

1

Abstract

The development of new workflows in aircraft

design has created a need to re-implement

legacy analysis software to fit in modern

frameworks. Older software architectures do

not necessarily enable the full potential of

modern hardware and software environments.

European research in the AGILE project has as

a goal to enable a software framework for

innovative collaboration between heterogeneous

teams of experts, using various in-house tools,

specifically in different programming language

environments and platforms.

This paper describes the work done to shift the

Tornado vortex lattice method, (VLM) from a

Matlab-centric implementation to a platform-

independent implementation.

1 Background

The AGILE project is aimed at developing and

testing multidisciplinary optimization using

distributed analysis frameworks. An ultimate

goal is to prove a 40% speedup of solving

realistic MDO problems when compared with

the state-of-the-art. The project is funded under

Horizon 2020 and runs from 2015 to 2018 [1].

The overall methodology to tackle the workflow

challenges in a distributed design environment

has been described in detail by Prakasha et al

[2], Lefebvre et al. [3] and Nagel et al. [4]. A

previous EU-funded research project, SimSAC,

produced the software environment CEASIOM

(Computerized Environment for Aircraft

Synthesis and Integrated Optimization Methods)

was developed at CFS Engineering [5].

At Airinnova, one of the tools used in research

and design is the vortex lattice method (VLM)

Tornado, which is implemented in Matlab. The

software is currently under development at the

Swedish aeronautical institute – Svenska

Flygtekniska Institutet.

For the purposes of the AGILE project, the

Tornado code was refactored to more modern

architecture to fit in the AGILE workflow. The

Matlab implementation, while validated, mature

and very popular, has two peculiarities: Firstly,

while the Tornado code itself is freely

distributed under the GNU-GPL license, its

intrinsic link to the commercially licensed

software Matlab limits the use of the software.

Secondly, as Matlab is an interpreted software,

computational speed is not a primary objective.

The work done to port the Tornado code was

shifting core computational routines into a

compiled executable coded in C, wrapped in a

user interface coded in Python. The Python

interface, developed at Airinnova, was intended

to be used both for the Tornado code as well as

for a stand-alone Double Lattice code.

2 Code architecture

The information flow architecture is shown in

Figure 1. The Python segment covers the user

interface, pre- and post-processing, while the C

executable perform the computationally heavy

operation. This approach was selected to enable

both fast computations and a non-commercial

license environment.

IMPLEMENTATION OF A VORTEX LATTICE METHOD
IN A HETEROGENEOUS PROGRAMMING LANGUAGE

ENVIRONMENT.

Tomas Melin*, Alessandro Augusto Gastaldi **, Mengmeng Zhang **

* - Svenska Flygtekniska Institutet, ** Airinnova

Keywords: Aerodynamics, conceptual design, method implementation, AGILE

MELIN T., GASTALDI A.A., ZHANG M.

2

Alternatively, Python can be used to batch script

computations or directly link the code into the

AGILE workflow through the remote

component environment (RCE) using the

Common Parametric Aircraft Configuration

Schema (CPACS) as an aircraft descriptor. The

compiled C code executes the actual numerical

simulation. In parallel, the core functions are

callable from the Matlab implementation.

Technically, the C-code can be run stand-alone

if no user interface is required.

In parallel, the information flow in the legacy

Matlab implementation is also shown in Figure

1. For debugging purposes, there is added

functionality in the Matlab code to call the C

executable through a batch input file interface.

2.1 Data Flow

The flow of information within the PyTornado

implementation is as follows. First, three types

of input are required:

 Geometry: The geometry of the wing or

aircraft to be simulated needs to be made

available to the code in a readable

format, allowing efficient discretization.

 Flight State: Multiple sets of operating

conditions may be defined for batch

computations. These consist primarily of

angle of attack, velocity, altitude and

control surface deflection.

 Solver parameters: Finally, it remains

to define those settings relating to the

method of analysis: The type of mesh,

wake type, correction factors etc. This

includes any parameters not directly

related to either state or geometry.

In the current implementation, this can be done

either by 1) using the user interface and entering

the geometrical parameters at runtime 2) a script

file in batch mode or 3) an XML file from the

AGILE workflow.

Once all the necessary inputs are available, the

computation code will perform the following

steps in order:

Fig. 1. Program workflow. The PyTornado acts as a wrapper for the compiled C executable.

3

IMPLEMENTATION OF A VORTEX LATTICE METHOD IN A

HETEROGENEOUS PROGRAMMING LANGUAGE ENVIRONMENT

 Planform geometry: Generating the

xyz-coordinates of the corner points of

quadrilateral partitions that make up

each wing (more generally, each lifting

surface) and control surface – see Figure

2. This can be done either in Python, or

in C directly.

 Discretization: Calculating coordinates

of the panels, vortices and collocation

points for VLM.

 Downwash coefficients: Computing the

matrix of AICs (aerodynamic influence

coefficients) and right-hand-side terms.

 Solution: Solving the linear system of

equations for vortex strength using

efficient linear algebra routines.

 Forces: Calculating the aerodynamic

forces from known vortex strengths and

aerodynamic influence coefficients.

 Coefficients: Integrating forces and

moments and normalizing the result to

obtain the non-dimensional aerodynamic

coefficients.

 Output: Formatting the data to suit the

post-processing functions. This too is

possible done in both the C and Python

environments.

Once the core analysis routines have been

completed, post-processing functionality such as

case comparisons and plotting are delegated to

the Python environment.

2.2 Geometry Definition

Along with the changes brought to the program

architecture, the rewriting of Tornado in Python

provided an opportunity to re-think its core data

structures for more efficient computation while

simplifying interaction with external tools.

The CPACS format developed at DLR [4] has

proven to be instrumental in the communication

and interfacing of data between partners in the

AGILE project. For this reason, it was a natural

choice to use a similar hierarchical structure for

the internal geometry definition of PyTornado.

The aircraft planform is defined as an assembly

of lifting surfaces, each of which is composed of

multiple quadrilateral segments. This allows for

the modeling of complex wings with varying

twist, taper, camber and dihedral distributions,

with elements that are straightforward to

subdivide into vortex panels. The lifting surface

segments are defined by the following

properties:

 Span

 Chord (inboard and outboard)

 Twist (inboard and outboard)

 Sweep

 Dihedral

 Airfoil geometry

The geometrical parameters are further shown in

Figure 2.

The lifting surface tracks the span-wise position

of these segments. This allows for the definition

of control surfaces in terms of their relative

span- and chord-wise location, as in the CPACS

schema. The deflection angle can then also be

provided for each control surface.

Fig. 2. Geometry definitions.

The above hierarchical structure is implemented

in Python, simplifying pre- and post-processing

operations on individual geometry components.

The TIXI library, developed at DLR, is used to

interact with CPACS as an input format. The

planform geometry is extracted by computing

the average plane of CPACS wings and wing

segments, which correspond one-to-one with the

PyTornado lifting surfaces and segments. Then,

airfoil and control surface information is loaded

and processed.

MELIN T., GASTALDI A.A., ZHANG M.

4

When the complete geometry is generated, the

segment corner point coordinates are shared in-

memory with the grid generation routines in C,

along with any discretization parameters. The

resulting panel corners, vortex, and collocation

point coordinates are stored in contiguous arrays

for performance and memory efficiency. Airfoil

data is used to shift the panel normal vectors by

the camber distribution. Control surfaces are

treated separately in order to ensure a conformal

and sufficiently fine discretization. Figure 3

show the TIXI/TIGL representation of the D150

geometry as rendered from an AGILE hangar

CPACS file. Figure 4 show the corresponding

potential flow computational lattice.

Fig, 3. The AGILE D150 geometry.

Fig, 3. The D150 potential flow computational mesh.

Much of the CPACS and PyTornado geometry

definition were already aligned with the old

Tornado standard.

2.3 Tornado development

During the work with porting the Tornado code,

some new functions were added to enhance the

modeling capability of the software:

 Control surface taper

 Slats

 Symmetric control surface separation

 Control surface text tags

 Geometry database text tags

o Aircraft geometry name

o Project name

o Project engineer

Control surface taper is a function that
enables the user to define different taper
ratios for trailing edge control surfaces and
the corresponding main wing element. This
allows to define, for example, rectangular
control surfaces on a tapered wing.

Slats are simply control surfaces hinged
forward of the main wing element. These too
can have different taper to the main wing
element. Built-in logic should prevent
collision between the leading and trailing
control surface. The main aerodynamic effect
of slats – to prevent leading edge flow
separation at high angles of attack – isn’t
modelled, as separation isn’t captured by
potential flow. It will, however, model the
aerodynamic effects of the change in camber.

In the old Tornado standard, the trailing edge
control effectors on a symmetric wing were
always connected through the same control
channel. After requests from flight mechanics
engineers and control system designers, the
effectors were decoupled and given their own
channel. In addition, a string field was added
to facilitate naming each control effector.

Similarly, in the geometry file, a header with
text fields for geometry name, project name
and the project engineer were added for data
traceability.

5

IMPLEMENTATION OF A VORTEX LATTICE METHOD IN A

HETEROGENEOUS PROGRAMMING LANGUAGE ENVIRONMENT

3 Method

3.1 Debugging and verification

The debugging of the core Tornado functions

was enabled through the Matlab-C interface.

The code was continuously verified during

development. Each component in the workflow

was individually evaluated for integrity. This

approach was made possible as the old Matlab

code is available and well-validated.

When the C code was finalized, two different

verification acceptance tests were applied. The

verification cases for the old Matlab version

were re-run in both environments to test overall

accuracy and a Monte-Carlo approach with

random geometries were tested in both

environments to ensure converged behavior.

For comparisons of computational speed, a

rectangular wing with aspect ratio 6 was

evaluated at 5 degrees angle of attack several

times, with increasing panel density.

4 Results

Results have been promising with a tenfold

speed increase in comparison to the original

implementation when calling the C-functions

instead of the Matlab Tornado core. The results

for different mesh sizes are shown in Figure 4.

With mesh sizes larger than 500 panels,

execution times of both the Matlab and C-

implementation grow at the same rate.

Interestingly, at around 70 panels – which is not

an unusual panel count – both implementations

are equal in time consumption.

6 Conclusion

The project has shown that it is feasible to port

legacy software to a platform independent

framework. Furthermore, it has demonstrated

the use of the same C-code from both a Python

platform and a Matlab platform.

7 Discussion

In the porting to C, no extra work was spent on

optimizing the code for best memory usage. A

higher computational speed of the C-code could

therefore be expected in future, optimized,

versions.

Fig. 4. Code speedup comparison: Matlab vs. C

7.1 Lessons learned

 While a VLM tool is very suitable for

design automation due to its low

geometrical overhead, meshing and grid

convergence studies still require some

manual intervention with lattice density

and distribution to assure good results.

 A software project as large as AGILE

would have benefitted greatly from a

common version/revision control system

for software, essentially an AGILE

project for software development.

 With three software environments to

maintain, further code changes will take

some more time to implement and verify

cross-platform.

MELIN T., GASTALDI A.A., ZHANG M.

6

7.2 Future Work

During the continued development work of the

Tornado code some key future development

items were identified, but not directly addressed

within the scope of this paper.

 Storing wing profile definition together

with the rest of the geometry data.

 Harmonization towards the CPACS

standard, e.g. changing the name of the

geometry struct to “wings”.

 Functionality for baseline comparisons.

 Enabling better connection between

results and geometries when archiving

project data

 Further investigation of distributing the

software functionality as a service rather

than as distributed code.

The PyTornado suite is still being developed;

any comments or functionality requests from

potential users would be greatly appreciated by

the authors.

References

[1] Anon, AGILE Project ID: 636202, CORDIS, 2018

[2] Prakasha P.S. Ciampa P.D. Nagel B. Boggero L. and

Fioriti M. Collaborative Systems Driven Aircraft

Configuration Design Optimization, Proceedings of

ICAS2016.

[3] Lefebvre T., Bartoli N., Dubreuil S., Panzeri M.,

Lombardi R., D'Ippolito R., Vecchia P.D., Nicolosi

F., and Ciampa P.D. . "Methodological enhancements

in MDO process investigated in the AGILE European

project", 18th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, AIAA

AVIATION Forum, (AIAA 2017-4140).

doi.org/10.2514/6.2017-4140

[4] Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber,

P., Rizzi, A., Rocca, G.L. and Alonso, J. (2012)

“Communication in aircraft design: can we establish

a common language?”, 28th International Congress

of the Aeronautical Sciences, ICAS 2012, Brisbane,

Australia.

[5] CFS Engineering SA. CEASIOM - Computerised

Environment for Aircraft Synthesis and Integrated

Optimisation Methods. www.ceasiom.com/.

Accessed June 29th, 2018.

8 Contact Author Address

Dr. Tomas Melin.

Svenska Flygtekniska Institutet.

Westmansgatan 37A, 58216 Linköping,

Sweden

Tel: +46(0)709 632 698

melin@sftiab.se

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS proceedings

or as individual off-prints from the proceedings.

