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Abstract  
Small Unmanned Aircraft Systems (UAS) 

have become ubiquitous over the past decade. 
This is in part due to the convergence of many 
new technologies relevant for UAS applications. 
This offers opportunities for new architectures 
and new designs of UAS not previously feasible. 
As engineering and acquisition organizations 
focus on small UAS as possible solutions to 
bridge capability gaps identified in future 
operational environments, a need has emerged to 
better understand the relationships between 
requirements, system architectures, and 
technologies. An integrated and executable 
system analysis capability featuring requirement 
analysis, automated design, as well as rapid 
prototyping and manufacturing through additive 
manufacturing, has been developed. It relies on 
an executable framework based on a model-
based systems engineering approach to the 
design of small UAS. A use case is demonstrated 
with the design and manufacture of a small UAS 
satisfying the need of expeditionary forces for 
rapid development of tailor-made capabilities.  

1 Introduction 
The past decade has seen a dramatic increase 

in the number of small Unmanned Aircraft 
Systems (UAS) being used for recreational, 
commercial, and military applications. The 
number of applications suitable for small UAS 
operations runs a gamut never previously 
anticipated, from automated package delivery to 
remote sensing and weapon delivery. According 
to recent estimates from the Federal Aviation 
Administration [1], there are currently more than 
750,000 small UAS operating in the National 

Airspace System. Focusing more closely on U.S. 
Army small UAS operations, these systems are 
deployed mostly to support tactical operations 
through the collection of intelligence, 
surveillance, and reconnaissance information. 
Owing to the time-sensitivity of these operations, 
these systems would be best deployed on-
demand to acquire intelligence in real time. In 
fact, the U.S. Army UAS roadmap for 2010-2035 
[2] recommends that UAS be used to enable 
decentralized decision-making stating that: 

 

“UAS require and enable accelerated multi-
echelon, decentralized decision-making, and 

execution, significantly changing the tempo and 
dynamics of operations. Lower echelon 

leadership must be empowered with authority 
and bandwidth to employ UAS as their changing 

situation dictates, operating at a tempo that is 
faster than higher echelon leadership can 

affect.”  

 

However, the logistics involved with 
procuring small UAS means that latencies are 
introduced, which can adversely impact the 
gathering of intelligence ‘on-demand’. A 
paradigm shift is needed so that small UAS can 
be designed, deployed, and operated at the lower 
echelon of leadership to ensure an appropriate 
level of reactivity. In this context, an ‘on-
demand’ solution is a solution for which an asset 
appropriate for the mission is made available 
within a reasonable time-frame. Because 
equipping users with small UAS assets able to 
meet unforeseen needs poses design and 
logistical challenges, ‘on-demand’ solutions also 
require on-demand requirement analysis, ‘on-
demand’ design, and ‘on-demand’ 
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manufacturing. Consequently, to ensure that the 
needs of users are properly identified and met, 
the following capabilities need to be developed: 

• A process to elicit and analyze customer 
requirements 

• A process to generate designs in close to real-
time 

• A process usable by customers unfamiliar 
with the design of small UAS 

• A manufacturing process usable near the 
point-of-need to limit transportation delays 

• A visualization interface to convey the need 
for the relaxation of requirements when 
requirements are conflicting 
Within the U.S. Army aviation community, 

engineering and acquisition organizations are 
beginning to focus on small, hand-held, portable 
UAS as materiel solutions to capability gaps 
envisioned in future complex operational 
environments. What is lacking however is an 
understanding of the relationships between 
requirements, UAS architectures, and 
technologies which can support the assessment 
of these systems in future environments. An 
integrated system analysis capability based on 
analysis, prototyping, and experimentation can 
provide a hands-on way for a wide range of 
decision-makers to gain a quantitative 
understanding of how design decisions drive and 
are driven by the technologies on-hand. 

Leveraging existing efforts in the fields of 
automated design and rapid manufacturing, this 
research aims at providing a framework bringing 
together requirements analysis, automated 
design using model–based systems engineering 
techniques, visualization highlighting the 
capabilities of various UAS architectures, rapid 
prototyping to verify and validate requirements, 
and finally, rapid manufacturing to deploy assets 
on-demand. 

 Literature Review 
The capability to perform automated design 

given a set of requirements has been previously 
investigated. Cheng et al. [3] study the use of 
component models to generate feasible 
multicopter designs using a model-based systems 
engineering approach. Fisher et al. [4] investigate 
the use of a modular design process in order to 
generate a family of multicopter and fixed-wing 

vehicle designs meeting specific mission 
requirements. Fisher et al. [5] and Locascio et al. 
[6] further refine the modular design process 
using model-based systems engineering 
techniques to automate the design process.  

One enabler of an ‘on-demand’ solution is the 
ability to perform in-situ prototyping and 
manufacturing. New manufacturing techniques 
such as additive manufacturing, enable both the 
rapid manufacturing of unique systems and the 
forward-deployment at the point-of-need. In turn, 
this enables users to rapidly create prototype 
solutions to address unforeseen or unanticipated 
problems. Additive manufacturing applied to 
rapid prototyping and manufacturing has been 
previously investigated by Mangum et al. [7] for 
small multicopters using a simple hover-based 
energy and endurance analysis. 

While research has been carried out to 
develop model-based representations of small 
UAS and to automate design and manufacturing 
processes, few previous efforts have focused on 
understanding the capabilities of various UAS 
architectures and the impact of future 
technologies on these capabilities. 

 Problem Formulation 
Owing to the modularity of small UAS, 

investigating the capabilities offered by different 
architectures requires a flexible framework in 
which design and configuration changes can be 
traced and evaluated quickly. Established 
approaches to the design of complex systems 
typically involve multiple analysis tools where 
documents describing the system being analyzed 
are passed around. Given the modularity of UAV 
systems, this approach can be slow and tedious 
owing to the necessity for manual configuration 
of the numerous documents involved. The nature 
of the documents as well as their possible lack of 
readability may limit transparency, thus 
hindering the ability of designers to immediately 
assess when and where parameters of interest are 
changed. 

To address this possible lack of transparency 
during design, researchers [4] [5] [8] [9] have 
proposed a model-centric approach which 
ensures that a set of ‘models’, defined by and 
visible to the designer, dictates the flow of 
information during the design process. An 
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inherent feature of the model-centric approach is 
the ability to create models at multiple levels of 
abstractions and have these models interact with 
each other. This multi-layered abstraction 
approach enables quick replacements of modular 
entities, thereby enabling the investigation of 
‘variants’ of existing designs [5]. The following 
subsections detail the implementation of an 
executable model-centric framework and its 
application to design space exploration and 
probabilistic analyses of various UAS concepts. 

 Description of Application 
Throughout this research, a single set of 

requirements defining a UAV mission is used to 
illustrate the proposed approach. The customer is 
an expeditionary warrior who describes the 
intended reconnaissance mission using natural 
language as highlighted in Table 1. The UAV is 
launched during a covert mission and retrieved 
later at a home base.   

Table 1: Use Case Mission Description 
Phase Description 

Manufacture The UAV shall be manufactured within 
48 hours. 

Take-off The UAV shall be hand launched and shall clear 
a 10 m high forest canopy within 50 m. 

Cruise 
Climb 

The UAV shall climb to a height of 100 m above 
ground level at a rate of 1.5 m/s within 600 m. 

Cruise The UAV shall fly a distance of 1,800 m within 
2 min. 

Loiter The UAV shall loiter over the point of interest 
for at least 5 minutes. 

Cruise The UAV shall fly a distance of 2,700 m to a 
retrieval point within 3 min.  

Landing The UAV shall land within 15 m on a turf field 
without damage. 

All The UAV shall weigh at most 5 kg and shall 
carry a payload of 0.15 kg 

2 Model-Based Systems Engineering 
Approach 

A Model-Based Systems Engineering 
(MBSE) approach [10] builds on the model-
centric view established by Model-Based 
Engineering (MBE) [11] and extends it to the 
realm of systems engineering. The model-centric 
view of MBE uses models as an integral part of 
establishing a baseline. The MBSE approach 
relies on the development of a baseline made of 
elements necessary to the life-cycle management 
of a product. This includes activities such as 
requirements analysis, performance analysis, 
design optimization, as well as requirements 

verification and validation. Thus, the MBSE 
framework accounts for all the elements of the 
life-cycle of the product, from the beginning of 
the conceptual design phase with the definition 
and handling of requirements, to the detailed 
design and manufacturing, and to the later life-
cycle phases of validation, operations support, 
and maintenance. Overall, an MBSE framework 
improves communication across development 
teams, reduces design cycle times, and reduces 
risks through the identifications of failures earlier 
in the design cycle [12]. 

2.1.1 SysML and Object-Oriented Systems 
Engineering Methodology 

While MBSE provides a framework to 
perform systems engineering-oriented design, a 
language and a methodology are needed to 
enable the development of a product life-cycle 
model. A comprehensive survey of 
methodologies for the application of MBSE is 
provided by Estefan [13]. A review of modeling 
languages suitable for MBSE implementation is 
performed by Reilley [14]. Based on their 
findings, the Systems Modeling Language 
(SysML) is selected for this research in order to 
model small UAS as it provides a modeling 
language through the extension of a subset of 
Unified Modeling Language (UML) protocols. 
The four key pillars of SysML are: 
• The structure elements and diagrams, which 

describe the components making up the 
system and provides a definition of permitted 
interactions between these components 

• The behavior element and diagrams, which 
dictates the functional and behavioral aspects 
of the system 

• The requirements, which captures the desired 
characteristics in terms of system behavior, 
design, and operation 

• The parametrics, which defines relationships 
and bindings between the different attributes 
of the structure package 

2.1.2 Towards an executable SysML-based 
MBSE Framework 

SysML is not inherently executable which 
forces the utilization of external applications and 
model converters to perform the various 
activities pertaining to the design process [5] 
[14]. Moreover, design engineers may not always 
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be familiar with the fundamentals of systems 
engineering, which means that the adaptation to 
the new paradigm of SysML-enabled MBSE can 
be challenging. Given the popularity of the 
Python programming language within the 
engineering community, a light-weight 
executable modeling framework is developed in 
Python to implement the MBSE-enabled design 
and manufacturing of small UAS. This choice of 
programming language as well as the 
architecting of the framework are influenced by 
past research efforts [15]. The new 
implementation makes nevertheless substantial 
modifications over previous work. 

First, owing to the nature of engineering 
design, the framework merges the behaviors and 
parametrics into a single ‘process’. The process, 
formulated as a design structure matrix (DSM) 
[16], defines both behavioral and evaluation 
analyses similarly to the approach adopted in the 
structure elements and diagrams. DSMs are the 
accepted standard for the representation of 
processes in the engineering community [17]. 

Next, elements of the system are represented 
using an abstract data structure named a ‘tree’. 
Interactions between tree elements are defined by 
a new type of standard attribute called ‘interface’ 
added at each node in the tree. This attribute 
dictates the way one node interacts and interfaces 
with another. User-defined functions describing 
interactions are allowed to ensure flexibility in 
the definition and representation of the interface.  

This modified data structure, the 
implementation of design processes as DSMs, 
and the executable nature of the framework, 
enable the rapid re-creation of traditional design 
processes, within the model-centric view, 
without the need for intermediate model 
converters. This enables designers to bypass the 
learning curve associated with traditional SysML 
practices during the development of models.  

3 Methodology 
3.1.1 Modeling UAS 

The modeling of UAS per the specifications 
of MBSE requires the development of 
computational representations of the 
requirements, the system structure, the 
component interfaces, and the processes 
associated with the design and manufacturing 

activities. The following sections detail the 
development of models necessary to analyze the 
capabilities of different UAS architectures, to 
evaluate their suitability for specific missions, 
and to study the propagation of technological and 
technical uncertainties to system-level metrics of 
interest. 

3.1.2 Requirements Modeling 
The traditional Forsberg and Mooz Systems 

Engineering ‘Vee’ model [18] relies on having 
independent processes for the decomposition of 
requirements, and their verification during 
manufacturing and testing. While requirements 
verification and validation are essential elements 
in the automation of design processes, the 
decoupled approach to the performance 
verification present numerous issues such as the 
need for fabrication prior to the start of the 
verification, the lack of transparency in the 
requirements flow and during decisions, and an 
increase in design cycle time and cost. The 
presence of an executable MBSE framework, in 
which requirements are directly mapped to 
metrics of interest, has been identified as a means 
to mitigate the challenges associated with this 
decoupled approach. Indeed, when models are 
updated, analyses associated with these updated 
models are automatically triggered and yield 
updated metrics of interest indicating whether 
requirements are satisfied.  

For the development of the requirements, two 
additional prerequisites are imposed: 
• Requirements are stated in natural language, 

which means they need to be translated from 
natural to engineering language using 
appropriate metrics. 

• The framework needs to be capable of 
establishing relationships between elements 
of the model and stated requirements. 

The elicitation of requirements often leads to 
a description of the vehicle’s desired 
functionality which can be used to derive the 
vehicle’s target performance measures. For 
instance, users may specify requirements in 
terms of the mission profile which are then 
converted into engineering metrics for the design 
process. To achieve these goals, natural language 
processing (NLP) [19] and text parsing are used. 
The process used to translate mission attributes 
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into verifiable requirements is illustrated in Fig. 
1 with the mission highlighted in Table 1 and 
using the cruise segment description: 

“The UAV shall fly a distance of 1,800 m 
within 2 min.” 

First, a dependency tree [20] is built to 
identify the elements of the sentence, thereby 
breaking complex requirements into sets of 
simpler requirements. In the above example, 
there are two objects of prepositions. Thus, the 
cruise requirement can be decomposed into two 
requirements: one deals with the range associated 
with the attribute ‘distance’ and corresponding 
value ‘1800 m’, while the other deals with the 
duration associated with an implicit attribute 
‘time’ and corresponding value ‘2 min’. 

Second, once a requirement is decomposed 
into its constituents, a vector embedding [21] is 
generated for each individual constituent. This 
vector represents the projection of the natural 
language requirement into an n-dimensional real 
space where similar requirements occupy a 
common region of the space. This is exploited to 
identify the nature of the requirement using a pre-
trained classifier. This classification algorithm 
provides a description of the nature of the 
requirement which is then passed downstream to 
subsequent steps. 

Third, a parameter and value identification 
algorithm is used to identify numerical 
parameters. A dependency tree is generated to 
identify the ‘nummod’ tags [22] which 

corresponds to values associated with parameter 
modifiers. For instance, the numbers 1,800 and 2 
are identified as the values of interest, and for 
each, the association of a parameter is attempted. 
Both the parameters ‘distance’ and ‘time’ are 
identified via a mapping of the objects of 
prepositions associated with their numerical 
values to a predetermined set of parameters. The 
algorithm relies on the use of a set of pre-
specified mappings to identify appropriate 
parameters for unspecified requirement 
parameters. The nature of the requirement serves 
as an input to this algorithm to handle special 
cases where requirement parameters are not 
cardinal numbers. This is for instance the case for 
the vehicle launch mechanism (hand launch) or 
the type of landing surface (turf). 

Finally, the relationships that exist in the 
given description are used to identify the source 
node. This process of identification of the source 
node enables the extraction of the validation 
relationship for the requirement. In the above 
example, the relationship extraction algorithm 
identifies that for both requirements, distance and 
time, the nominal subject is the noun ‘UAV’. 
This noun should match one node in the 
structures package whose name or description 
matches the target identified by the relationship 
identification algorithm. Corresponding 
parameters (distance and time) or their mappings 
(distance mapped to range) on that node can then 
be populated accordingly. 

 
Fig. 1. Algorithm for the processing of requirements using Natural Language Processing 

“The UAV shall fly a distance of 1,800 m within 2 min.”

DET
The UAV 

PROPN
shall
VERB

fly 
VERB

a 
DET

distance 
NOUN

of 
ADP

1,800 
NUM

m 
NOUN

within
ADP

2
NUM

min.
NOUN

det nsubj xcomp dobj
det prep

prep
pobj

nummod

pobj
nummod

STEP 1: 
Decomposition of 
complex requirements 
using dependency graphs

“The UAV shall fly a distance of 1,800 m.” “The UAV shall take time 2 min. to satisfy •.”

ℝ𝑛 ℝ𝑛
(vector embedding) (vector embedding)

STEP 2: 
Generate vector 
embedding to predict 
nature of requirement

duration = 𝟐 mindistance = 𝟏,𝟖𝟎𝟎 m
STEP 3: 
Extract parameter, 
value, comparison

STEP 4: 
Extract relationship 
and structure node

UAV → distance → range UAV → time

ClassifierClassifier
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With this information, the requirement tree is 
ready to be populated with the new subtree 
constructed from the specified description. The 
leaf nodes of this subtree are assigned a unique 
semantic ID and have the attributes of 
description, parameter, value, relationship and 
source. 

To verify the satisfaction of requirements, a 
two-stage approach is taken. First, if a 
requirement has an associated source, parameter, 
relationship, and value, then the evaluated value 
of the parameter of the source node is checked to 
see if the requirement is satisfied. The 
requirement is satisfied, if and only if, its 
children are evaluable and satisfied. Upon 
satisfaction, the evaluation proceeds to a sibling 
requirement node. This is highlighted in Fig. 2 
for the take-off requirement. This recursive 
approach is employed to identify how 
requirements flow from the leaves to the root of 
the tree, therefore providing users with a clear 
picture of the source of infeasibility, if any. 

 
Fig. 2. Process flow for the validation of the 

requirements tree 
The diagrams in Fig. 3 show the SysML 

equivalent of the generated requirement based on 
the description of the cruise requirement of Table 
1. The current natural language processing 
capability is highly tuned to the problem under 
consideration since the lexicon (corpora) used to 
train the algorithm is specific to the small UAS 
application under consideration. 

Fig. 4 on the following page details the 
requirements breakdown that serves to guide the 
evaluation of any design generated. The 
requirements specification is comprised of the 
mission requirement (mission profile, system-
level requirements such as weight, payload etc.), 
and the manufacturing requirement 
(manufacturing time and cost). 

 
Fig. 3. SysML-like representation for the 

generated cruise requirement 

3.1.3 Structure Modeling 
One aim of the research is to contrast different 

architectures of UAS meeting a set of ‘must-
have’ requirements. Consequently, a quick 
evaluation of the different variants is necessary 
and metrics related to their overall design, 
capabilities, and manufacturing performance are 
used for benchmarking purposes.  

Each design variant is defined as a 
combination of a set of compatible components 
and a set of values for the scalable design 
parameters. The purpose of decomposing the 
vehicle is not only to enable the transition from 
one design variant to another by replacement of 
one modular component with another, but also to 
establish the interface specifications for these 
components. The methodology used in the 
modeling of structural elements of the system is 
similar to the one established by Fisher [5]. A 
functional and physical decomposition of the 
vehicle is carried out to identify the nature of the 
vehicle and the set of possible alternatives for the 
components of the system. In parallel, an 
enumeration of the manufacturing alternatives is 
performed to identify the machines that can be 
used to manufacture the product. These 
decompositions form the first layer of the 
‘structure tree’ shown in Fig. 5 and comprised of 
two children: the design and the manufacturing. 
The design child is further decomposed into the 
component systems and architecture alternatives. 

root

Take-off
Other 

Requirements
Subtree

Take-off 
Subtree

Hand 
Launch 

Constraint

Obstacle 
Clearance

Take-off Subtree

• Is root requirement satisfied?
 Is Take-off requirement satisfied?

 Is Hand Launch Constraint satisfied?
 Is Obstacle Clearance cleared?

 Is Other Requirements Subtree satisfied?
 Trigger recursive validation

<<Requirement>>
Cruise Requirement

Id:                  1.3
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value:           -
Constraint:  -
Parameter:  -
Units:        -

<< Requirement >>
Cruise Requirement (A)

Id:                 1.3.1
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value:            1,800
Constraint:  =
Parameter:   “range”
Units:          m

<< Requirement >>
Cruise Requirement (B)

Id:                  1.3.2
Description: “The UAV shall…”

satisfiedBy
Component Node: <<UAV>>

Value:            2
Constraint:   <=
Parameter:  ”time”
Units:            min
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Fig. 4. Requirements breakdown driving the design process for the UAV 
 
 
 

 
Fig. 5. Coupled functional and physical decomposition of the UAV 

 
 

 

Unmanned Aerial Vehicle

Architecture
Vertical 

Take-off & Landing
Conventional 

Take-off

Design Manufacturing

System
Propulsion System Flight Controls System Payload System

Prusa
MK2

Prusa
MK3

Prusa
MK2 MM

Quadcopter
(Scalable)

Hexacopter
(Scalable)

Endurance 
Fixed-Wing

(Scalable)

Agility 
Fixed-Wing

(Scalable)

Propeller

Battery

ESC Servo 
Motor

LIDAR

SONARTelemetryMotor

Ailerons
(Scalable)

Rudder
(Scalable)

Elevators
(Scalable)

Opt. 
Camera

Autopilot IR 
Camera

GPS

Requirement 1: Mission Requirement
• The UAV shall complete successfully 

the mission as per the mission 
description.

Requirement 2: Manufacturing Requirement
• The UAV shall be manufactured within 

48 hours.

Requirement 1.1: Take-off requirement
• The UAV shall be  hand-launched and 

shall clear the 10 m high forest canopy 
within 50 m.

Requirement 1.1.1: Take-off requirement (A)
• The UAV shall be hand-launched.

Requirement 1.1.2: Take-off requirement (B)
• The UAV shall clear an obstacle of 10 m.

Requirement 1.1.3: Take-off requirement (C)
• The UAV shall satisfy the climb requirement within 50 m.

Requirement 1.2: Climb requirement
• The UAV shall climb to a height of 100 m 

above ground level at a rate of 1.5 m/s 
within 600 m.

Requirement 1.2.1: Climb requirement (A)
• The UAV shall climb to a height of 100 m above ground level.

Requirement 1.2.2: Climb requirement (B)
• The UAV shall climb at a rate of at least 1.5 m/s.

Requirement 1.2.3: Climb requirement (C)
• The UAV shall satisfy the climb requirement within 600 m.

Requirement 1.3: Cruise requirement
• The UAV shall fly a distance of 1,800 m 

within 2 min.

Requirement 1.3.1: Cruise requirement (A)
• The UAV shall fly a distance of 1,800 m.

Requirement 1.3.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 2 min.

Requirement 1.4: Loiter requirement
• The UAV shall loiter over the point of 

interest for at least 5 min.

Requirement 1.5: Cruise requirement
• The UAV shall fly a distance of 2,700 m to 

a retrieval point within 3 min. 

Requirement 1.5.1: Cruise requirement (A)
• The UAV shall fly a distance of 2,700 m.

Requirement 1.6: Landing requirement
• The UAV shall land within 15 m on a turf 

field and without damage.

Requirement 1.6.1: Landing requirement (A)
• The UAV shall land within a distance of 15 m on a turf field.

Requirement 1.6.2: Landing requirement (B)
• The UAV shall not be damaged during landing.

Requirement 1.7: Payload requirement
• The UAV shall carry a payload of 0.15 kg.

Requirement 1.8: Weight requirement
• The gross weight of the UAV shall not 

exceed 5kg.

Requirement 2.1: Manufacturing requirement
• The manufacturing time for the UAV shall 

not exceed 48 hours.

Requirement 1.5.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 3 min.
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The architecture subtree is then decomposed 
into alternatives, namely the fixed-wing and the 
multicopter platforms. Each of these platforms is 
further decomposed into two specific product 
families, namely agility-focused and endurance-
focused families for the fixed wing platform and 
quadcopter and hexacopter for the multicopter 
platform.  

The components subtree is functionally 
decomposed into the constituent subsystems: the 
propulsion subsystem, the flight-control 
subsystem, and the payload subsystem. These are 
further physically decomposed to identify the 
constituent components. The propulsion system 
is decomposed into motor, battery, electronic 
speed controller, and propeller. The flight-
control subsystem is decomposed into servo 
motor, electronic speed controller, battery, and 
control surfaces. Since the flight-control system 
and the propulsion system share power from the 
battery, an interface relation is established for 
these subsystems to enforce the shared relation 
between these components. An additional 
interface is defined at the multicopter level which 
dictates the multiplicity for a set of components. 
Similar exercises are undertaken for the payload 
subtree in order to generate the structure tree. 

While this decomposition process defines 
completely the architectural and design space, it 
does not yet account for interactions between the 
different components. These interactions can be 
modeled as physics-based or compatibility-based 
constraints established through the interface 
mechanism. For example, a certain motor may 
require a specific nominal voltage. An interface 
constraint restricting the selection of batteries 
unable to provide this voltage can be established 
for this motor, thereby reducing the set of 
possible variants. One final extension made to 
the structure tree is the indication that multiple 
payloads can be selected. Indeed, it is assumed 
by default that each of the leaf node children of a 
given subtree is incompatible with its siblings, (if 
a vehicle has a battery of a given type, then it 
cannot have a battery of another type as well). 
Such behavior can nonetheless be changed by 
overriding the compatibility interface between 
the components or by specifying the possibility 
of multiple selections at any subtree. 

Having decomposed the entire system, key 
attributes of components are gathered and 
classified into two groups. The first contains 
commercially-off-the-shelf alternatives while the 
second contains specifically designed parts. 
Databases containing specifications are 
established for the commercial off-the-shelf 
alternatives such as batteries, motors, propellers, 
electronic speed controllers and payloads. These 
configurable databases are then used to populate 
the leaf nodes for the appropriate component 
node. The final step in the decomposition is the 
identification of the design parameters for the 
components classified as being specifically 
designed. These, in addition to the design 
parameters at the architectural level, dictate the 
set of scalable parameters that are to be 
considered during the design process. In contrast 
to the methodology established by Fisher [4], 
mappings between scalable parameters are not 
defined within the structure package. Instead, 
they are handled by the processes package and 
the associated design structure matrix.  

Fig. 6 provides a representation of one of the 
component sets providing the SysML-like 
representation for the motor alternatives (only 
two amongst many motors are shown). This 
approach uses a separate section in the block 
diagram for the interfaces assigned to the 
component. 

 

Fig. 6. SysML-like representation of a motor 
and its alternatives 

While the definition of the structure tree and 
the interfaces within are created manually, these 
need to be defined only once for each system 
under study. Indeed, when a component instance 
is created, it is stored in the database at which 

<<ComponentNode>>
Motor

+ uuid: str {id}
+ name: str
+ weight: float [N]
+ kv_rating: float [RPM/V]
+ max_power: float [W]
+ max_current: float [A]
+ diameter: float [mm]
+ resistance: float [Ohm]
+ cost: float [$]
+ compute_power_reqd(rpm: float, load: float)float

<<ComponentInterface>> Battery: voltage

<<ComponentNode>>
Cobra 2814/12

+ name: str = “Cobra 2814/12”
+ weight: float [N] = 1.04967
+ kv_rating: float [RPM/V] = 1390.0
+ max_power: float [W] = 600.0
+ max_current: float [A] = 40.0
+ diameter: float [mm] = 28.0
+ resistance: float [Ohm] = 0.045
+ cost: float [$] = 37.99

<<ComponentInterface>> Battery: voltage >= 7.4

<<ComponentNode>>
Turnigy D2836/11 750KV

+ name: str = “Turnigy D2836/11 750KV”
+ weight: float [N] = 0.69651
+ kv_rating: float [RPM/V] = 750.0
+ max_power: float [W] = 220.0
+ max_current: float [A] = 20.0
+ diameter: float [mm] = 28.0
+ resistance: float [Ohm] = 0.160
+ cost: float [$] = 14.86

<<ComponentInterface>> Battery: voltage >= 7.4
<<ComponentInterface>> Battery: voltage <= 11.1

Node Description

Node Attributes

Evaluation Interfaces

Component Interfaces
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point it can be called upon to recreate the element 
in the structure tree during subsequent use. 
Modifications to already created components are 
possible and result in the creation of a separate 
instance of the component node in the database. 
The ability to modify existing components to 
create new component instances can significantly 
reduce the design cycle time and the workload 
when modeling complex systems. 

3.1.4 Parametrics Modeling 
Traditionally, the function of parametrics in 

SysML is the modeling of physics-based 
relations defining the behavior of elements of the 
system. While such models are applicable to the 
design of a system during the conceptual and 
preliminary phases, detailed design of a system 
often requires discipline-centric (or even multi-
disciplinary) analyses in which multiple 
components and their interactions are 
considered. Given the fact that analyses within 
each discipline can be carried out at different 
levels of fidelity, an extension to the parametrics 
is needed. In order to simplify the computational 
representation of the design workflow, a tree data 
structure is retained. This is a result of the multi-
layered abstraction of the design process. This 
multi-layered abstraction or hierarchy is divided 
into three levels: 
• Workflows, which define the evaluation 

sequence of nested entities and the data flow 
between them 

• Disciplines, which indicate the disciplinary 
analysis that can be performed 

• Analyses, which represent the set of 
alternatives within any disciplinary analysis  
In order to represent the processes involved 

during engineering design, an attempt is made to 
mimic an established standard for their 
representation using design structure matrices. 
Design structure matrices provide a 
representation of the flow of information 
between disciplines and are visually appealing 
for convoluted workflows with numerous 
parameters passed around.  

The workflow element of the framework can 
be viewed as a container which is associated with 
an algorithm. A library of algorithms is provided 
such that a variety of numerical computations can 
be performed, such as design of experiments, 

numerical optimization, and uncertainty 
quantification. This library feature is exploited to 
perform both the capability exploration and the 
uncertainty quantification. Prior to defining the 
characteristics of the workflow, it is nevertheless 
necessary to define the actual process that the 
algorithm will operate on. The workflow can host 
a set of interconnected disciplines, a set of nested 
workflows, or a combination of both. The 
discipline functions as a container for a set of 
analysis owing to its multi-fidelity nature. For a 
discipline to be evaluated, there has to be exactly 
one analysis that is active at any instant of time. 
If a discipline does not need to be evaluated, logic 
can be included to deselect any constituent 
analysis at which point the execution of the 
discipline is skipped until a selection is turned 
back on again. The final layer of the hierarchy is 
the analysis node. The analysis represents the 
actual computation that is performed in the 
workflow. These, in addition to the workflows, 
represent the executable components of the 
framework.  

The executable nature is achieved by the 
registration of an evaluation source for every 
evaluation node which are represented by the 
created workflows and analyses. In the case of 
the workflow, the evaluation source would be an 
algorithm, while in the case of the analysis the 
evaluation source would represent some 
numerical computation. These evaluation nodes 
are then linked to the evaluation ports, which are 
abstract methods definitions on the structure. 
This linkage definition ensures that attributes of 
the structural node are visible to the evaluation 
source. Optional interface specifications, in the 
form of value bindings, can be specified for the 
evaluation sources. The bindings efficiently map 
parameters from the evaluation to and from the 
registered structure node as an evaluation is 
undertaken. These values bindings can also map 
the nodes themselves in cases where multiple 
parameters have to be accessed, thus reducing the 
amount of coding necessary. Interfaces across 
disciplines can be defined at the workflow level 
such that mapping between parameter values are 
efficiently handled upon completion of the 
execution of a discipline. These parameter 
mappings can be defined through equations that 
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dictate the ‘interface’ between scalable 
parameters in the case of the UAS application. 

Using this framework, the design and 
manufacturing process associated with UAS are 
represented as workflows consisting of multiple 
disciplines. The contents of the workflow differ 
depending on the case considered.  

3.1.5 Vehicle Sizing and Synthesis 
Workflow 

The various candidate architectures retained 
require different types of analyses in order to 
check their suitability to fulfill the mission 
requirements and complete the mission.  

Fixed-wing sizing and synthesis 
The fixed-wing vehicle family is built around 

two modular designs shown in Fig. 7. One design 
is optimized for longer endurance and range 
missions, while the other design is optimized for 
agility-based urban missions. These designs are 
modular with a tailor-made structure housing the 
payload as well as other off-the-shelf 
components. The tailor-made structure is 
composed of a fuselage section, as well as a 
wing, vertical tail, and horizontal tail which are 
sized for the mission.   

  
Fig. 7.  Endurance-focused and agility-focused 

fixed-wing baselines 
    The objective of the sizing and synthesis 
analysis is to determine the appropriate wing 
loading and the optimum size of the wing and 
empennage. The vertical and horizontal 
stabilizers of the empennage are sized using the 
tail-volume coefficient method. Wing area is 
therefore the only parameter driving the size of 
the vehicle. The wing loading is determined by 
carrying out Mattingly’s constraint analysis [23] 
which relates power-to-weight and wing loading. 
The analysis is adapted for small vehicles 
operating at low-Reynolds numbers. With the 
constraint analysis, typical performance 
requirements such as take-off constraint, obstacle 
clearance constraint, climb performance 
constraint, cruise speed constraint, service 
ceiling constraint, and landing constraint can be 

accounted for. Several new features are also 
implemented to recognize constraints specific to 
UAVs as well as constraints related to 
manufacturing and the use of off-the-shelf 
components.  

One constraint is related to the ability to 
specify how the UAV is launched. If the vehicle 
is ground-launched, then take-off roll and 
obstacle clearance constraints are implemented. 
If the vehicle is hand-launched, then a maximum 
stall speed constraint is implemented to account 
for the ability of the user to manually launch the 
vehicle.  

A manufacturing constraint is also included to 
represent the time available to produce a mission-
ready UAV. The manufacturing time is directly 
linked to the wing size of the vehicle owing to the 
need to produce more and larger ribs when the 
wing size increases. To be included in a 
constraint diagram, this manufactured constraint 
must be expressed in terms of wing loading. 
First, the structure mass, denoted 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠  and 
defined as the total mass 𝑚𝑚𝑡𝑡 minus the off-the-
shelf electronic component mass 𝑚𝑚𝑐𝑐, is regressed 
against wing area S using experimental data. The 
regression is highlighted in (1) for both agility 
(A) and endurance (E) focused vehicles using 
wing areas ranging from 0.05 m2 to 0.70 m2. 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚0 + 𝑚𝑚1 ∙ 𝑆𝑆 ( 1 ) 

 �
(𝑚𝑚0,𝑚𝑚1)𝐴𝐴 = (0.298 𝑘𝑘𝑘𝑘, 2.629 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−2)
(𝑚𝑚0,𝑚𝑚1)𝐸𝐸 = (0.145 𝑘𝑘𝑘𝑘, 2.034 𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚−2) 

In turn, this regression allows the derivation of 
a relationship (2) between wing loading W/S and 
wing area accounting for the mass of off-the shelf 
components and the standard gravity g. 

𝑆𝑆 =
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

 ( 2 ) 

Using experimental data, a new regression is 
performed to estimate manufacturing time as a 
function of wing surface and thus wing loading. 
This is displayed in (3). 

𝑡𝑡 = 𝑡𝑡0 + 𝑡𝑡1 ∙
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

 ( 3 ) 

�
(𝑡𝑡0, 𝑡𝑡1)𝐴𝐴 = (19.1 ℎ𝑟𝑟, 123.9 ℎ𝑟𝑟 ∙ 𝑚𝑚−2)
(𝑡𝑡0, 𝑡𝑡1)𝐸𝐸 = (15.5 ℎ𝑟𝑟, 100.3 ℎ𝑟𝑟 ∙ 𝑚𝑚−2)  
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This means that a manufacturing time 
constraint can be expressed in the constraint 
diagram with a vertical line given in (4) 

𝑊𝑊
𝑆𝑆

= 𝑔𝑔 ∙ 𝑚𝑚1 +
𝑡𝑡1 ∙ 𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)

𝑡𝑡 − 𝑡𝑡0
  ( 4 ) 

Once all relevant mission and manufacturing 
constraints are plotted, the existence of a design 
space may be revealed. If a design space exists as 
highlighted in Fig. 8, there will be an area 
representing feasible combinations of power-to-
weight and wing loading in-between constraints.  
With the choice of battery, propeller, and motor, 
the available power-to-weight is represented 
using a new ‘component selection’ constraint. 
Available power is indeed determined by the 
selection of components, and all feasible designs 
are found along a single component selection 
curve representing the available power-to-weight 
ratio for various wing loadings and thus various 
wing areas. The equation corresponding to this 
curve is given in (5).   
𝑃𝑃
𝑊𝑊

=
𝑃𝑃

𝑔𝑔 ∙ �𝑚𝑚𝑐𝑐 + 𝑚𝑚0 + 𝑚𝑚1 ∙
𝑔𝑔 ∙ (𝑚𝑚𝑐𝑐 + 𝑚𝑚0)
𝑊𝑊
𝑆𝑆 − 𝑔𝑔 ∙ 𝑚𝑚1

�

  
( 5 ) 

With a given wing-loading selection, the wing 
area is calculated using the structure weight and 
the off-the-shelf component weights. The take-
off, landing, best endurance, and best range 
speeds can then be estimated. 

 
Fig. 8.  Constraint diagram (Four 28 W 

motors and one 3-cell 5,800 mAh battery) 

Multicopter performance estimation 
The multicopter family is built around two 

modular designs represented in Fig. 9. One 
design is a quadcopter, while the other is a 
hexacopter. Both designs use various off-the-
shelf electronic components that are fitted on a 
tailor-made structure. The structure is built with 
a central hub hosting most of the electronics and 
payload, and four or six arms housing the 
electronic speed controllers, the motors, the 
propellers, and the multicopter landing skids.  

  
Fig. 9. Quadcopter and hexacopter 

The sizing of the multicopter is performed 
using a power-based and energy-based method. 
Experimental wind-tunnel data [24] for the lift 
and drag coefficients of the multicopter structure 
in forward flight is used to create surrogate 
models of the lift and drag coefficients at 
different pitch angles γ. These surrogate models 
are used during the trim analysis to estimate the 
multicopter attitude (αTPP, γ) at any given speed 
Vinf and climb rate Vc as described in Fig. 10. In 
turn, this enables the estimation of the required 
thrust using a simple point-mass balance of 
forces. 

 
Fig. 10.  Balanced of forces for multicopter 

The required thrust is used next to estimate the 
rotor angular speed, the induced velocity, and the 
required power as highlighted in Fig. 11. This is 
carried out using blade element momentum 
modeling corrected for low Reynolds numbers 
[25]. The induced velocity is needed to estimate 
the download on the multicopter structure. As a 
result, an iterative procedure is required to 
converge on pitch angle, thrust, rotor angular 
speed, and required power. 
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Fig. 11. Multicopter power requirement 
With the ability to estimate power in any flight 

condition, the required power is calculated for 
each mission leg and each maneuver specified by 
the user. The best endurance and best range 
speeds are estimated for missions that do not 
specify any speed. In order to create a 
multicopter design, the motor, propeller, and 
battery combinations are exhaustively explored 
using the process highlighted in Fig. 12.  

 
Fig. 12. Feasible multicopter design search 

The multicopter arm length is determined by 
the propeller diameter to ensure sufficient 
clearance around the propellers. Consequently, 
the manufacturing time, which depends only on 
the multicopter arm length and choice of 
manufacturing machine, is essentially driven by 
the propeller diameter selection. 

3.1.6 Use Cases 
The MBSE approach is exercised on two use 

cases: a concept capability exploration use case 
and an uncertainty propagation use case. 

Case 1: Concept Capability Exploration 
For the concept capability exploration, the 

corresponding workflow is articulated around 
four main steps highlighted in Fig. 13.  

 
Fig. 13. UAV design process workflow for the 

capability exploration case 
The first step is a ‘concept generator’ and its 

function is to generate a design platform from the 
structure tree that adheres to the defined 
structural interface specifications. Having 
generated the concept, a ‘sizing and synthesis’ 
workflow is utilized to analyze the performance 
of the vehicle. The sizing and synthesis workflow 
is comprised of the ‘constraint analysis’ and the 
‘mission analysis’ and it iteratively sizes the 
vehicle by altering the scalable parameters in the 
structure tree while ensuring that mission 
requirements are met. During the process of 
sizing, validation of mission requirements is 
performed until a feasible design is found, if one 
exists. After having produced a design, its 
performance is evaluated using metrics of 
interest in the ‘metrics computation discipline’ to 
estimate any additional capability over the 
minimum performance requirement stated by the 
user. This additional capability typically results 

Concept Capability Exploration: Design Process

Concept 
Generator

Sizing and Synthesis

Constraint 
Analysis

Mission 
Analysis

Metrics 
Computation

𝑆𝑆𝑡𝑡𝑟𝑟𝑢𝑐𝑡𝑡𝑢𝑟𝑟𝑒 𝑇𝑟𝑟𝑒𝑒 {𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}

{𝐸𝑛𝑒𝑟𝑟𝑘𝑘𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑑}

{𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡} {𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑡𝑟𝑟𝑎𝑖𝑛𝑡𝑡𝑠

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑃𝑟𝑟𝑜𝑓𝑖𝑙𝑒
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from the choice of off-the-shelf components that 
may exceed the minimum required capability. 

Fig. 14 illustrates the manufacturing process 
workflow for the concept capability exploration 
case. The manufacturing process starts upon 
completion of the design process when a feasible 
design is identified. In such a scenario, the 
manufacturing process starts with the ‘machine 
selector’, whose role is to select the set of 
machines available. The machine selector 
module ensures that a machine is compatible 
with the designed product and associated 
manufacturing process. Once a compatible 
machine is selected, the ‘model generator’ is 
triggered in order to create a computer-aided 
design (CAD) model of the design with the 
scalable parameter and components updated 
according to the outcome of the design process. 
The CAD model is exported next to a format 
usable by additive manufacturing or laser-cutting 
machines. A ‘process simulator’ discipline is 
then launched in order to estimate the 
manufacturing time to create the various tailor-
made scalable parts. Finally, a ‘metrics 
computation’ block is triggered to compute the 
total cost of the product. The cost is estimated by 
summing the price of the off-the-shelf 
components and by adding a manufacturing cost 
representing the cost of producing the different 
parts (material and machine amortization). 

 
Fig. 14.  Workflow representing the 

manufacturing process analysis for the UAV 

Case 2: Uncertainty Propagation 
For the uncertainty propagation case, a design 

is assumed to be preselected and the behavior of 
various metrics of interest is studied as technical 
and technological uncertainties are introduced. 
The workflow remains identical to that of the 
concept capability exploration case, except that 
the concept generator discipline is removed. This 

workflow is illustrated in Fig. 15. The workflow 
for the manufacturing process remains identical 
to the concept capability exploration case. 

 
Fig. 15. Workflow for uncertainty 

quantification during design process 

 Analysis 
This section documents the analysis setup 

used to investigate the two use cases of interest. 
Table 2 summarizes the set of parameters 
identified as being key metrics of interest being 
tracked over the course of the analyses. 

Table 2: Key metrics used to evaluate the 
various UAV concepts generated 

Design  
Parameters 

Manufacturing 
Parameters 

Mission performance Manufacturing Time 
Maximum Range Material Cost 

Maximum Endurance Total Cost 

For the first use case, a screening design of 
experiments is performed to analyze the concept 
capabilities. For the second use case, Monte 
Carlo simulations are implemented to estimate 
the impact of technological uncertainties related 
to battery technology (specific energy density) 
and material characteristics (thickness of 
additively manufactured parts). The uncertainty 
in battery technology is attributed to the 
improvements in battery specific energy density 
over time. An annual growth of 5% is assumed 
[26] [27] and the analysis is performed to assess 
the capability of various UAV architectures 
around the 2030 timeframe. Similarly, the 
uncertainty in material characteristics represents 
future improvements in additive manufacturing. 
The availability of better manufacturing 
materials and better manufacturing techniques 
will enable a reduction of the factor-of-safety 
associated with the thickness of the various parts 
designed. As a result, the thicknesses of shelled 
and beam components are probabilistically 
varied.  

Concept Capability Exploration: Manufacturing Process

Machine 
Selector

Model 
Generator

Process 
Simulator

Metrics 
Computation

𝑆𝑆𝑖𝑧𝑒𝑑  𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡 {𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝑀𝑎𝑐ℎ𝑖𝑛𝑒}

{𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑡𝑢𝑟𝑟𝑖𝑛𝑘𝑘 𝑇𝑖𝑚𝑚𝑒}

{𝐶𝐴𝐷 𝑀𝑜𝑑𝑒𝑙}

𝑆𝑆𝑖𝑧𝑒𝑑  𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡∷  𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑡𝑢𝑟𝑟𝑖𝑛𝑘𝑘 𝑃𝑃𝑟𝑟𝑜𝑐𝑒𝑠𝑠

{𝐶𝐴𝐷 𝑀𝑜𝑑𝑒𝑙}

Uncertainty Quantification: Vehicle Sizing
Sizing and Synthesis

Constraint 
Analysis

Mission 
Analysis

Metrics 
Computation

𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑡𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡

{𝐸𝑛𝑒𝑟𝑟𝑘𝑘𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑑}

{𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡} {𝑆𝑆𝑖𝑧𝑒𝑑 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑡}
𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑡𝑟𝑟𝑎𝑖𝑛𝑡𝑡𝑠

𝑅𝑒𝑞𝑢𝑖𝑟𝑟𝑒𝑚𝑚𝑒𝑛𝑡𝑡𝑠 𝑇𝑟𝑟𝑒𝑒 ∷ 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 𝑃𝑃𝑟𝑟𝑜𝑓𝑖𝑙𝑒
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The uncertain battery specific energy 
improvement is represented using a truncated 
normal distribution (truncated at 10% below and 
above the mean) with a coefficient of variation of 
5%. The mean value accounts for the expected 
improvement over time from the current average 
specific energy density of 138 Wh/kg to 
228 Wh/kg by 2030, with upper and lower limits 
set at 202 Wh/kg and 247 Wh/kg respectively. 
The uncertain improvements in material 
characteristics is modeled using a uniformly 
distributed factor-of-safety ranging from 0.7 to 
1.0 and representing the relative thickness of 
additively manufactured components (current 
baseline value set at 1.0)  

3.2.1 Visualization and results 
The following paragraphs summarize some of 

the results generated from the analyses. The top 
graph of Fig. 16 plots the manufacturing time 
against the maximum endurance for feasible 
designs. One salient result is that only endurance-
focused fixed-wing and quadcopter vehicles can 
meet the 48 hours manufacturing time constraint. 
While fixed-wing vehicles generally outperform 
multicopters in terms of endurance and range, 
these additional capabilities come at the cost of 
generally longer manufacturing times. Unless 
there is a clear need for vertical take-off and 
landing, a fixed-wing vehicle seems to be the 
preferred solution when the mission length is 
unknown at the time of launch given that these 
vehicles offer more range and more endurance at 
similar weights.  

 
Fig. 16. UAS capabilities 

Fig. 17 highlights the impact of incorporating 
technological uncertainties on two product 
variants, namely the endurance-focused fixed-
wing and the quadcopter. The figure indicates 
that the sensitivity to the material and 
manufacturing uncertainties are comparatively 
greater for the fixed-wing vehicle. The sensitivity 
to the battery specific energy is greater for the 
quadcopter. 

 
Fig. 17. Impact of technology uncertainties 

on manufacturing time and endurance 

4 Conclusion and future work  
An executable environment for the on-

demand design and manufacture of small UAS 
has been developed. This environment relies on 
the elicitation of required mission and 
performance capabilities. Using natural language 
processing, these capabilities are translated into 
engineering requirements. A sizing and synthesis 
environment for small UAS is used next to 
design fixed-wing and multicopter vehicles 
satisfying these requirements. Real-time tracking 
of requirements enables the user to identify if and 
when requirements cannot be made, and whether 
these requirements should be relaxed. Computer- 
aided design models are automatically created 
and sent to manufacturing machines for 
production and assembly. In addition, the 
environment enables the investigation of the 
capabilities of small UAS architectures, as well 
as the study of the impact of technological 
uncertainties on small UAS capabilities.  

Future work will include the investigation of 
new architectures such as a hybrid fixed-wing 
vehicle featuring rotors for vertical take-offs and 
landings.  
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