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Abstract 

Estimating the probability of failures or 

accidents with aerospace systems is often 

necessary when new concepts or designs are 

introduced, as it is being done for Autonomous 

Aircraft. If the design is safe, as it is supposed to 

be, accident cases are very rare. This feature 

requires some variance reduction technique in 

the probability estimation and several 

algorithms exist for that, however some specific 

model features may cause difficulties in practice, 

such as the case of system models where 

independent agents have to autonomously 

accomplish missions within finite time, and likely 

with the presence of human agents. For handling 

these scenarios, this paper presents a novel 

estimation approach, based on the combination 

of the well-established variation reduction 

technique of Interacting Particles System (IPS) 

with the long-standing optimization algorithm 

denominated DIviding RECTangles (DIRECT). 

When combined, these two techniques yield 

statistically significant results for extremely low 

probabilities. In addition, this novel approach 

allows the identification of intermediate events 

and simplifies the evaluation of sensitivity of the 

estimated probabilities to certain system 

parameters. 

 

1  Introduction 

Complex systems such as air traffic management, 

despite increasing level of automation, still have 

human individuals responsible for their 

operations. Such systems, on which individuals 

interact with the technical subsystems as well as 

with other individuals participating in the large 

system, are designated as ‘social-technical 

systems’. 

Multi-Agent Dynamic Risk Models 

(MA-DRM) have been proven successful for 

analyzing complex socio-technical systems in 

regard to safety properties [1], [2] as it 

demonstrated efficiency in identifying hazardous 

sequences of events which were not identified 

when using standard risk assessment analyses 

[3]. 

MA-DRM methodology combines 

concepts of distributed artificial intelligence 

(Multi-Agent Systems) with stochastic 

estimation methods (Monte Carlo-based 

algorithms) to model human behavior and 

interactions, besides technical elements, in order 

to estimate failure and accident rates. These rates 

need to be under certain Target Levels of Safety 

(TLS) on the order of 10-9 or below, therefore 

considered rare or extremely rare events. 

For handling these rare events scenarios, 

a novel estimation approach is presented in this 

paper, based on the combination of the well-

established variation reduction technique of 

Interacting Particles Systems (IPS) with the long-

standing optimization algorithm denominated 

DIviding RECtangles (DIRECT). Combined, 

these two techniques yield statistically 

significant results for extremely low 

probabilities. The basic principles of this 

approach were published in [4] and here an in-

depth presentation developed. 

After this introductory section, the 

contents of this paper is organized as follows: 

Section 2 introduces the estimation method 

aforementioned, Section 3 explains the method in 

more concrete terms, with a case study on a 

hypothetical aircraft operation, and Section 4 

contains the conclusions.  
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2  Method for handling rare event scenarios 

As this work concerns estimation of rare events 

arising from the MA-DRM, the model has to be 

mathematically sound, and the type of 

mathematical model to be applied depends on the 

complexity of the system to be modelled. For 

example, a very elementary system with only one 

agent (e.g. a bouncing ball) can be modelled as 

Ordinary Differential Equations (ODE) with 

continuous variables. However, complex socio-

technical systems with multiple agents have large 

number of disturbances variables. 

As the system complexity increases, the 

system elements may be governed by sets of 

Stochastic Differential Equations (SDEs) that 

can be activated or deactivated at any given time. 

The process of activating and deactivating 

equations is called switching and, when 

switching occurs by hitting a boundary or by 

stochastic jump processes, the system can be 

mathematically considered a General Stochastic 

Hybrid System [5]. The execution of such system 

is a General Stochastic Hybrid Process (GSHP). 

The overall method flow of rare event 

probability estimation for models with SDEs is 

presented in Fig. 1. The estimation process starts 

when the system agents become defined, as well 

as their dynamics and interactions, based on 

expert knowledge on technical systems and 

organizations [6]–[8]. This is elaborated in Step 

1. 

Step 2 of Fig. 1 consists of identifying the 

set of purely stochastic variables of the model, 

where “purely” means that each variable must 

not have in their definitions operations involving 

other model variables nor a previous value of 

itself (that is, they must not have a recursive 

definition). Because of this feature, these 

variables can be considered as input variables 

and can be called system parameters or model 

inputs. These parameters must follow some 

known probability distributions and this is the 

reason for performing Step 3, which determines 

their probability distribution functions. This 

determination may be based on expert 

knowledge or data analytics. 

The model execution for a given vector 

value 𝑥  of the stochastic parameters can be 

another stochastic process, so the objective 

function for the search & partition of Step 6 

below has to be an aggregate measure of a set of 

execution instances defined in Step 4. 

 

 

 
Fig. 1. The method of rare event probability estimation 

for models with Stochastic Differential Equations 

(SDEs). 

 

Any aggregate measure is acceptable 

(e.g. weighted mean, root mean square, etc.) as 

long as it contributes to finding the regions where 

the target event occurs and to obtain an 

acceptable error in the probability estimation of 

this event. In Step 5, because of the same 

execution stochasticity, each objective function 

evaluation may contain a non-null probability of 

the rare event. A particle filtering technique 

called Interactive Particle System (IPS) [9], [10] 

is chosen for this purpose. This technique 

requires the definition of a filtration criterion and 

corresponding filtration stages, which make 

feasible the estimation of very low event 

probabilities. 

In Step 6 the DIRECT-based search and 

partition is combined with the IPS variance 

reduction technique. The system execution 

process has to have the Markov property, which 

1. Elaborate MA-DRM System Model 

2. Identify Stochastic Parameters (SP) 

3. Obtain distribution functions for SP 

4. Define objective function for search  

7. Evaluate staged event probabilities 

8. Perform uncertainty analysis 

5. Define particle filtration stages 

6. Perform DIRECT search & partition 
nestedly with particle filtering 
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usually holds in physics-based processes outside 

the sub-atomic domain. In Step 7, the successive 

filtration stages of IPS allow that the probability 

not only of the final target event be calculated, 

but also of the preceding events defined by these 

filtration stages. This provides a better 

understanding of the system behaviour before the 

occurrence of the ultimately critical event, which 

contributes to design improvement insights and 

implementation of safeguards. 

Finally, Step 8 examines the uncertainty 

in the knowledge of the moments of the 

probability distribution functions of the 

stochastic parameters. This uncertainty raises 

mainly two questions: i) What is the confidence 

level of meeting the TLS? And ii) which 

stochastic parameters of the rare event are most 

sensitive, and with how much intensity? The 

answer to the first question determines whether 

the current system design concept is acceptable, 

and the answer to the second question helps 

finding ways to improve the current design 

concept and is performed by means of sensitivity 

analysis techniques. Standard statistics has 

plenty of methods for providing these answers 

but, in one way or another, these methods require 

the re-calculation of the rare event probability 

with different inputs. This goal is greatly 

facilitated by the partition of the parameter space 

provided in Step 8, diminishing the necessity of 

re-executing simulations of the system model. 

In order to have a better understanding of 

how these steps happen in practice, in the next 

section the method is presented in more concrete 

terms with a case study on a hypothetical aircraft 

operation. 

3  Case study: hypothetical aircraft operation 

This section presents details on the application of 

the probability estimation method of Fig. 1 for a 

complex system model. This application case 

consists in the operation of a transport aircraft in 

a certain phase of flight, described at high level 

by a multi-agent system composed by 

Environment, Aircraft, and Pilot. 

 

Step 1: Elaborate MA-DRM System Model 

The Aircraft agent is modelled as a point-mass 

aircraft subject to inputs from the Environment 

and from the Pilot [11]. There might be several 

pilot inputs and input modes to control the 

aircraft; however, in this example, the only pilot 

intervention allowed is to command an 

emergency maneuver of full-thrust climb. The 

parameter values used to fill the model of aircraft 

dynamics in this case study correspond to a 

commercial single aisle jet aircraft. 

The programmed flight path for the 

experiments herein is illustrated in Fig. 2. The 

aircraft enters the scenario at the upper right 

corner and follows a predefined route (sequence 

of waypoints) with a “U-shape,” which descends 

and passes between two peaks in the terrain. 

 

 

 
Fig. 2. Illustration of the programmed aircraft operation 

model. The aircraft enters the scenario at the upper right 

corner and follows a predefined route, which descends 

and passes between two peaks in the terrain. 

 

The aircraft flies until either accidentally 

hitting terrain, going out of the airspace bounding 

box, or reaching a maximum flight time T, 

whichever is the first to occur. The idea of such 

route is to resemble a flight approaching an 

airport in the proximity of mountains. In nominal 

conditions, the trajectory terminates at the 

lowermost waypoint, from which the aircraft will 

proceed to the final approach. In a risk 

assessment, which is recommended to happen 

before the use of a route with similar features in 

real life, there is interest in the non-nominal 

conditions, which are triggered by errors or faults 

that, in extreme cases, lead to an accident, which 

in this example is hitting terrain. In order to hit 

terrain, the minimum distance between the 

terrain and aircraft, dmin, has to be 0. 
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For the purpose of risk assessment, it is 

assumed that the aircraft has an altimetry fault 

when it enters in the scenario, which is 

manifested in a numeric error ϵa, which 

influences the trajectory flown. 

The Environment agent is composed of 

terrain and atmosphere. In the example model, 

the terrain has a base of altitude 0, on which lay 

two cones with base radius of 3 nautical miles 

and height of 3600 feet, as shown in Fig. 2. If the 

distance between terrain and aircraft reaches the 

minimum value m = 0, the simulation is 

immediately stopped. 

The atmosphere is modelled with the 

Dryden turbulence model [12], requiring an 

elaborate algorithm for variance reduction in 

combination with Monte Carlo. This turbulence 

model will affect the point-mass model of aircraft 

dynamics. It defines the linear and angular 

velocity components of air gusts as position-

dependent stochastic processes, and is based on 

the power spectral density of each spatial and 

angular component. These power spectral 

densities are rational, so that they can be 

implemented as exact filters that take a band-

limited white noise input and generate a 

stochastic process output with filters derived 

from the Dryden power spectral densities. 

Thus, if 𝑦𝑢(𝑠)  is the power spectral 

density of the turbulence linear speed component 

on the dimension u, it is modelled according to 

Dryden as: 

 

𝑦𝑢(𝑠) = 𝐺𝑢(𝑠)𝑠𝑊(𝑠) (1) 

 

where 𝐺𝑢(𝑠) is the filter or transfer function, and 

𝑊(𝑠)  is a standard Wiener process (a.k.a. 

Brownian motion) which, when treated as a 

generalized random process, can have its n-th 

order derivatives. The first order derivative 

𝑠𝑊(𝑠) is white noise. 

These equations, when transformed to the 

time domain, result in stochastic differential 

equations of the form: 

 
𝑎2𝑦̈(𝑡) + 𝑎1𝑦̇(𝑡) + 𝑎0𝑦(𝑡) + 𝑏2𝑊̈(𝑡) + 𝑏1𝑊̇(𝑡) = 0 (2) 

 

where the terms 𝑎𝑛 and 𝑏𝑚 are defined in terms 

of the turbulence intensity parameters, length 

parameters , and of the aircraft airspeed 𝑉(𝑡) and 

its derivative 𝑉̇(𝑡) [12]. 

 The angular components of the 

turbulence are not represented because the 

aircraft model here is only point-mass. 

Fig. 3 illustrates the effect of this 

turbulence model on the aircraft operation: 

 

 

 
Fig. 3. Illustration of the aircraft operation model with 

turbulent trajectory. 

 

The Pilot agent’s role is only to detect the 

altimetry fault and, in response, initiate the 

avoidance maneuver. The time that the pilot 

takes to detect and react to erroneous altitude is 

stochastic and denoted by tr. 

Aircraft altimetry systems are nowadays 

very reliable and further are protected by having 

redundant systems. Still, faults happen in some 

cases, including icing or other types of sensor 

obstruction, computing error, etc. Whatever the 

phenomenon is, it may happen and, in the present 

model, it is established that, when it happens, the 

altimetry system will present the above 

mentioned altitude error 𝜖𝑎, which in turn causes 

the aircraft to fly with an altitude offset 𝜖ℎ , of 

same magnitude and opposite value, i.e., 𝜖ℎ =
−𝜖𝑎. The model assumes that the aircraft enters 

the scenario with this altitude reading error and 

that the flight guidance system makes the aircraft 

fly with the altitude shifted by this error value, 

until the flight crew detects the altimetry fault by 

some means. 

This completes Step 1. The next step of 

the estimation approach is to use some of the 

variables of the system model to perform a search 

that will lead to the occurrence of the events of 

interest. 
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Step 2: Identify Stochastic Parameters 

The identified parameters are 4: 

 The altitude offset 𝜖ℎ, caused by an altimetry 

fault; 

 The time 𝑡𝑟 for crew reaction; 

 The horizontal wind components 𝑤𝑥, 𝑤𝑦. 

 

Step 3: Obtain distribution functions for SP 

The determination of the probability distribution 

function of the stochastic parameters should be 

done by data analytics or by experts in a guided 

process, such as one described in [13], which has 

systematic reduction of bias and inconsistency. 

However, as this case study is hypothetical, the 

determination here is for illustrative purposes. 

The time that the pilot takes to react to the 

altitude error, 𝑡𝑟, is associated to an exponential 

distribution with the mean 𝜇 of 30 seconds; the 

altitude offset 𝜖ℎ is associated to a normal 

distribution with moments 𝜇 = 0  and 𝜎 = 100 

feet; the constant wind velocity components 𝑤𝑥 

and 𝑤𝑦  are normally distributed with moments 

𝜇 = 0 and 𝜎 = 15 knots. 

 

Step 4: Define objective function for search 

The objective function defined here will be used 

by the search & partition algorithm in next step 

of the method. When searching for the regions of 

the parameter space where collision with terrain 

happens, a natural choice for objective function 

would be the terrain miss distance in the example 

model, denoted by 𝑑(𝑥), where 𝑥 is the vector of 

parameter values. “Miss Distance” means the 

minimum distance that ever existed between 

aircraft and terrain in one scenario execution. If 

𝑑(𝑥) = 0, it means that the aircraft collided, so 

the target event happened. However, this is not 

enough if the model has SDEs with implicit 

random variables. 

 For such complex system models, the 

approach chosen to handle is to mask its implicit 

stochasticity under an aggregate measure for the 

objective function used in DIRECT. Let 𝜉 denote 

a stochastic instance of the system, also called a 

particle, which has a set of state variables, 

including the vector 𝒙, which stays fixed during 

the lifetime of 𝜉 . The association of 𝜉  to 𝒙  is 

expressed as 𝒙 = 𝑿(𝜉). As 𝜉 is here a stochastic 

process, 𝑿−1(𝒙) becomes a random variable. For 

this reason, it is also no longer possible to use the 

terrain miss distance 𝑑(𝒙), as previously defined, 

because it depends on the instantiation of 

𝑿−1(𝒙). 

First, 𝑑(∙) is redefined to the particle (or 

trajectory) domain, signifying that it evaluates 

the terrain miss distance of a concrete trajectory 

of the system model 𝜉, hence the notation 𝑑(𝜉). 

Then, a new function 𝑑̅(𝒄𝑖) ≜ 𝐸[𝑑(𝜉𝑗)]  is 

defined, to be used at each hyperbox 𝑩𝑖 centered 

at 𝒄𝑖 , for 𝜉𝑗 ∈ 𝑿−1(𝒄𝑖), 𝑗 = 1, … , 𝑠 . This 

expresses the expectation or mean of evaluations 

of the distance function 𝑑  over a number 𝑠  of 

system instances associated to 𝒄𝑖. This function 

maintains the convergence of the DIRECT 

search and partition algorithm, a fact that was 

observed in practice but can also be 

mathematically demonstrated. 

The new stochastic features of the model 

include the fact that, when performing the 

evaluations 𝑑(𝜉𝑗) , for 𝜉𝑗 ∈ 𝑿−1(𝒄𝑖) , it may 

happen that some of the obtained values are 

higher than 𝑚  (the distance threshold which 

defines the target event), and others are equal or 

lower. The ratio between the number of “hits” 

ℎ̂(𝑩𝑖), i.e., the number of instance values equal 

or lower than 𝑚 , and the total number of 

instances 𝑠 at that point, is an estimator of the 

probability of the system to reach the target 

region when the input variables assume values in 

𝑩𝑖 , provided 𝑩𝑖  is acceptably small. This hit 

ratio is denoted as 𝜌(𝑩𝑖) = ℎ̂(𝑩𝑖)/𝑠 in a crude 

Monte Carlo definition. Therefore, in the final 

calculation of the event probability, 𝜌(𝑩𝑖) serves 

as a weighing factor on top of the prior 

probability of 𝑩𝑖. 

This means that there is no longer a 

border of the target region, but rather 𝜌-curves 

and 𝜌-regions, with 𝜌 ∈ [0,1]. The higher the 𝜌, 

the more frequent the target event being. Thus, 

the new objective function should promote less 

subdivision at high plateaus of 𝜌 and concentrate 

at the slopes that surround the plateaus of 𝜌 = 1. 

Hence, a definition of objective function 

𝑓𝑜 was elaborated with a recursive algorithm, in 

order to obtain this effect. This new objective 

function received the denomination Outer 

because this feature of concentrating hyperbox 

subdivision at the outer vicinity of the border of 
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the regions with 𝜌 = 1. 

 

Step 5: Define particle filtration stages 

The variance reduction technique to be used 

below, based on particle filtering, needs the 

definition of a sequence of events which are 

nested and gradually rarer. In the hypothetical 

example presented, the final target event is 

collision with the ground, which happens by 

definition when 𝑑(𝜉) = 0. However, before this 

happens, this distance becomes gradually 

smaller. Starting at 𝑑(𝜉) ≈ ∞, the events 𝑑(𝜉) ≤
𝑚𝑙  happen successively with 𝑚𝑙 > 0  for 𝑙 =
1, … , 𝑁𝐹 − 1  and 𝑚𝑁𝐹

= 0 , being 𝑁𝐹  the 

stipulated number of filtration stages. The 

rationale here is that, given that 𝑑(𝜉) ≤ 𝑚𝑙 

(𝑚0 ≈ ∞) happened, 𝑑(𝜉) ≤ 𝑚𝑙+1 is not so hard 

to obtain, thus providing an acceptably large 

statistical significance. This principle is 

illustrated in Fig. 7 [19]. 

 

 
Fig. 7. Illustration of the principle of particle filtering 

(from [19]). 

In this figure, 𝑝𝑙  represents the 

probability of a particle surviving the filter of 

stage 𝑙, and 𝑝 the final probability of surviving 

all stages. Usually, the number of stages needed 

hangs around the decimal order of magnitude of 

the probability to be estimated, without the sign. 

If the probability is approximately 1E–15  (1 ×
10−15), the number of stages needed is around 

15. The selection of 𝑚𝑙  values needs some 

guessing in the first experiments with a new 

model, but can be adjusted along preliminary 

simulation runs. For the hypothetical application 

example used, the values were set to the ones in 

Table 1 thus completing Step 5 of the method in 

Fig.1. 

 

 
Table 1. Distances used to define particle filtering stages. 

 

Stage index 

𝑙 
Threshold distance 

𝑚𝑙 (feet) 

1 1000 

2 900 

3 800 

4 700 

5 600 

6 450 

7 300 

8 225 

9 150 

10 100 

11 75 

12 50 

13 25 

14 0 

 

Step 6: Perform DIRECT search & partition 

nestedly with particle filtering 

Each evaluation of the objective function 𝑓𝑜 

chosen for DIRECT contains a rare event process 

and, because of this rarity, we chose to use the 

Interactive Particle System (IPS) variation 

reduction technique [9], [10], in order to 

determine the event probabilities inside each 

hyperbox. The central mechanism of IPS is, 

instead of working with just one region of 

interest, to use a succession of nested regions as 

illustrated by means of Fig. 7 or, in a formulation 

of probability theory, a filtration of 𝜎-algebras of 

outcomes, among which the innermost 

corresponds to the final region of interest. 

This combined algorithm with DIRECT 
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and IPS is named DIPS, together with the prefix 

Outer, in reference to the newly customized 

objective function 𝑓𝑜 . In this algorithm, a 

separate IPS run is executed inside each 

hyperbox 𝑩𝑖 , where the weights 𝜔𝑘
〈𝑙〉

 of the 

particles inside it must be used to account for the 

prior probability 𝑃𝑩𝑖
 of the hyperbox (which in 

turn is based on the density function 𝑔  of 

stochastic parameter values). 

At this point, we have all the elements to 

run the DIPS estimation algorithm. However, 

because of the high dimensional stochasticity of 

the system model, we cannot rely on running it a 

single time. Each time the algorithm runs, a 

different probability value emerges, and 

therefore several runs are needed to determine a 

confidence interval for the target event 

probability. The histogram of results obtained is 

highly skewed, due to the high variance of the 

process modelled, even with the variance 

reduction technique applied. In this case, using 

confidence intervals based on normal 

distributions is not effective, so a different 

approach is used here, from [18], which is a 

modified version of the Cox method. Instead of 

using a standard normal variate 𝑧 parameter, the 

𝑡 parameter from Student’s distribution is used to 

determine the amplitude of the interval for a 

given confidence level, in order to better account 

with small sample sizes. Defining 𝑝 = log (𝑃) 

and 𝜎 as the sample standard deviation of 𝑝, the 

limits of the confidence interval for the true mean 

of 𝑃 are given by: 

 

exp (𝑝̅ +
𝜎2

2
± 𝑡√

𝜎2

𝑁𝑟
+

𝜎4

2(𝑁𝑟 − 1)
) 

(3) 

 

from which the third term is used to define the 

dispersion measure 𝜃: 

 

𝜃 ≜ 𝑡√
𝜎2

𝑁𝑟
+

𝜎4

2(𝑁𝑟 − 1)
 

(4) 

 

The dispersion resulting from successive 

runs of the estimation algorithm is a tradeoff 

between the time spent to run each algorithm 

instantiation and the total number of instantiation 

used in the sample. After an unstructured trial-

and-adjust process, the parameters which define 

the effort in each algorithm instantiation are 

settled. In these experiments, the number of 

particles per hyperbox 𝑠 was set to 1,000 and the 

total number of hyperboxes to be generated was 

set to 16,700. We ran the Outer-DIPS algorithm 

32 times, in order to gain some benefit from the 

law of large numbers, and so we obtained the 

mean and percentile values of Fig. 8. 

 

 

 
Fig. 8. Probabilities of hitting filtering distances 𝑚𝑙 , 

evaluated by the Outer-DIPS algorithm. 

 

As it can be noted, the confidence 

intervals, delimited by lower and upper quantiles, 

are narrow for higher values of 𝑚𝑙, but widen as 

𝑚𝑙 decreases, as seen in the log scale. At 𝑚𝑙 =
0 , the dispersion of the results, calculated 

according to Equation 4, is 5.05. From a safety 

analysis viewpoint, the upper quantile is more 

important, but the fact of having obtained a 

statistically significant interval for such low 

probability event gives more credibility to the 

estimation. At this point, Steps 5 and 6 of Fig. 1 

can be considered complete. 

 

Step 7: Evaluate staged event probabilities 

The successive filtration stages of IPS allow that 

the probability not only of the final target event 

be calculated, but also of the preceding events 

defined by these filtration stages. This provides a 

better understanding of the system behavior 

before the occurrence of the ultimately critical 

event, which contributes to design improvement 

insights and implementation of safeguards. 
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These probabilities correspond to the different 

points on the horizontal axis of Fig. 8. 

 

Step 8: Perform uncertainty analysis 

The confidence interval that we obtained for the 

probability of the target event is valid for a 

unique combination of values of the stochastic 

parameters of the model. The knowledge of these 

values is subject to uncertainties, so the 

uncertainty analysis of Step 8 of Fig. 1 has two 

main goals: one, reviewing the confidence 

intervals of the resulting estimate in order to 

account for these uncertainties; and two, 

performing parameter sensitivity analysis in 

order to find the most critical parameters of the 

system. 

The moments (e.g. mean, standard 

deviation) of the probability distributions of the 

stochastic parameters are subject to uncertainties. 

In the case of the hypothetical example under 

study, the determination of the mean and 

standard deviation of 𝜖ℎ, and the mean of 𝑡𝑟 may 

have been determined from expert knowledge, 

which also embodies uncertainties. Usually, the 

uncertainty of each parameter is summarized as a 

confidence interval, the worst and best cases of 

the target event probability occurring at some 

combination of extremes of those intervals. Re-

evaluating the target event probability at these 

points requires extra computational effort, which 

may be considerably reduced if the search space 

is already partitioned. 

Instead of fully re-running Step 6, the 

partition of the search space obtained in that step 

can be re-used, and only the probabilities of the 

corresponding hyperboxes are re-calculated. 

This avoids the re-calculation of the objective 

function, which is the most expensive part of the 

overall computation. Finally, by making this 

calculation faster, the determination of the 

confidence intervals of the target event 

probability become proportionally faster, as well 

as the determination of parameter sensitivities.  

Parameter sensitivity analysis produces 

valuable design information, in the sense that it 

is possible to identify the stochastic parameters 

to which the probability of the rare event in the 

critical system modelled is most sensitive, with 

the sensitivity rates calculated during this type of 

analysis [15]-[17]. Therefore, the system design 

can be changed to decrease the sensitivity of the 

most sensitive parameters and become more 

robust and less subject to uncertainties. 

4  Conclusions 

The approach proposed in this paper for 

estimation of the probability of rare events is 

capable of obtaining statistically significant 

results for probability values lower than any 

other in the literature, when considering complex 

socio-technical systems. Our bibliographic 

search did not find an example of probability 

estimation below 1E–10 for such models, while 

here there are reliable results below 1E–17 for a 

system with considerable complexity, including 

Stochastic Differential Equations and an 

elaborate control logic. This shows that the 

method proposed is ready to be used in models of 

similar level of complexity, and models with 

higher complexity can be processed with 

increasing levels of computing parallelism. 

References 

[1] Stroeve S H, Blom H A P and Bakker G J. Contrasting 

safety assessments of a runway incursion scenario: 

Event sequence analysis versus multi-agent dynamic 

risk modelling. Reliab. Eng. Syst. Saf., vol. 109, pp. 

133–149, 2013. 

[2] Bosse T and Mogles N. An agent-based approach for 

accident analysis in safety critical domains: A case 

study on a runway incursion incident. Transactions on 

Computational Collective Intelligence XVII SE  - 4, 

vol. 8790, N. T. Nguyen, R. Kowalczyk, A. Fred, and 

F. Joaquim, Eds. Springer Berlin Heidelberg, 2014, 

pp. 66–88. 

[3] Romani de Oliveira I, Fregnani J A T G, Balvedi G C, 

Ulrey M L, Musiak J D, Gimenes R A V, Camargo Jr 

J B and Almeida Junior J R. Safety analysis method 

for complex systems in aviation. SITRAER – Simpósio 

de Transporte Aéreo, 2016. 

[4] Romani de Oliveira I. System and method for 

detection of rare failure events. Patent US 9,928,131 

B2, 2018. 

[5] Bujorianu M L and Lygeros J. General stochastic 

hybrid systems: modelling and optimal control. 43rd 

IEEE Conf. Decis. Control (IEEE Cat. 

No.04CH37601), vol. 2, pp. 1872–1877, 2004. 

[6] Bosse T and Sharpanskykh A. A framework for 

modeling and analysis of ambient agent systems: 

Application to an emergency case. Ambient 

Intelligence and Future Trends-International 

Symposium on Ambient Intelligence (ISAmI 2010) SE  



 

9  

A METHOD FOR ESTIMATING THE PROBABILITY OF RARE ACCIDENTS IN COMPLEX SYSTEMS 

- 15, vol. 72, J. Augusto, J. Corchado, P. Novais, and 

C. Analide, Eds. Springer Berlin Heidelberg, 2010, pp. 

121–129. 

[7] Sharpanskykh A. Agent-based modeling and analysis 

of socio-technical systems. Cybern. Syst., vol. 42, no. 

5, pp. 308–323, Jun. 2011. 

[8] Stroeve S H, Sharpanskykh A and Kirwan B. Agent-

based organizational modelling for analysis of safety 

culture at an air navigation service provider. Reliab. 

Eng. Syst. Saf., vol. 96, no. 5, pp. 515–533, May 2011. 

[9] Del Moral P. Feynman-Kac formulae : genealogical 

and interacting particle systems with applications. 

Springer, New York, p. XVIII, 556, 2004. 

[10] Prandini M, Blom H A P and Bakker G J. Air traffic 

complexity and the interacting particle system 

method: An integrated approach for collision risk 

estimation,” Proc. 2011 Am. Control Conf., pp. 2154–

2159, 2011. 

[11] Vinken P, Hoffman E and  Zeghal K. Influence of 

speed and altitude profile on the dynamics of in-trail 

following aircraft. AIAA Guidance, Navigation, and 

Control Conference and Exhibit, 2000. 

[12] MIL-F-8785C - Flying Qualities of Piloted 

Airplanes,” 1980. 

[13] Hubbard D W, How to Measure Anything: Finding the 

Value of “Intangibles” in Business, 3rd ed. Wiley, 

2014. 

[14] Zhou X H and Gao S. Confidence intervals for the log-

normal mean. Stat. Med., vol. 16, no. 7, pp. 783–90, 

1997. 

[15] Helton J C, Johnson J D, Sallaberry C J and Storlie C 

B. Survey of sampling-based methods for uncertainty 

and sensitivity analysis. Reliab. Eng. Syst. Saf., vol. 

91, no. 10–11, pp. 1175–1209, 2006. 

[16] Frey H C and Patil S R. Identification and review of 

sensitivity analysis methods. Risk Anal., vol. 22, no. 3, 

pp. 553–578, 2002. 

[17] Saltelli A. Sensitivity analysis for importance 

assessment. Risk Anal., vol. 22, no. 3, pp. 579–590, 

2002. 

[18] Kim Y, Kochenderfer M J and States U. Improving 

aircraft collision risk estimation using the Cross-

Entropy Method. AIAA Modeling and Simulation 

Technologies Conference, 2015, no. January, pp. 1–

13. 

[19] Romani de Oliveira I and Musiak, J D. Methods for 

estimating a probability of rare accidents in complex 

non-stationary systems. Innovation Quarterly, vol. 2, 

issue 8, pp. 32-34, May 2018. 

 

 

Contact Author Email Address 

mailto: italo.romanideoliveira@boeing.com 

Copyright Statement 

The authors confirm that they, and/or their company or 

organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they 

have obtained permission, from the copyright holder of 

any third party material included in this paper, to publish 

it as part of their paper. The authors confirm that they 

give permission, or have obtained permission from the 

copyright holder of this paper, for the publication and 

distribution of this paper as part of the ICAS proceedings 

or as individual off-prints from the proceedings. 
 


