation to and from the
registered structure node as an evaluation is
undertaken. These values bindings can also map
the nodes themselves in cases where multiple
parameters have to be accessed, thus reducing the
amount of coding necessary. Interfaces across
disciplines can be defined at the workflow level
such that mapping between parameter values are
efficiently handled upon completion of the
execution of a discipline. These parameter
mappings can be defined through equations that

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

10

dictate the ‘interface’ between scalable
parameters in the case of the UAS application.

Using this framework, the design and
manufacturing process associated with UAS are
represented as workflows consisting of multiple
disciplines. The contents of the workflow differ
depending on the case considered.

3.1.5 Vehicle Sizing and Synthesis
Workflow

The various candidate architectures retained
require different types of analyses in order to
check their suitability to fulfill the mission
requirements and complete the mission.

Fixed-wing sizing and synthesis
The fixed-wing vehicle family is built around

two modular designs shown in Fig. 7. One design
is optimized for longer endurance and range
missions, while the other design is optimized for
agility-based urban missions. These designs are
modular with a tailor-made structure housing the
payload as well as other off-the-shelf
components. The tailor-made structure is
composed of a fuselage section, as well as a
wing, vertical tail, and horizontal tail which are
sized for the mission.

Fig. 7. Endurance-focused and agility-focused

fixed-wing baselines
 The objective of the sizing and synthesis
analysis is to determine the appropriate wing
loading and the optimum size of the wing and
empennage. The vertical and horizontal
stabilizers of the empennage are sized using the
tail-volume coefficient method. Wing area is
therefore the only parameter driving the size of
the vehicle. The wing loading is determined by
carrying out Mattingly’s constraint analysis [23]
which relates power-to-weight and wing loading.
The analysis is adapted for small vehicles
operating at low-Reynolds numbers. With the
constraint analysis, typical performance
requirements such as take-off constraint, obstacle
clearance constraint, climb performance
constraint, cruise speed constraint, service
ceiling constraint, and landing constraint can be

accounted for. Several new features are also
implemented to recognize constraints specific to
UAVs as well as constraints related to
manufacturing and the use of off-the-shelf
components.

One constraint is related to the ability to
specify how the UAV is launched. If the vehicle
is ground-launched, then take-off roll and
obstacle clearance constraints are implemented.
If the vehicle is hand-launched, then a maximum
stall speed constraint is implemented to account
for the ability of the user to manually launch the
vehicle.

A manufacturing constraint is also included to
represent the time available to produce a mission-
ready UAV. The manufacturing time is directly
linked to the wing size of the vehicle owing to the
need to produce more and larger ribs when the
wing size increases. To be included in a
constraint diagram, this manufactured constraint
must be expressed in terms of wing loading.
First, the structure mass, denoted 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 and
defined as the total mass 𝑚𝑚𝑡𝑡 minus the off-the-
shelf electronic component mass 𝑚𝑚𝑐𝑐, is regressed
against wing area S using experimental data. The
regression is highlighted in (1) for both agility
(A) and endurance (E) focused vehicles using
wing areas ranging from 0.05 m2 to 0.70 m2.

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚0 + 𝑚𝑚1 ∙ 𝑆𝑆 (1)

 �
(𝑚𝑚0,𝑚𝑚1)𝐴𝐴 = (0.298 𝑘𝑘𝑘𝑘, 2.629 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−2)
(𝑚𝑚0,𝑚𝑚1)𝐸𝐸 = (0.145 𝑘𝑘𝑘𝑘, 2.034 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−2)

In turn, this regression allows the derivation of
a relationship (2) between wing loading W/S and
wing area accounting for the mass of off-the shelf
components and the standard gravity g.

𝑆𝑆 =
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

 (2)

Using experimental data, a new regression is
performed to estimate manufacturing time as a
function of wing surface and thus wing loading.
This is displayed in (3).

𝑡𝑡 = 𝑡𝑡0 + 𝑡𝑡1 ∙
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

 (3)

�
(𝑡𝑡0, 𝑡𝑡1)𝐴𝐴 = (19.1 ℎ𝑟𝑟, 123.9 ℎ𝑟𝑟 ∙ 𝑚𝑚−2)
(𝑡𝑡0, 𝑡𝑡1)𝐸𝐸 = (15.5 ℎ𝑟𝑟, 100.3 ℎ𝑟𝑟 ∙ 𝑚𝑚−2)

11

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

This means that a manufacturing time
constraint can be expressed in the constraint
diagram with a vertical line given in (4)

𝑊𝑊
𝑆𝑆

= 𝑔𝑔 ∙ 𝑚𝑚1 +
𝑡𝑡1 ∙ 𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)

𝑡𝑡 − 𝑡𝑡0
 (4)

Once all relevant mission and manufacturing
constraints are plotted, the existence of a design
space may be revealed. If a design space exists as
highlighted in Fig. 8, there will be an area
representing feasible combinations of power-to-
weight and wing loading in-between constraints.
With the choice of battery, propeller, and motor,
the available power-to-weight is represented
using a new ‘component selection’ constraint.
Available power is indeed determined by the
selection of components, and all feasible designs
are found along a single component selection
curve representing the available power-to-weight
ratio for various wing loadings and thus various
wing areas. The equation corresponding to this
curve is given in (5).
𝑃𝑃
𝑊𝑊

=
𝑃𝑃

𝑔𝑔 ∙ �𝑚𝑚𝑐𝑐 + 𝑚𝑚0 + 𝑚𝑚1 ∙
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

�

(5)

With a given wing-loading selection, the wing
area is calculated using the structure weight and
the off-the-shelf component weights. The take-
off, landing, best endurance, and best range
speeds can then be estimated.

Fig. 8. Constraint diagram (Four 28 W

motors and one 3-cell 5,800 mAh battery)

Multicopter performance estimation
The multicopter family is built around two

modular designs represented in Fig. 9. One
design is a quadcopter, while the other is a
hexacopter. Both designs use various off-the-
shelf electronic components that are fitted on a
tailor-made structure. The structure is built with
a central hub hosting most of the electronics and
payload, and four or six arms housing the
electronic speed controllers, the motors, the
propellers, and the multicopter landing skids.

Fig. 9. Quadcopter and hexacopter

The sizing of the multicopter is performed
using a power-based and energy-based method.
Experimental wind-tunnel data [24] for the lift
and drag coefficients of the multicopter structure
in forward flight is used to create surrogate
models of the lift and drag coefficients at
different pitch angles γ. These surrogate models
are used during the trim analysis to estimate the
multicopter attitude (αTPP, γ) at any given speed
Vinf and climb rate Vc as described in Fig. 10. In
turn, this enables the estimation of the required
thrust using a simple point-mass balance of
forces.

Fig. 10. Balanced of forces for multicopter

The required thrust is used next to estimate the
rotor angular speed, the induced velocity, and the
required power as highlighted in Fig. 11. This is
carried out using blade element momentum
modeling corrected for low Reynolds numbers
[25]. The induced velocity is needed to estimate
the download on the multicopter structure. As a
result, an iterative procedure is required to
converge on pitch angle, thrust, rotor angular
speed, and required power.

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

12

Fig. 11. Multicopter power requirement
With the ability to estimate power in any flight

condition, the required power is calculated for
each mission leg and each maneuver specified by
the user. The best endurance and best range
speeds are estimated for missions that do not
specify any speed. In order to create a
multicopter design, the motor, propeller, and
battery combinations are exhaustively explored
using the process highlighted in Fig. 12.

Fig. 12. Feasible multicopter design search

The multicopter arm length is determined by
the propeller diameter to ensure sufficient
clearance around the propellers. Consequently,
the manufacturing time, which depends only on
the multicopter arm length and choice of
manufacturing machine, is essentially driven by
the propeller diameter selection.

3.1.6 Use Cases
The MBSE approach is exercised on two use

cases: a concept capability exploration use case
and an uncertainty propagation use case.

Case 1: Concept Capability Exploration
For the concept capability exploration, the

corresponding workflow is articulated around
four main steps highlighted in Fig. 13.

Fig. 13. UAV design process workflow for the

capability exploration case
The first step is a ‘concept generator’ and its

function is to generate a design platform from the
structure tree that adheres to the defined
structural interface specifications. Having
generated the concept, a ‘sizing and synthesis’
workflow is utilized to analyze the performance
of the vehicle. The sizing and synthesis workflow
is comprised of the ‘constraint analysis’ and the
‘mission analysis’ and it iteratively sizes the
vehicle by altering the scalable parameters in the
structure tree while ensuring that mission
requirements are met. During the process of
sizing, validation of mission requirements is
performed until a feasible design is found, if one
exists. After having produced a design, its
performance is evaluated using metrics of
interest in the ‘metrics computation discipline’ to
estimate any additional capability over the
minimum performance requirement stated by the
user. This additional capability typically results

Concept Capability Exploration: Design Process

Concept
Generator

Sizing and Synthesis

Constraint
Analysis

Mission
Analysis

Metrics
Computation

𝑆𝑆𝑡𝑡𝑟𝑟𝑢𝑐𝑡𝑡𝑢𝑟𝑟𝑒 𝑇𝑟𝑟𝑒𝑒 {𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}

{𝐸𝑛𝑒𝑟𝑟𝑘𝑘𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑑}

{𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡} {𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑡𝑟𝑟𝑎𝑖𝑛𝑡𝑡𝑠

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑃𝑟𝑟𝑜𝑓𝑖𝑙𝑒

Flight Path Angle
Forward Velocity
Vertical Velocity

Tip Path Plane
Angle of Attack

Required Thrust

Modified BEMT for
Low Re #

Required Power

Balance of Forces

Power Requirement

Vehicle Mass
Vehicle Geometry

Atmos. Density

Vertical Drag
Estimation

Yes
No

Induced Velocity

Rotor RPM

Converged?

Multicopter
Arm Mass

Component Mass
Payload Mass

Hub Mass

Motor & Propeller
Combination

Battery

Leg Power
Requirement

Leg Energy
Requirement

Mission Energy
Requirement

Mission Power
Requirement

Add Leg?

Battery
Sufficient?

Motor
Sufficient?

Feasible Multicopter Design

Multicopter
Mass

Mass Analysis

Mission Analysis

Yes, iterate on legs
No

Yes Yes

Ite
ra

te
 o

n
ba

tte
ry

, m
ot

or
,

an
d

pr
op

el
le

r

NoNo

Leg Time

Max Batter Capacity
Max Motor Power

13

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

from the choice of off-the-shelf components that
may exceed the minimum required capability.

Fig. 14 illustrates the manufacturing process
workflow for the concept capability exploration
case. The manufacturing process starts upon
completion of the design process when a feasible
design is identified. In such a scenario, the
manufacturing process starts with the ‘machine
selector’, whose role is to select the set of
machines available. The machine selector
module ensures that a machine is compatible
with the designed product and associated
manufacturing process. Once a compatible
machine is selected, the ‘model generator’ is
triggered in order to create a computer-aided
design (CAD) model of the design with the
scalable parameter and components updated
according to the outcome of the design process.
The CAD model is exported next to a format
usable by additive manufacturing or laser-cutting
machines. A ‘process simulator’ discipline is
then launched in order to estimate the
manufacturing time to create the various tailor-
made scalable parts. Finally, a ‘metrics
computation’ block is triggered to compute the
total cost of the product. The cost is estimated by
summing the price of the off-the-shelf
components and by adding a manufacturing cost
representing the cost of producing the different
parts (material and machine amortization).

Fig. 14. Workflow representing the

manufacturing process analysis for the UAV

Case 2: Uncertainty Propagation
For the uncertainty propagation case, a design

is assumed to be preselected and the behavior of
various metrics of interest is studied as technical
and technological uncertainties are introduced.
The workflow remains identical to that of the
concept capability exploration case, except that
the concept generator discipline is removed. This

workflow is illustrated in Fig. 15. The workflow
for the manufacturing process remains identical
to the concept capability exploration case.

Fig. 15. Workflow for uncertainty

quantification during design process

 Analysis
This section documents the analysis setup

used to investigate the two use cases of interest.
Table 2 summarizes the set of parameters
identified as being key metrics of interest being
tracked over the course of the analyses.

Table 2: Key metrics used to evaluate the
various UAV concepts generated

Design
Parameters

Manufacturing
Parameters

Mission performance Manufacturing Time
Maximum Range Material Cost

Maximum Endurance Total Cost

For the first use case, a screening design of
experiments is performed to analyze the concept
capabilities. For the second use case, Monte
Carlo simulations are implemented to estimate
the impact of technological uncertainties related
to battery technology (specific energy density)
and material characteristics (thickness of
additively manufactured parts). The uncertainty
in battery technology is attributed to the
improvements in battery specific energy density
over time. An annual growth of 5% is assumed
[26] [27] and the analysis is performed to assess
the capability of various UAV architectures
around the 2030 timeframe. Similarly, the
uncertainty in material characteristics represents
future improvements in additive manufacturing.
The availability of better manufacturing
materials and better manufacturing techniques
will enable a reduction of the factor-of-safety
associated with the thickness of the various parts
designed. As a result, the thicknesses of shelled
and beam components are probabilistically
varied.

Concept Capability Exploration: Manufacturing Process

Machine
Selector

Model
Generator

Process
Simulator

Metrics
Computation

𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡 {𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝑀𝑎𝑐ℎ𝑖𝑛𝑒}

{𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑡𝑢𝑟𝑟𝑖𝑛𝑘𝑘 𝑇𝑖𝑚𝑚𝑒}

{𝐶𝐴𝐷 𝑀𝑜𝑑𝑒𝑙}

𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡∷ 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑡𝑢𝑟𝑟𝑖𝑛𝑘𝑘 𝑃𝑃𝑟𝑟𝑜𝑐𝑒𝑠𝑠

{𝐶𝐴𝐷 𝑀𝑜𝑑𝑒𝑙}

Uncertainty Quantification: Vehicle Sizing
Sizing and Synthesis

Constraint
Analysis

Mission
Analysis

Metrics
Computation

𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡

{𝐸𝑛𝑒𝑟𝑟𝑘𝑘𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑑}

{𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡} {𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}
𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑡𝑟𝑟𝑎𝑖𝑛𝑡𝑡𝑠

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑃𝑟𝑟𝑜𝑓𝑖𝑙𝑒

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

14

The uncertain battery specific energy
improvement is represented using a truncated
normal distribution (truncated at 10% below and
above the mean) with a coefficient of variation of
5%. The mean value accounts for the expected
improvement over time from the current average
specific energy density of 138 Wh/kg to
228 Wh/kg by 2030, with upper and lower limits
set at 202 Wh/kg and 247 Wh/kg respectively.
The uncertain improvements in material
characteristics is modeled using a uniformly
distributed factor-of-safety ranging from 0.7 to
1.0 and representing the relative thickness of
additively manufactured components (current
baseline value set at 1.0)

3.2.1 Visualization and results
The following paragraphs summarize some of

the results generated from the analyses. The top
graph of Fig. 16 plots the manufacturing time
against the maximum endurance for feasible
designs. One salient result is that only endurance-
focused fixed-wing and quadcopter vehicles can
meet the 48 hours manufacturing time constraint.
While fixed-wing vehicles generally outperform
multicopters in terms of endurance and range,
these additional capabilities come at the cost of
generally longer manufacturing times. Unless
there is a clear need for vertical take-off and
landing, a fixed-wing vehicle seems to be the
preferred solution when the mission length is
unknown at the time of launch given that these
vehicles offer more range and more endurance at
similar weights.

Fig. 16. UAS capabilities

Fig. 17 highlights the impact of incorporating
technological uncertainties on two product
variants, namely the endurance-focused fixed-
wing and the quadcopter. The figure indicates
that the sensitivity to the material and
manufacturing uncertainties are comparatively
greater for the fixed-wing vehicle. The sensitivity
to the battery specific energy is greater for the
quadcopter.

Fig. 17. Impact of technology uncertainties

on manufacturing time and endurance

4 Conclusion and future work
An executable environment for the on-

demand design and manufacture of small UAS
has been developed. This environment relies on
the elicitation of required mission and
performance capabilities. Using natural language
processing, these capabilities are translated into
engineering requirements. A sizing and synthesis
environment for small UAS is used next to
design fixed-wing and multicopter vehicles
satisfying these requirements. Real-time tracking
of requirements enables the user to identify if and
when requirements cannot be made, and whether
these requirements should be relaxed. Computer-
aided design models are automatically created
and sent to manufacturing machines for
production and assembly. In addition, the
environment enables the investigation of the
capabilities of small UAS architectures, as well
as the study of the impact of technological
uncertainties on small UAS capabilities.

Future work will include the investigation of
new architectures such as a hybrid fixed-wing
vehicle featuring rotors for vertical take-offs and
landings.

0
50

100
150
200
250
300
350
400

0 1000 2000 3000 4000 5000

M
an

uf
ac

tu
rin

g
Ti

m
e

(h
r)

Max. Endurance (s)

AGILITY
ENDURANCE
HEXACOPTER
QUADCOPTER

0
50

100
150
200
250
300
350
400

0 1 2 3 4

M
an

uf
ac

tu
rin

g
Ti

m
e

(h
r)

Total Mass (kg)

0
25
50
75

100
125
150
175
200

0 1 2 3 4

M
ax

. R
an

ge
 (

km
)

Total Mass (kg)

28

29

30

31

32

33

34

0 200 400 600 800 1000

M
an

uf
ac

tu
rin

g T
im

e
(h

r)

Max. Endurance (s)

BASELINE QUADCOPTER
IMPROVED QUADCOPTER
BASELINE ENDURANCE
IMPROVED ENDURANCE

Improvement
Uncertainty

Improvement
Uncertainty

15

ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID
MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH

References

[1] Federal Aviation Administration, "You & UAS,"

FAA Safety Briefing, Washington, DC, 2017.
[2] U.S. Army, "U.S. Army Roadmap for Unmanned

Aerial Systems 2010-2035," U.S. Army, Ft
Rucker, AL, 2010.

[3] A. Cheng, Z. Fisher, R. Gautier, K. D. Cooksey,
D. N. Mavris and N. Beals, "A Model-Based
Approach to the Automated Design of Micro-
Autonomous Multirotor Vehicle Systems," in
AHS Forum 72, West Palm Beach, FL, 2016.

[4] Z. C. Fisher, D. Locascio, K. D. Cooksey, D. N.
Mavris and E. Spero, "ADAPT DESIGN: A
methodology for enabling modular design for
mission specific SUAS," in 42nd Design
Automation Conference, Charlotte, NC, 2016.

[5] Z. Fisher, K. D. Cooksey and D. N. Mavris, "A
model-based systems engineering approach to
design automation of SUAS," in 2017 IEEE
Aerospace Conference, Big Sky, MT, 2017.

[6] D. Locascio, C. Ramee, K. D. Cooksey K and D.
Mavris, "A Model-Based Approach to the
Automated Design of Small Unmanned
Airplanes," in AIAA AVIATION 2015,
Washington, DC, 2015.

[7] P. Mangum, Z. Fisher, K. D. Cooksey, D.
Mavris, E. Spero and J. Gerdes, "An Automated
Approach to the Design of Small Aerial Systems
Using Rapid Manufacturing," in ASME Design
COnference, Boston, MA, 2015.

[8] J. Humann and E. Spero, "Modeling and
simulation of multi-UAV, multi-operator
surveillance systems," in 2018 Annual IEEE
International Systems Conference (SysCon),
Vancouver, BC, Canada, 2018.

[9] L. Petnga, "Constraint-driven Design
Specification for Small Unmanned Aircraft
Systems," in 2018 AIAA Aerospace Sciences
Meeting, Kissimmee, Florida, 2018.

[10] INCOSE, Systems Engineering Handbook,
INCOSE, 2007.

[11] NDIA Systems Engineering Division M&S
Committee , Final Report of the Model Based
Engineering (MBE) Subcommittee, NDIA, 2011.

[12] L. E. Hart, "Introduction To Model-Based
System Engineering (MBSE) and SysML," 30
July 2015. [Online]. Available:
www.incose.org/docs/default-source/delaware-
valley/mbse-overview-incose-30-july-2015.pdf.

[13] J. A. Estefan, "Survey of Model-Based Systems
Engineering (MBSE) Methodologies," INCOSE,
2008.

[14] K. A. Reilly, S. J. Edwards, R. S. Peak and D. N.
Mavris, "Methodologies for Modeling and
Simulation in Model-Based Systems Engineering

Tools," in AIAA SPACE 2016, Long Bech, CA,
2016.

[15] S. Balerstrini-Robinson, D. F. Freeman and D. C.
Browne, "An object-oriented and executable
SysML framework for rapid model
development," in 2015 Conference on Systems
Engineering Research, Procedia Computer
Science 44, 2015.

[16] A. A. Yassine, "An Introduction to Modeling and
Analyzing Complex Product Development
Processes Using the Design Structure Matrix
(DSM) Method," University of Illinois at
Urbana-Champaign, 2004.

[17] T. Browning, "Applying the design structure
matrix to system decomposition and integration
problems: a review and new directions," IEEE
Transactions on Engineering Management, Vol:
48, Issue: 3, pp. 292 - 306, 2001.

[18] K. Forsberg and H. Mooz, "The Relationship of
System Engineering to the Project Cycle," in The
12th INTERNET World Congress on Project
Management, Oslo, Norway, 1994.

[19] C. D. Manning and H. Schütze, Foundations of
Statistical Natural Language Processing,
Cambridge, Massachusetts: The MIT Press,
1999.

[20] M.-C. de Marneffe and C. D. Manning, "Stanford
typed dependencies manual," Stanford
University, 2008, rev. 2016.

[21] T. Mikolov, I. Sutskever, K. Chen, G. Corrado
and J. Dean, "Distributed representations of
words and phrases and their compositionality,"
Neural Information Processing Systems, vol. 26,
p. 3111–3119, 2013.

[22] "nummod: numeric modifier," 30 June 2018.
[Online]. Available:
http://universaldependencies.org/en/dep/nummod
.html.

[23] J. D. Mattingly, W. H. Heiser and D. T. Pratt,
Aircraft Engine Design, Reston, VA: AIAA,
2002.

[24] N. Willard, "Multirotor Aerodynamics ," Georgia
Institute of Technology, 05 2016. [Online].
Available:
https://www.rcgroups.com/forums/showatt.php?a
ttachmentid=8993682&d=1463328343.
[Accessed 01 07 2018].

[25] M. H. McCrink and J. W. Gregory, "Blade
Element Momentum Modeling of Low-Re Small
UAS Electric Propulsion Systems," in 33rd AIAA
Applied Aerodynamics Conference, Dallas, TX,
2015.

[26] J. Janek and W. G. Zeier, "A solid future for
battery development," Nature Energy, vol. 1,
2016.

CEDRIC JUSTIN, ARUN RAMAMURTHY, NATHAN BEALS, ERIC SPERO, DIMITRI MAVRIS

16

[27] C.-X. Zu and H. Li, "Thermodynamic analysis
on energy densities of batteries," Energy
Environ. Sci, vol. 4, no. 8, p. 2614–2624, 2011.

[28] M.-C. de Marneffe and C. D. Manning, "Stanford
typed dependencies manual,"
http://nlp.stanford.edu/downloads/lex-
parser.shtml, 2008.

Contact Author Email Address
For information concerning this research,

please contact Cedric Justin:
email: cedric.justin@gatech.edu

Copyright Statement
The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of any
third party material included in this paper, to publish it as
part of their paper. The authors confirm that they give
permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS 2018
proceedings or as individual off-prints from the
proceedings.

mailto:cedric.justin@gatech.edu

	1 Introduction
	1.1 Literature Review
	1.2 Problem Formulation
	1.3 Description of Application

	ON-DEMAND SMALL UAS ARCHITECTURE SELECTION AND RAPID MANUFACTURING USING A MODEL-BASED SYSTEMS ENGINEERING APPROACH
	2 Model-Based Systems Engineering Approach
	2.1.1 SysML and Object-Oriented Systems Engineering Methodology
	2.1.2 Towards an executable SysML-based MBSE Framework

	3 Methodology
	3.1.1 Modeling UAS
	3.1.2 Requirements Modeling
	3.1.3 Structure Modeling
	3.1.4 Parametrics Modeling
	3.1.5 Vehicle Sizing and Synthesis Workflow
	Fixed-wing sizing and synthesis
	Multicopter performance estimation

	3.1.6 Use Cases
	Case 1: Concept Capability Exploration
	Case 2: Uncertainty Propagation

	3.2 Analysis
	3.2.1 Visualization and results

	4 Conclusion and future work
	References

