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Abstract 

The development of new workflows in aircraft 

design has created a need to re-implement 

legacy analysis software to fit in modern 

frameworks. Older software architectures do 

not necessarily enable the full potential of 

modern hardware and software environments. 

European research in the AGILE project has as 

a goal to enable a software framework for 

innovative collaboration between heterogeneous 

teams of experts, using various in-house tools, 

specifically in different programming language 

environments and platforms. 

This paper describes the work done to shift the 

Tornado vortex lattice method, (VLM) from a 

Matlab-centric implementation to a platform- 

independent implementation. 

1 Background  

The AGILE project is aimed at developing and 

testing multidisciplinary optimization using 

distributed analysis frameworks. An ultimate 

goal is to prove a 40% speedup of solving 

realistic MDO problems when compared with 

the state-of-the-art. The project is funded under 

Horizon 2020 and runs from 2015 to 2018 [1]. 

The overall methodology to tackle the workflow 

challenges in a distributed design environment 

has been described in detail by Prakasha et al 

[2], Lefebvre et al. [3] and Nagel et al. [4].  A 

previous EU-funded research project, SimSAC, 

produced the software environment CEASIOM 

(Computerized Environment for Aircraft 

Synthesis and Integrated Optimization Methods) 

was developed at CFS Engineering [5].  

 

At Airinnova, one of the tools used in research 

and design is the vortex lattice method (VLM) 

Tornado, which is implemented in Matlab. The 

software is currently under development at the 

Swedish aeronautical institute – Svenska 

Flygtekniska Institutet.  

 

For the purposes of the AGILE project, the 

Tornado code was refactored to more modern 

architecture to fit in the AGILE workflow. The 

Matlab implementation, while validated, mature 

and very popular, has two peculiarities: Firstly, 

while the Tornado code itself is freely 

distributed under the GNU-GPL license, its 

intrinsic link to the commercially licensed 

software Matlab limits the use of the software. 

Secondly, as Matlab is an interpreted software, 

computational speed is not a primary objective. 

 

The work done to port the Tornado code was 

shifting core computational routines into a 

compiled executable coded in C, wrapped in a 

user interface coded in Python. The Python 

interface, developed at Airinnova, was intended 

to be used both for the Tornado code as well as 

for a stand-alone Double Lattice code. 

 

2 Code architecture 

The information flow architecture is shown in 

Figure 1. The Python segment covers the user 

interface, pre- and post-processing, while the C 

executable perform the computationally heavy 

operation. This approach was selected to enable 

both fast computations and a non-commercial 

license environment.  
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Alternatively, Python can be used to batch script 

computations or directly link the code into the 

AGILE workflow through the remote 

component environment (RCE) using the 

Common Parametric Aircraft Configuration 

Schema (CPACS) as an aircraft descriptor. The 

compiled C code executes the actual numerical 

simulation. In parallel, the core functions are 

callable from the Matlab implementation. 

Technically, the C-code can be run stand-alone 

if no user interface is required. 

 

In parallel, the information flow in the legacy 

Matlab implementation is also shown in Figure 

1. For debugging purposes, there is added 

functionality in the Matlab code to call the C 

executable through a batch input file interface. 

 

2.1 Data Flow 

The flow of information within the PyTornado 

implementation is as follows. First, three types 

of input are required: 

 

 Geometry: The geometry of the wing or 

aircraft to be simulated needs to be made 

available to the code in a readable 

format, allowing efficient discretization.  

 Flight State: Multiple sets of operating 

conditions may be defined for batch 

computations. These consist primarily of 

angle of attack, velocity, altitude and 

control surface deflection. 

 Solver parameters: Finally, it remains 

to define those settings relating to the 

method of analysis: The type of mesh, 

wake type, correction factors etc. This 

includes any parameters not directly 

related to either state or geometry. 

 

In the current implementation, this can be done 

either by 1) using the user interface and entering 

the geometrical parameters at runtime 2) a script 

file in batch mode or 3) an XML file from the 

AGILE workflow. 

 

Once all the necessary inputs are available, the 

computation code will perform the following 

steps in order: 

 

 
 

Fig. 1. Program workflow. The PyTornado acts as a wrapper for the compiled C executable. 
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 Planform geometry: Generating the 

xyz-coordinates of the corner points of 

quadrilateral partitions that make up 

each wing (more generally, each lifting 

surface) and control surface – see Figure 

2. This can be done either in Python, or 

in C directly. 

 Discretization: Calculating coordinates 

of the panels, vortices and collocation 

points for VLM. 

 Downwash coefficients: Computing the 

matrix of AICs (aerodynamic influence 

coefficients) and right-hand-side terms. 

 Solution: Solving the linear system of 

equations for vortex strength using 

efficient linear algebra routines. 

 Forces: Calculating the aerodynamic 

forces from known vortex strengths and 

aerodynamic influence coefficients. 

 Coefficients: Integrating forces and 

moments and normalizing the result to 

obtain the non-dimensional aerodynamic 

coefficients. 

 Output: Formatting the data to suit the 

post-processing functions. This too is 

possible done in both the C and Python 

environments. 

Once the core analysis routines have been 

completed, post-processing functionality such as 

case comparisons and plotting are delegated to 

the Python environment. 

 

2.2 Geometry Definition 

Along with the changes brought to the program 

architecture, the rewriting of Tornado in Python 

provided an opportunity to re-think its core data 

structures for more efficient computation while 

simplifying interaction with external tools. 

 

The CPACS format developed at DLR [4] has 

proven to be instrumental in the communication 

and interfacing of data between partners in the 

AGILE project. For this reason, it was a natural 

choice to use a similar hierarchical structure for 

the internal geometry definition of PyTornado. 

 

The aircraft planform is defined as an assembly 

of lifting surfaces, each of which is composed of 

multiple quadrilateral segments. This allows for 

the modeling of complex wings with varying 

twist, taper, camber and dihedral distributions, 

with elements that are straightforward to 

subdivide into vortex panels. The lifting surface 

segments are defined by the following 

properties: 

 Span 

 Chord (inboard and outboard) 

 Twist (inboard and outboard) 

 Sweep 

 Dihedral 

 Airfoil geometry 

The geometrical parameters are further shown in 

Figure 2. 

 

The lifting surface tracks the span-wise position 

of these segments. This allows for the definition 

of control surfaces in terms of their relative 

span- and chord-wise location, as in the CPACS 

schema. The deflection angle can then also be 

provided for each control surface. 

 

 
Fig. 2. Geometry definitions. 

 

The above hierarchical structure is implemented 

in Python, simplifying pre- and post-processing 

operations on individual geometry components. 

The TIXI library, developed at DLR, is used to 

interact with CPACS as an input format. The 

planform geometry is extracted by computing 

the average plane of CPACS wings and wing 

segments, which correspond one-to-one with the 

PyTornado lifting surfaces and segments. Then, 

airfoil and control surface information is loaded 

and processed. 
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When the complete geometry is generated, the 

segment corner point coordinates are shared in-

memory with the grid generation routines in C, 

along with any discretization parameters. The 

resulting panel corners, vortex, and collocation 

point coordinates are stored in contiguous arrays 

for performance and memory efficiency. Airfoil 

data is used to shift the panel normal vectors by 

the camber distribution. Control surfaces are 

treated separately in order to ensure a conformal 

and sufficiently fine discretization. Figure 3 

show the TIXI/TIGL representation of the D150 

geometry as rendered from an AGILE hangar 

CPACS file. Figure 4 show the corresponding 

potential flow computational lattice.  

 

 
Fig, 3. The AGILE D150 geometry. 

 
Fig, 3. The D150 potential flow computational mesh. 

Much of the CPACS and PyTornado geometry 

definition were already aligned with the old 

Tornado standard. 

 

2.3 Tornado development 

During the work with porting the Tornado code, 

some new functions were added to enhance the 

modeling capability of the software: 

 Control surface taper 

 Slats 

 Symmetric control surface separation 

 Control surface text tags 

 Geometry database text tags 

o Aircraft geometry name 

o Project name 

o Project engineer 

 
Control surface taper is a function that 
enables the user to define different taper 
ratios for trailing edge control surfaces and 
the corresponding main wing element. This 
allows to define, for example, rectangular 
control surfaces on a tapered wing. 
 
Slats are simply control surfaces hinged 
forward of the main wing element. These too 
can have different taper to the main wing 
element. Built-in logic should prevent 
collision between the leading and trailing 
control surface. The main aerodynamic effect 
of slats – to prevent leading edge flow 
separation at high angles of attack – isn’t 
modelled, as separation isn’t captured by 
potential flow. It will, however, model the 
aerodynamic effects of the change in camber. 
 
In the old Tornado standard, the trailing edge 
control effectors on a symmetric wing were 
always connected through the same control 
channel. After requests from flight mechanics 
engineers and control system designers, the 
effectors were decoupled and given their own 
channel. In addition, a string field was added 
to facilitate naming each control effector. 
 
Similarly, in the geometry file, a header with 
text fields for geometry name, project name 
and the project engineer were added for data 
traceability. 
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3 Method 

3.1 Debugging and verification 

The debugging of the core Tornado functions 

was enabled through the Matlab-C interface. 

The code was continuously verified during 

development. Each component in the workflow 

was individually evaluated for integrity. This 

approach was made possible as the old Matlab 

code is available and well-validated. 

 

When the C code was finalized, two different 

verification acceptance tests were applied. The 

verification cases for the old Matlab version 

were re-run in both environments to test overall 

accuracy and a Monte-Carlo approach with 

random geometries were tested in both 

environments to ensure converged behavior.  

 

For comparisons of computational speed, a 

rectangular wing with aspect ratio 6 was 

evaluated at 5 degrees angle of attack several 

times, with increasing panel density. 

4 Results 

Results have been promising with a tenfold 

speed increase in comparison to the original 

implementation when calling the C-functions 

instead of the Matlab Tornado core. The results 

for different mesh sizes are shown in Figure 4. 

With mesh sizes larger than 500 panels, 

execution times of both the Matlab and C-

implementation grow at the same rate. 

Interestingly, at around 70 panels – which is not 

an unusual panel count – both implementations 

are equal in time consumption.  

6 Conclusion 

The project has shown that it is feasible to port 

legacy software to a platform independent 

framework. Furthermore, it has demonstrated 

the use of the same C-code from both a Python 

platform and a Matlab platform. 

 

7 Discussion 

In the porting to C, no extra work was spent on 

optimizing the code for best memory usage. A 

higher computational speed of the C-code could 

therefore be expected in future, optimized, 

versions. 

 
Fig. 4. Code speedup comparison: Matlab vs. C 

7.1 Lessons learned 

 While a VLM tool is very suitable for 

design automation due to its low 

geometrical overhead, meshing and grid 

convergence studies still require some 

manual intervention with lattice density 

and distribution to assure good results.  

 A software project as large as AGILE 

would have benefitted greatly from a 

common version/revision control system 

for software, essentially an AGILE 

project for software development. 

 With three software environments to 

maintain, further code changes will take 

some more time to implement and verify 

cross-platform.  
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7.2 Future Work 

During the continued development work of the 

Tornado code some key future development 

items were identified, but not directly addressed 

within the scope of this paper. 

 

 Storing wing profile definition together 

with the rest of the geometry data. 

 Harmonization towards the CPACS 

standard, e.g. changing the name of the 

geometry struct to “wings”. 

 Functionality for baseline comparisons. 

 Enabling better connection between 

results and geometries when archiving 

project data 

 Further investigation of distributing the 

software functionality as a service rather 

than as distributed code. 

 

The PyTornado suite is still being developed; 

any comments or functionality requests from 

potential users would be greatly appreciated by 

the authors. 
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