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Abstract

The digital factory relies on the development of
advanced integrated analysis and simulation ca-
pabilities that better utilize the vast amounts of
data produced by production systems. This paper
discusses the integration of data-driven and sim-
ulation models in the context of a partially auto-
mated aircraft assembly process, with the goal to
analyze and assess the impact of disruptions on
the production system and identify strategies to
best recover from these disruptions.

1 Motivation

Manufacturing is a very established industry and
yet factories are continuously evolving and be-
coming more complex and dynamic. Today, large
numbers of sensors gather process data (time,
energy consumption, environmental conditions,
etc.) throughout the factory. This digital revo-
lution, often defined as Industry 4.0 and driven
by advances in big data analytics, artificial intel-
ligence, robotics, augmented reality and additive
manufacturing, will change the nature of design,
manufacturing and the interactions between de-
signers, manufacturers, suppliers, customers, and
physical industrial assets [3, 13].

1.1 The Digital Factory

While the concept of a digital factory is not new
(it has been introduced in the literature as early as

1950), it is now, more than ever, within reach of
being achieved. Enabling the concept of the dig-
ital factory, however, is not without challenges.
In particular, it requires the development of ad-
vanced integrated analysis and simulation capa-
bilities that better utilize the vast amounts of data
produced. As discussed by William P. King,
chief technology officer of the Digital Manufac-
turing and Design Innovation Institute (DMDII),
“manufacturing generates more data than any
other sector of the economy” [15]. In a digi-
tal world, data is a strategic asset. If properly
captured and used, data has the potential to un-
lock new sources of revenues [3] and enable sig-
nificant improvements in innovation, product de-
sign, operational effectiveness, reliability, time-
to-market, customer satisfaction, and sustainabil-
ity.  While the benefits and competitive edge
brought by the digital thread/digital twin, and big
data technologies in particular, are widely dis-
cussed and fully acknowledged within the com-
munity [23, 8], achieving these benefits is not
without challenges.

As highlighted by Baur and Wee [3], “many
manufacturing companies have deep expertise in
their products and processes, but lack the exper-
tise to generate value from their data.” Hence,
while many seamlessly integrated hardware, soft-
ware and technology-based services exist that en-
able the digital factory concept and the genera-
tion of data at any level of detail desired, im-
proved frameworks and platforms that organize
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data-analytic thinking and facilitate data-driven
decision making across the many facets of the
business are still needed [24].

1.2 A Paradigm Shift

To be effective, the digital factory needs to go
beyond tracking and collecting data, and instead
focus on transforming this data into intelligence
[28] to help make plants more transparent and
truly proactive. Doing so requires a shift in the
way we approach and model factories. Tradi-
tionally, data is collected from the real factory
and analyzed to help identify important process
parameters, inefficiencies, etc. A separate ef-
fort then consists in building simulation models
to help predict the state of the factory under dif-
ferent scenarios and eventually support decision
making. To unleash the real value of data, one
needs to enable the link between data and the
digital twin (Figure 1), i.e. integrate data-driven
models with simulation models. Doing so will
enable the information and knowledge contained
within the data to be integrated within the manu-
facturing system [9].

1.2.1 Opportunities for Machine Learning Ap-
plications

The rise of automation has enabled huge amounts
of data to become available. For all purposes, this
data, due its size and the many variables it cap-
tures, cannot be analyzed using traditional (man-
ual) techniques. However, the continuously in-
creasing amount of data available, as well as its
high dimensionality and variety (sensor data, en-
vironmental data, machine tool parameters, etc.)
[6, 27] lends itself particularly well to the use of
machine learning algorithms [27, 20] and the de-
velopment of data-driven models for prediction,
detection, classification, regression, or forecast-
ing [5, 12]. As such, machine learning algorithms
have successfully been applied to support predic-
tive manufacturing [16, 17], manufacturing pro-
cess monitoring and control [7, 2, 1, 25, 11], etc.

1.2.2  Modeling of Production Systems

The integration of data and information with
simulation models is traditionally a challenging,
time-consuming task [10]. As discussed by
Fowler and Rose, the time to “design, collect
information/data, build, execute, and analyze
simulation models” represents a grand chal-
lenge that tends to inhibit the extensive use of
simulation in production process design [10].
While machine learning approaches have been
implemented to support production scheduling
[18, 26, 21, 14], the integration of data-driven
predictive models with simulation models is
rare. Equally lacking is the development of
data-driven system level models or the imple-
mentation of knowledge-based approaches that
take advantage of real-time sensor data to auto-
matically generate simulation models and inform
production systems and scheduling [29, 22, 4].

This research explores leveraging upfront
data analysis and lower complexity simulation
models to reduce the problem-solving cycle and
support more expansive studies. In particular,
the present paper discusses the integration of
data-driven predictive and simulation models
in the context of a partially automated aircraft
assembly process with the goal to assess the
impact of disruptions on the production system
and identify how events such as quality assurance
(QA) and repair processes can be best handled.

Section 2 describes the system of interest to
this study. Section 3 discusses the approach de-
veloped, while Section 4 provides additional con-
text to its implementation. Section 5 presents
some results from the simulation study. Finally,
Section 6 provide some concluding remarks.

2 System of Interest

This research focuses on a partially automated
assembly process of a large commercial aircraft.
The automated drilling systems is composed of
two types of drillers:

e Drillers A are mounted on rails to sweep
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Digital Factory — Integrates the real factory and its digital twin
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*  Will changes to production schedule
rules reduce cost?

* Ete.

Apply intelligence/results in the real asset

Fig. 1 : Transforming Data into Intelligence

around the circumference of the fuselage
join, drilling and fastening as they go

e Drillers B move across the side of the fuse-
lage, joining the upper shell of the fuselage
section to the lower corresponding section

Both drillers are provided custom drilling
profiles for each hole type and material stack-up
configurations.

Manual assembly processes are also tak-
ing place alongside the drilling tasks with
multiple technicians installing various compo-
nents/elements throughout the section of the
vehicle.

The data leveraged for this research consists of:

e Automated drilling data for 750,000 hole-
by-hole entries for 325 aircraft, including:

— Hole and process information (diam-
eter, material, drill only or drill, coun-
tersink, fill)

— Process parameters (XYZ hole loca-
tion, stack thickness, tool life, etc.)
and measured values/process outputs
(proved diameter, error messages,
etc.)

e Production data, including:

— Actual and scheduled start and end
timestamps for 250 aircraft at the po-
sition considered,

— All manual assembly processes
alongside drilling tasks

— “Baseline” assembly processes and
non-conformances, quality shakes,
emergent removals, etc.

While significant efforts were required to
clean and format the data prior to conducting
any type of analysis, these efforts are beyond the
scope of this paper and thus not discussed herein.

3 Approach

The approach developed focused on integrating
into a digital testbed, predictive data analytics,
an hybrid simulation model and process mining
heuristics with the goal to provide predictive and
impact assessment capabilities and support more
informed scheduling decision making.

This approach, illustrated in Figure 2, is bro-
ken down into three major tasks:

e Task 1 - Automated Drilling Cycle Time
and Process Analysis: The purpose of this
task is to develop a cycle time prediction
model for individual drilling job using the
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Fig. 2 : Overall Approach

vast amount of automated drilling data col-
lected by the system.

Task 2 - Production Schedule Analy-
sis and Baseline Production Schedule
Generation: The purpose of this task is
to leverage process mining heuristics to
stochastically generate a baseline produc-
tion schedule based on the actual comple-
tion of previous aircraft. Such capability
is particularly important in this context due
to the absence of actual “baseline” from the
raw data.

Task 3 - Process Simulation and Impact
Analysis: The purpose of this task is to
develop a unified simulation model which
integrates both a drilling and a schedule
model. The unified model is an enhanced
agent-based model with process mining
heuristics added to simulate realistic inter-
actions between manual processes (remov-
ing rivets, inspections) and automated pro-
cesses (drilling holes) within the aircraft
assembly line.

3.1 Task 1 - Automated Drilling Cycle Time
& Delay Classification and Disruption
Analysis

The purpose of this task is two-fold: 1) Develop
data-driven models to predict the cycle time of in-
dividual drilling jobs and, 2) Identify the sources
of common disruptions and delays.

3.1.1 Predictive Modeling of Drilling Cycle
Time

Multiple predictive modeling techniques and ap-
proaches were investigated. A first approach,
which focused on developing an adaptive regres-
sion model to predict the cycle time of individual
drilling jobs, was first attempted. This approach,
illustrated in Figure 3, integrated Random For-
est models for error message predictions within
a Neural Network model to predict drilling cycle
time.

A second approach focused on develop-
ing a multi-layered perceptron (MLP) using the
Levenberg-Marquardt algorithm for weight op-
timization was then implemented that provided
better model predictive capabilities. This par-
ticular model was trained using the automated
drilling data provided by the system (Figure 4).
The model used 144 parameters, including ma-
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Identified Impactful
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Fig. 3 : Adaptive Regression Model

properties of the processing layers, and machine 250 i
settings and had 20 to 30 hidden nodes. It pre-

dicted the cycle time of individual drilling jobs
with a R? value of ~ 0.9 for both training and
validation samples (Figure 5).
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e Tool change: either due to a change in pro-
cess or a lack of remaining useful tool life

e Work zone interferences: the relative pos-
sible collocation of the drillers provides
opportunities for disruptions. Work zone
interferences between Drillers A and B, or
between two drillers A at the top of the
fuselage, for example, are known to cre-
ate delays. Similarly, interactions between
drillers and manual tasks are also cause for
disruptions

e Other delays unexplained by drilling data
alone (part shortages, rework, mainte-
nance, etc.)

3.2 Task 2 - Production Schedule Analysis
and Baseline Production Schedule Gen-
eration

The value of simulation in production analytics
is well understood; however, the time and cost
to develop a simulation model is sometimes pro-
hibitive. This is particularly true when the pro-
cess to be simulated lacks a clear precedence
flow, as is the case for the problem at hand.
Hence, developing a model to represent such pro-
cess and, ultimately provide a testbed to examine
improvements, is extremely challenging.

When faced with a lack of baseline, it is par-
ticularly important to identify the overarching
goal of the simulation model. If the goal is to
examine the logic of how the order of jobs to be
completed is chosen, then a very detailed sim-
ulation model may be required. In the context
of this study, where the focus is on identifying
how events (such as QA and repair processes)
impact the overall production flow, the simula-
tion model is intended to provide a representative
case to account for these events. The following
three pieces of data/information are needed for
the simulation:

1. Representative process order

2. Job constraints: jobs that can not be
worked on at the same time

3. Job completion times

Identifying and codifying this information is
commonly a very time consuming process which
makes completing such simulation studies a chal-
lenge. Fortunately, there exists a wide variety
of information available from a myriad of data
sources throughout the factory. The following
sections discuss how data analytics is leveraged
to automatically extract the data required for the
simulation study.

3.2.1 Process Flow Identification

The first piece of information to extract from pro-
duction data is a potential process flow. How-
ever, unlike well-defined, automated processes,
the assembly process of interest does not fol-
low a strict precedence network. In other words,
the assembly schedule changes from one vehi-
cle to the next: in some cases, jobs completed
near the beginning of the process are completed
near the middle or end on a later vehicle. There-
fore, this assembly process does not lend itself to
the use of more traditional process mining tech-
niques - techniques that attempt to identify deci-
sion branches in processes such as those found in
call centers.

Yet, because the simulation only requires a
representative job schedule (extracted baseline),
the flow selected by the algorithm does not need
to perfectly conform to process constraints. To
arrive at an average impact of a selected strategy,
a number of potential schedules can then be sim-
ulated.

The data used to determine the representative
schedule contains the start and end times for ev-
ery job competed for a sub-assembly process for
approximately 100 vehicles. Approximately 700
jobs are completed per vehicle during this overall
process.

The resulting schedule needs to be repre-
sented as a precedence network that can then
be executed as a Simio process flow. Simio
(SImulation Modeling framework based on In-
telligent Objects) [19] was chosen as the model-
ing software for this work because 1) its object-
oriented nature supports the automated genera-
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tion of models, 2) the integration between the
model and data-driven predictive models can be
achieved using Simio’s API, and 3) it supports
distributed computing.

The algorithm discussed below aims at iden-
tifying a job ordering as well as precedence re-
lationships. As mentioned above, the goal is not
to identify the precedence network, since the as-
sembly process does not follow a unique one, but
rather identify one that is representative enough
of the overall process.

The algorithm operates by analyzing histori-
cal sequences to identify the typical sequence po-
sition for each job. The first step is to identify
the processes that occur in the majority of the se-
quences and their corresponding median process
time and sequence location. These jobs are then
initially ordered based on their median sequence
location. As a first cut, precedence relations are
added between jobs that are completed before an-
other in 95% of the historical schedules provided.
For example, if a fitup operation is finished be-
fore a drilling operation 95% of the time, then a
precedence relationship is added.

With these “firm” predecessors set, softer,
“preference” constraints are added based on a
weighted probability draw. This is where the
stochasticity of the process comes about. The
probability that job i is completed before job j
is calculated by Equation 1. This is intended to
break apart jobs that commonly occur close to
each other in the sequence. Therefore, if a job
often occurs before another that is close in the
sequence, it has a higher probability of being as-
signed a precedence relationship. If a pair fails
the probability check, then no precedence rela-
tionship is added.

Once the initial set of precedence relation-
ships are identified, the job start and end times
are assigned. The start and end times are entered
by technicians during job execution, so there may
be some variability and errors that must be ac-
counted for. The jobs being ordered based on
their median historical sequence position, the
start times are set as the maximum of their pre-
decessors’ end times. As some cycles are gen-
erated from the initial precedence identification,

Percent of the time Job; occurs before Job;

(D

Median sequence position between Job; and Job;

Process Sequence Preference Probability

this process is repeated multiple times to get a
representative spread of the start times.

While this provides a good first cut at a rep-
resentative sequence, additional data can be con-
sidered that add more constraints and eventually
lead to a more representative schedule. First, if a
job has never been completed in parallel with an-
other job but appears in parallel in the generated
schedule, then they can be separated by adding a
precedence relationship between them. In such
instances, jobs are separated such that the job
with the earlier historical sequence position is ex-
ecuted first. Additionally, work zone constraints
can be considered. Hence, if two jobs require
access to the same work zone, then they cannot
be completed in parallel and must be separated.
The identification of work zones is discussed in
the following section. Following the addition
of these new constraints, the process start times
are recalculated and the schedule can be used by
Simio.

In summary, the process to generate test pro-
duction schedules is as follows:

1. Identify “baseline” processes (those that
occur in 95% of the provided schedules)

2. Identify a duration for each baseline job
as the median of the previous completion
times excluding weekends

3. Identify the median sequence position for
each baseline job

4. Order the jobs based on their median se-
quence position for the schedule to be gen-
erated

5. Identify, for each job, all other jobs that
“always” (95% of the time) occur before
the current. Add precedence relationships
between these jobs to enforce this ordering.
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6. Further add “preference” predecessors
based on Equation 1

7. Assign start and end times based on the de-
fined predecessors

8. Separate parallel tasks based on historical
and work zone constraints

9. Recompute start and end times to take into
consideration the newly added constraints

3.2.2  Work Zone Constraint ldentification

During the assembly process, multiple techni-
cians are installing various components/elements
throughout the section of the vehicle. However,
jobs that are in the same area of the vehicle can-
not be processed at the same time due to physical
constraints or foreign object debris (FOD) con-
siderations. Identifying work zone constraints is
thus critical to the modeling exercise as two jobs
that have to be done in the same work zone can-
not be executed in parallel.

These work areas, however, are not nicely
laid out in the process information and con-
sequently can not be readily integrated in
the model. Fusing information available
about historical process completions, type of
parts/components to be installed as well as their
physical locations can help address this issue.
Hence, information from the historical process
completions can be combined with information
about the parts and components to be installed to
get a sense of what those work areas are. Because
job completion information provides information
about tasks that have been completed in parallel
in the past, it is fair to assume that these tasks do
not interfere with each other.

The physical location of the components in
the vehicle and their associated jobs are also
available. Therefore, jobs that have associated
parts can be tagged with a physical location. The
goal is to then divide the vehicle into work zones
that can be used to constrain the process.

The work zone separations are identified us-
ing an optimization algorithm. Figure 6 shows an
example work zone separation. The current vehi-
cle has a temporary floor separating the upper and

Af
Paccepr = €71 (2)

Probability of Accepting Worse Solution

lower sections, so work can be completed inde-
pendently in the upper and lower halves. Within
each upper or lower section, the optimization al-
gorithm selects the location of the work zone di-
viders. The goal of the optimization algorithm is
to minimize the number of jobs that are classified
in the same work zone and occur in parallel. In
other words, the optimizer helps ensure that jobs
that are being completed in parallel are in differ-
ent work zones.

Top| O | 1|2 3 |4 5 6 7

Bottom

Fig. 6 : Example Work Zone Separators

The optimization is driven by a Simulated
Annealing (SA) algorithm. The dividers are ini-
tially evenly spaced. Then, during each iteration,
the algorithm randomly selects a divider to move.
The selected divider can move anywhere between
the two adjacent dividers with a 5 foot buffer
zone to ensure that the created zone is about wide
enough for a technician to complete a task. The
objective function is then evaluated and the new
solution is either accepted or rejected based on
Equation 2, where Af is the change in objective
function and 7 is the current annealing tempera-
ture. As the problem begins to “cool”, the tem-
perature is dropped to reduce the probability of
accepting a worse solution.

Figure 7 presents an example of the optimiza-
tion’s progress. With the regularly spaced di-
visions from the first iterations, there are about
55,000 overlapping jobs. Following the opti-
mization, the algorithm identifies a solution with
about 37,000 overlapping jobs. This solution can
then be used to both separate jobs when gener-
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ating the schedule and enforce constraints in the
simulation model.

Hence, with the work zones identified, the
generated schedule can be updated to observe the
work zone constraints (step 8 in the schedule gen-
eration process). This is accomplished by check-
ing the work zones that each task occupies in the
schedule. If tasks that are planned in parallel oc-
cupy the same zone, then they are separated by
adding a precedence relationship between them
and the schedule start times are recalculated.

The simulation model discussed in Section
3.3.3 also enforces these constraints during the
execution of a schedule. Each work zone is mod-
eled as a seizable resource that is required to pro-
cess a task. As such, if a task attempts to start but
its required work zone is occupied, then it will
wait to start until the work zone becomes avail-
able.

3.3 Task 3 - Process Simulation and Impact
Analysis

The overarching simulation model integrates a
scheduling model (generated schedule and iden-
tified work zone constraints) and a drilling model
that includes the individual drilling cycle time
predictive models. As such, the model leverages
the two sources of data discussed in Section 2:

e Drilling data that is used to generate the
prediction models for the driller cycle
times as well as identify the drilling tasks
(and drillers) that belong to each individual
NC program.

e Production data, which includes location
and time information regarding both man-
ual tasks and NC programs, expected and
actual durations and other specific tasks
characteristics such as description, type,
etc

The characteristics of each model are dis-
cussed below.

3.3.1 Scheduling Model Characteristics

The scheduling model combines the input of
a job schedule that is generated stochastically

based on the identified baseline production
schedule discussed in Section 3.2. Hence, the
model stochastically varies the processing time of
the tasks within the pre-generated baseline pro-
duction schedule based on information from real
schedules. The model can also evaluate which
tasks can be completed in parallel based on:

e Required predecessors (processes within
the same line that have to be completed)

e Work zone constraints, which are spatial-
dependent, and determine whether jobs can
be completed in parallel or not

The model also has the potential ability to re-
schedule tasks based on disruptions happening
within the system.

3.3.2  Drilling Model Characteristics

The drilling model simulate sequences of NC
programs and has the following characteristics:

e [t integrates the predictive models for
drilling cycle time developed in Task #1

e [t allows for work-zones to be simulated.
Hence, each driller has working space as-
signed with respect to well-defined spacing
rules

e [t allows for two types of interference to be
captured:

— Work-zone interference: between

Driller A and Driller B)

— Diriller A interference at the top of
the fuselage (with variable threshold
added in inches)

e [t allows for different interferences rules to
be enforced

— Continue with Line: This model ben-
efits the machine that uses repetitive
tasks, as long as it was the first one
repeating it, which means that every
time a driller used a resource, and will
re-use that resource in the next task,
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Fig. 7 : Work Zone Optimization Progress

it will have priority for that resource,
halting other possible takers until it
finishes all successions with that par-
ticular resource

First Come First Served (FCFS) :
Will assign a resource to any driller
waiting for one as soon as one is re-
leased, no matter if the driller who
just released needs the same resource
for the next task

Driller A/Driller B Prioritization:

Will give priority to either Driller A
or Driller B

3.3.3  Overarching Model Characteristics

The overarching model simulates realistic in-
teractions between manual processes (remov-
ing rivets, inspections) and automated processes
(drilling holes) within the assembly line consid-
ered. As such, the main purpose of this model is
to serve as a platform where:

e Disruptions within the schedule involving
manual and automated tasks can be imple-
mented and analyzed to determine their im-
pact

e Each of the sub-components can be used in
isolation to make more specialized analysis
either at the schedule or the driller level

e More data can be used to simulate more
complex factory behaviors

The overarching model thus benefits from the
capabilities of both Scheduling and Drilling mod-
els. The Scheduling model, instead of deter-
mining the tasks times via regressions, generates
tasks (NC program sequences) that the Drilling
model has to complete. The Drilling model then
signals the end of a tasks so that the Schedul-
ing model can proceed and carry on with the
schedule. Both drilling interferences within the
Drilling model and work zone constrains within
the Scheduling model are taken into account.

3.3.4 Data Flow and Overall Architecture

The data flow, overall architecture and comput-
ing languages/platforms leveraged are illustrated
in Figure 8. The generated schedule is output
into a format that can be read into the overar-
ching model. The overarching model in Simio
evaluates a schedule based on precedence rela-
tionships while allowing for stochasticity in the

10
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Fig. 8 : Data Flow, Overall Architecture and Computing Languages/Platforms Leveraged

process time and job success. Simple triangular
distributions are fit to the historical job comple-
tion times to provide the process times for the
model. For those jobs that require a work zone
because they have a component/element/part de-
fined, the simulation will seize the correspond-
ing work zone resource. In this way, the simula-
tion can enforce the work zone constraints if the
schedule needs to be modified during the simula-
tion run.

4 Implementation

One question driving the development of the sim-
ulation model involved analyzing the impact of a
job failure and subsequent non-conformance re-
pair on the overall process. Figure 9 presents an
overview of the simulation flow when a QA fail-
ure is encountered. In this figure, Job 231 fails
QA and must go through an engineering analy-
sis and repair process. While this is ongoing, Job
232 is required to wait for 231 to be reworked,
thereby delaying the process. However, during
this time, other jobs that are planned later in the
schedule (302, 305, 315, and 325 in this instance)
can be completed as they are not tied to Job 231°s
precedence relationship. As such, the simulation
decides to complete these tasks while the rework
on 231 is being completed to help minimize the
impact of that failure.

When investigating the impact of rework and
alternative mitigation strategies, the two research
questions of interest are:

1. Research Question #1: How should I pri-
oritize the list of quality problem fixes that
must pass through engineering before be-
ing resolved?

Research Question #2: When a disruption
occurs, what strategies best mitigate the
impact of the disruption?

Research question #1 focuses on identifying
how quality issues should be prioritized through
non-conformance review. There are only so
many engineers who can recommend and ap-
prove non-conformance fixes, so it is possible
that quality issues can build up and lead to sig-
nificant delays in the process. As such, different
ranking heuristics can be identified to best mit-
igate these problems. The data about the non-
conformance review was not available at the time
of this study, so this question will be investigated
in future studies.

Research question #2 focuses on finding how
various strategies to select tasks to complete
while waiting for the QA analysis impact the
overall completion time of the schedule. As such,
various strategies are investigated including first
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Fig. 9 : Simulation Schedule Recovery Process

in/first out, shortest available job, longest avail-
able job, and processing the job with the most
successors first.

For both research questions, the primary met-
ric of interest is the process time required to com-
plete the schedule. The simulation is run for mul-
tiple replications (because the process times and
QA failures are stochastic) and for multiple test-
ing schedules (because the schedule generation
itself is also stochastic). To demonstrate the anal-
ysis provided by this approach, sample results
from these studies are presented in the following
section.

5 Results

The simulation results presented in this section
investigate different strategies to employ to re-
cover from a non-conformance. Using the pro-
cess described in Figure 2, simulation experi-
ments are conducted to test the following strate-
gies to select tasks to complete while waiting for
a non-conformance inspection to be completed:

e Average processing time/schedule loca-
tion: This rule favors completing longer
tasks that are earlier in the schedule in an
attempt to free resources for smaller jobs
once the non-conformance review is com-
pleted

e Earliest in schedule: Favors tasks purely
based on when they happen in the sched-
ule to try to complete predecessors for as
many upcoming tasks as possible

e Largest average duration: Favors long
tasks to free resources later on

e Smallest average duration: Favors shorter
tasks to complete as many as possible dur-
ing the rework cycle

e Most successors: Favors tasks that have the
most successors to open up more possibili-
ties to complete future tasks

Upon encountering a non-conformance, the
simulation uses the rule selected for that run
to choose task(s) to complete during the non-
conformance review. Figure 10 shows the impact
of the selection rule choice on the overall process
flow time. This figure is presented as a Simio
Measure of Risk & Error (SMORE) plot. This is
similar to a standard box-and-whiskers plot ex-
cept that the brown and light blue boxes centered
around the mean and quantiles denote the statis-
tical confidence of those measures. The lighter
blue bars extending above the whiskers show the
histogram of raw results. From Figure 10, the
two strategies targeting longer duration tasks for
completion take longer to finish the overall pro-
cess than the other three strategies. Figure 11,
which shows the number of tasks completed dur-
ing the rework process, provides a possible ex-
planation for this impact. By targeting long du-
ration tasks, fewer tasks can be completed dur-
ing the rework process (as expected). Hence, it
appears that this overall process benefits more
from completing more short duration tasks than
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fewer, long duration tasks. However, selecting
to complete the longest duration tasks first does
produce the smallest maximum processing time.
Consequently, there may exist a hybrid strategy
that would allow to complete many short duration

tasks while preventing having long tasks near the
end of the process.

These results demonstrate the nature of the
information that can be generated by integrat-
ing multiple data sources, data analytics, machine
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learning, process mining techniques, and simula-
tion. While not mature enough to be used op-
erationally, this process is intended to provide a
starting point for future, more focused analytics
and simulation studies.

6 Concluding Remarks

The present paper discussed the integration of
data-driven and simulation models in the context
of a partially automated aircraft assembly process
to 1) assess the impact of job failure and subse-
quent non-conformance repair on the overall pro-
cess, and 2) test strategies to best recover from
such disruptions. In particular, this paper has dis-
cussed and/or demonstrated:

e The utilization of statistical methods and
prediction techniques to identify predictive
features to be included in the cycle time
prediction model

e The investigation of interaction between
both automated and manual jobs to identify
relationships and disruptions to the produc-
tion system

e The creation of a data-driven, robust sched-
ule analysis tool to identify most com-
monly occurring sequences of jobs from
actual schedule completion information

e The creation of a work zone identification
tool to infer spatial constraints from sched-
ule completion information as well as part
installation requirements

e The integration of both data-driven and
simulation models to:

— Evaluate critical tasks that signifi-
cantly impact the overall flow
— Identify promising recovery rules

and/or schedules

While not mature enough to be used on the
shop floor, this study has nonetheless contributed

to demonstrate the value of integrating data-
driven and simulation models as a means to ob-
tain more visibility on how to best recover from
disruptions.
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