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Abstract

The need for efficient propulsion systems al-
lied to increasingly more challenging fixed—wing
UAV mission requirements has led to recent re-
search on the autonomous thermal soaring (ATS)
field with promising results. As part of that ef-
fort, the feasibility and advantages of modal pre-
dictive control (MPC) based guidance and con-
trol algorithms capable of extracting energy from
updrafts have already been demonstrated numer-
ically. However, given the nature of the dominant
phenomena, a nonlinear optimal control prob-
lem results. Since it may be of large order, im-
plementation and real-time operation difficulties
may arise. Knowing that, an alternative MPC-
based ATS controller designed to yield a simple
and small nonlinear programming problem to be
solved online is presented herein. In order to ac-
complish that, linear prediction schemes are em-
ployed to impose the differential constraints, thus
no extra variables are added to the problem and
only linear bound restrictions result. For cap-
turing the governing nonlinear effects during the
climb phase, a simplified representation of the
aircraft kinematics with quasi—steady corrections
is used by the controller internal model. Simula-
tion results using a 3 degree—of—freedom model
subjected to a randomly generated time varying
thermal environment show that the aircraft is able
to locate and exploit updrafts, suggesting that the
proposed algorithm is a feasible MPC strategy.

1 Introduction

For a long time the atmospheric energy potential
in the form of small-scale convective air currents
has been explored by glider pilots and soaring
birds. Having as basic requirement the ground
exposition to the solar radiation, thermals occur
over different areas, from flatlands to mountains,
throughout all the seasons of the year [1]. How-
ever, only recently the phenomenon has started
to receive serious attention from the aeronauti-
cal engineering community as a way of enhanc-
ing the performance of powered fixed—wing air-
craft. The widespread usage of unmanned aerial
vehicles (UAV), that are frequently equipped
with customizable digital flight control hardware,
makes them natural candidates to incorporate au-
tonomous energy harvesting capabilities, provid-
ing endurance and range gains.

A controller must run specific algorithms for
dealing with the two typical flying phases associ-
ated to soaring (climbing and searching), switch-
ing between them when appropriate. Remote
thermal recognition methods could be used to
locate rising air zones, but they would require
complex equipments to be onboard. Therefore,
to allow wider and less expensive applications,
the algorithms presented herein assume the UAV
is equipped only with a minimal set of sensors,
namely, a Pitot—static system, a Global Naviga-
tion Satellite System (GNSS) receiver and an In-
ertial Measurement Unit (IMU).
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Rising air columns of different shapes and in-
tensities can be found in a single mission and
those parameters may rapidly change with re-
spect to time and altitude [!]. Furthermore, the
pursuit of optimal climb rates typically results in
the airplane flying close to its operational limita-
tions with large amplitude of commands to ma-
noeuvre accordingly. Those aspects, inherent to
soaring, may somehow limit the application of
classical control techniques. Nevertheless the
MPC approach seems to be an adequate tool for
dealing with them [2], since: 1) It relies on an in-
ternal dynamic model whose parameters can be
iteratively changed in real-time to describe dif-
ferent atmospheric scenarios; 2) The commands
to be applied result from the solution of an op-
timal control problem which can be written to
mathematically express the energy gain goal; 3)
MPC algorithms can naturally incorporate con-
straints in such a way that they are respected by
the controller during the predictions.

The conceptual feasibility of ATS controllers
based on nonlinear MPC schemes has already
been demonstrated. Thus, the present work pro-
poses an alternative quasi—linear MPC approach.
It leads to a minimum order nonlinear program-
ming (NLP) optimization problem with linear
inequalities only, which tends to be simpler to
solve, requiring less computational resources.

1.1 Previous Works

Allen [3] proposed and successfully flight tested
the first practical ATS system on a 4.27m span
motor—glider. Total energy rate and accelera-
tion, derived from measurements, are the basic
inputs to the algorithm. For thermaling, a refer-
ence radius and corresponding steady—state turn
rate are defined heuristically. The computed turn
rate commands are further modified in order to
respond to changes in total energy acceleration.
The work by Allen [3] was extended by a se-
ries of studies [4, 5, 6, 7] that proposed algorithm
updates or the inclusion and validation of new
features, leading to robust and reliable designs.
Autonomous flights with range and endurance of
about 100km and 5h have been reported [6].

While the previously cited works employed
classical control techniques, the studies by Lee,
Longo and Kerrigan [¢] and Liu et al. [9]
investigated the ATS problem in a more formal
way, writing it as an optimal control problem to
be solved using a nonlinear MPC—based scheme.
State and control constraints were present and
different cost functions were tested for the search
mode, while in climb mode the maximization of
the total specific energy was the goal. The results
of numerical simulations indicated that the con-
troller was able to explore a non—-homogeneous
thermal environment, avoid sinking zones, iden-
tify and exploit updraft cores.

1.2 Present Work Contribution

A potential drawback of the methodology intro-
duced by Lee, Longo and Kerrigan [8] and Liu et
al. [9] is the relatively high computational costs
that could hamper real-time usage. Hence, the
present work aims to contribute by proposing a
simpler yet practical MPC controller which could
potentially lead to faster and more efficient com-
putations allied to straightforward implementa-
tion and easier integration on flight hardware.
The ATS optimal control problem is inher-
ently nonlinear because the updraft intensity dis-
tribution is itself nonlinear (in space and time)
and significant variations on the aircraft states
usually take place when climb or search manoeu-
vres are executed. Under those circumstances,
the direct use of a linear model for prediction
will lead to poor results with significant discrep-
ancies after few seconds. Lee, Longo and Kerri-
gan [8] and Liu et al. [9] have used fully non-
linear 3 degree—of—freedom (DOF) point-mass
equations of motion (EOM) for prediction. In or-
der to implement the NLP solution in this frame-
work, normally the differential constraints have
to be translated to algebraic nonlinear constraints
and consequently more variables (associated to
the states) need to be introduced, leading to a
larger problem. Furthermore, regular bound con-
straints become nonlinear restrictions too. As a
simpler alternative, the proposed work relies on
using linear prediction models as much as possi-
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ble, while applying pertinent corrections to take
into account some of the major phenomena gov-
erning soaring flight. The differential constraints
are then imposed as straightforward matrix oper-
ations, therefore all the restrictions remain linear
and the order of the problem is reduced, because
only the controls are treated as variables. That
leads to a smaller and less complex NLP prob-
lem, allowing simpler numerical algorithms to be
used for its solution.

2 PROBLEM FORMULATION

The simulations are based on the rigid body 3
DOF point-mass equations taking into account
vertical wind effects. In summarized form, they
are written as Eq. (1), being u the control vector,
whose elements are the bank angle (¢) and lift
coefficient (Cr). The state vector (X.,¢) iS com-
posed by the airspeed (V), flight path angle (),
heading angle (y) and Cartesian coordinates (xy,
v1, 21). When the climb or scan modes are latched
a polar coordinate system is used and the x; and
yr state variables are then replaced by r and 0,
which compose the alternate state vector (X,q;).
Aerodynamical, geometrical and inertial charac-
teristics of a typical manned 15m span club class
glider (Table 1) are employed in the simulations.

Xcart:[v Y ¥ X oy ZI}T
Xpol:[v Y VY r 0 ZI]T

. (1
u= [ Cr (I) }
x =f(x,u)

Table 1 Parameters of the aircraft model.
Mass Speed Gld. Ratio Min. Sink
m[kg] V[km/h] (%)max Vz,min [m/s]

340 [65,220] 32.7! —0.682

'At 81km/h. %At 71km/h.

The aircraft is subjected to the vertical motion
of the air mass, whose velocity is assumed to be
an arbitrary scalar field function of the Cartesian
coordinates and time, i.e., Vi, = V.. (x7,y1,1).
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The controller incorporates a modified Gedeon
[10] thermal model used for the predictions. Two
different reference radii are introduced, R; , and
R; y, thus the thermal can assume an elliptical for-
mat with maximum intensity V; ,4x, according to
Eq. (2). Once those basic parameters are cho-
sen, the estimated wind vertical speed (V; ;) at
any location (x7,y) can be obtained. Note that
the updraft centre position (x;,y;0) and the ro-
tation angle (1) are adjustable parameters too.

Vt,z = Vt,maxeix2 (l - XZ)

2 2
_ X e
= \/(Rm) - (Rt,y> (2)

X = (X1 —x¢0) cos() + (yr — yr.0) sin(n)
Yo = — (X1 =X 0) sin(n) + (y1 — yr,0) cos(M)

No attempt to run a global thermal mapping
algorithm, capable of simultaneously represent-
ing multiple updraft and downdraft zones in a
wide area, is made herein, because the usefulness
of such a global methodology (adopted by Lee,
Longo and Kerrigan [8] and Liu et al. [9]) in
fast time varying atmospheric scenarios is ques-
tionable. Instead, the present work proposes the
online environment estimation to be performed
locally through a predefined shape model (Eq.
(2)), and only when the aircraft is manoeuvring
for centring a thermal core. Furthermore, this
local approach does not need a long record of
measurements to be kept and allows the usage of
shorter prediction horizons, since the controller
is not “concerned” with the more distant zones.

If one considers an axisymmetric updraft and
a steady atmosphere, then it is possible for a
sailplane to remain in an equilibrium condition
with constant velocity (Vi) and bank angle (Qs;),
circling at a certain turn rate (\Jss) and radius (rgy)
relative to the thermal core. Given a specified
turn rate and velocity, Eq. (1) can be numerically
solved for Cy_ s, s, 755 and Yy using Scilab fsolve
subroutine. The resulting sink rate (in calm atmo-
sphere) is then computed as Vi, ; = —Vigsin(Yss ),
while the inclusion of the updraft contribution
(Vi z» Eq. (2)) yields the final climb/sink rate:
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Zrss = Vssz + Vt,z(rss) 3)

Two important aspects have to be empha-
sized: 1) the tighter the curve, the greater the sink
rake, Vi, (for a constant airspeed); 2) the closer
to the thermal core the aircraft circles, the greater
the vertical wind velocity it encounters. Those
opposed effects play a major role in the proposed
ATS algorithm and, in order to consider them, a
database is computed offline. More specifically,
the permanent flight conditions are calculated for
arectangular grid of (Vis, W) pairs, yielding cor-
responding Vi, , values. After a bi—spline based
regression procedure is applied, the aircraft sink
rate in calm atmosphere is expressed as a func-
tion of airspeed and turn rate (Eq. (4)).

Vss,z — Vss,z (VSS7 ‘i’ss) (4)

The soaring flight objectives can be tran-
scribed to the following optimal control problem,

minJ = Q( )—|—
u(t) fo

s.t., X(t) =
u, < ll(t) <u
Xjo <X(1) <X

[(x(¢),u(t),r)dt

f( ( ) (t>7t)7 S [t()?tf}a 5
upr 1€ [t0,15],
1 € [10,1f],

whose interpretation is: suppose the aircraft
at a given instant of time 79 and corresponding
state X(#p). The objective is to obtain the con-
trol and state trajectories (u(z),x(t)), from 7o to a
fixed ¢, that minimize the cost J (composed by
terminal (Q) and stage (I') terms associated to
energy gain or saving), while respecting differ-
ential restrictions and lower and upper bounds.
The former are the equations of motion and the
latter represent the aircraft inherent physical lim-
itations or mission related constraints. A typi-
cal solution approach involves the discretization
of the state and control trajectories along time so
that they are parametrized by a certain number of
scalar coefficients. The continuous time Eq. (5)
is then rewritten as a NLP problem', whose solu-

U See http://plato.asu.edu/sub/nlores.html#general for a
comprehensive list of NLP solvers.

tion is a key element of the MPC scheme.

At a certain instant of time (fy) the current
state vector (x(zp)) is estimated from sensor read-
ings and the discretized version of Eq. (5) is
solved within a predefined prediction horizon
length (t7 — o). The obtained controls (u(z)) are
then applied to the vehicle during a sampling time
interval (AT'), while the entire calculation process
is repeated, so that at the next instant of time
(t =10+ AT) a new optimal control sequence
is available. This procedure is successively re-
peated using a constant prediction horizon length.

3 ALGORITHM DESCRIPTION

The proposed algorithm operates in three differ-
ent modes, namely, climb, search and scan.

3.1 Climb Mode

The climb mode controller works in two levels.
Initially, a higher level approach assumes the air-
craft dynamics can be transcribed to the follow-
ing set of equations:

V=a = Vcos(y)
V=0 Y1 =Vsin(y) (6)
= Vt,z(xlayl) + Vss,z(V, (D)

They result from Eq. (1) after a few sim-
plifications are imposed. Most notably, v is as-
sumed to remain small and its dynamics is ne-
glected, while the acceleration (a) and angular
velocity (®) control variables are introduced (i =
[@ ®]). In fact, Eq. (6) describes the kinemat-
ics of the airplane motion to which two quasi—
steady corrections are applied: the sink rate ver-
sus curve radius relationship (Eq. (4)) and the air
mass vertical velocity contribution (Eq. (2)).

Once the sampling time (AT), the number
of prediction (N) and control (M) steps are
selected, the predictions are initially performed
using only the V and Vs (linear) equations
of the system (6), being § = [V |7 the
predicted output vector. The corresponding
linear discrete equations, obtained by means
of a zero—order-hold scheme [2], are suc-
cessively applied, enabling one to evaluate
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the effect of a sequence of control variations,
AU = [MakO)T ... Ad(k+M -1k,
on the predicted outputs, Y =
[§(k+1K)T ... 9(k+N]k)T}T, at each time
step (k). Equation (7) results, where G is a con-
stant matrix and fg. stands for the free response
vector. After Y is computed, the remaining equa-
tions of the system (6) can be integrated via a
trapezoidal rule, leading to the aircraft position at
each prediction step, Yeraj = [£7(k+ 1]k) $1(k+

1k) 2(k+1]k) ... $r(k+N|k) zi(k+Nk).

Y = GAU +f;, (7)

Note that, given a sequence of control actions
(AU), the entire predicted output history (Y and
?traj) is obtained explicitly, via straightforward
operations. Moreover, bounds imposed in V, a,
, d and ® yield linear constraints only, since Eq.
(7) is itself linear. The problem is now ready to
be posed in NLP format, according to Eq. (8).

YZ2N—-1) =«
minJ = — <¥ —Y,mj(sN)>
AU 2g

where, (8)
s.t., SAU<D

The cost function J, written in terms of the to-
tal specific energy, denotes the objective of reach-
ing the maximum energy state at the end of the
prediction horizon. S and b are a constant ma-
trix and vector respectively that express the state
and control constraints in terms of AU. The func-
tion w represents the explicit integration proce-
dure applied to the X7, y; and Z; equations of the
system (6). Since the differential restrictions are
contained into the prediction scheme, no extra
variables nor nonlinear constraints are introduced
and the size of the NLP problem is dictated by the
control vector size only, i.e., the size of AU (2M).
For solving the NLP problem, the LINCOA opti-
mization algorithm [11]” is employed. It was se-
lected because only the objective function values

2 Code available at http://mat.uc.pt/~zhang/software.html
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need to be supplied, which is coherent with the
minimum input proposal of the present method-
ology.

The vehicle’s data acquisition system is as-
sumed to record the instantaneous vertical wind
speed (V) and corresponding spatial coordi-
nates every AT;, = 0.2s. Perfect measurement
and estimation are assumed and the data is stored
in limited size (N;, = 225) vectors using first-in-
first-out queues. A nonlinear least squares prob-
lem for fitting the thermal model (Eq. (2)) to
the acquired data is then written, being the Scilab
leastsq subroutine employed to obtain the param-
eters Bre = [Vl,max R; « Rt,y Xt,0 YVi,0 n]T This
numerical procedure is performed whenever the
high level controller is called, providing an up-
dated thermal model to be used on its predictions.

Airspeed and radius values, extracted from
the optimal solution of the problem given by
Eq. (8), compose the set—point vector Y, =
Vi(k4+1) r(k+1) ... Vi(k+N) r(k+N)]"
which is tracked by a low level MPC controller.
Its internal model is a linearized version of Eq.
(1) with the kinematics written in polar coor-
dinates and disregarding atmospheric motion
effects. Basic parameters must be set (AT,N,M)
and, again, assuming a zero—order—hold strategy,
a linear discrete time prediction equation similar
to Eq. (7) 1s derived, but now the output vector is

y= [\7 f] " Bound constraints on airspeed (V),
controls (Cr, ¢) and control rates (Cr, ¢) can also
be put in linear format. The cost function (J) is
written in discrete linear—quadratic (LQ) format
for tracking Y, throughout the prediction hori-
zon while the control energy is also penalised.
Thanks to the linear prediction scheme (Eq.
(7)), the low level optimization problem can be
transcribed to a standard quadratic—programming
(QP) format which is function of AU only [2],

1 A A A
minJ = ~AUT HAU + ¢ AU
AU 2 9)
s.t., SAU<D

where A and ¢ are a real constant matrix
and vector respectively. At the k-th time step the
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Scilab gpsolve subroutine is used to solve Eq. (9)
and the control moves are extracted from the so-
lution vector, i.e., Au(k) = [AU*(1) AU*(2)]".
After AT seconds, the plant response to those
controls is read and used to derive the updated
state vector, which is taken as reference for the
linearization, prediction and solution processes at
the following time step (k+ 7). Hence, the internal
model is constantly relinearized and realigned,
increasing the fidelity of the prediction scheme.
Note that an analogous realignment approach is
also adopted by the high level controller.

3.2 Search and Scan Modes

The search mode is used for cruising and in-
tends to explore the environment in order to find
new thermal regions. Target waypoints are suc-
cessively obtained as the solution of a nonlinear
least squares problem set to maximize the dis-
tance from recently visited zones and to avoid
the airspace boundaries. The reference airspeed
is derived from the MacCready’s speed to fly rule
[12], that gives the autopilot the heuristic abil-
ity to speed up when flying into downdraft re-
gions and slow down if updrafts are found. A
constrained linear MPC scheme, analogous to the
one employed by the low level climb controller
(section 3.1), is responsible for tracking the con-
stantly updated heading (y,) and airspeed (V)
set—points. Therefore, only a simple QP prob-
lem needs to be solved every time step. This
is an alternative to the heavier search algorithms
proposed by Lee, Longo and Kerrigan [8] and
Liu et al. [9] which involve more complex non-
linear optimization problems, whose online solu-
tions, depending on some of the related parame-
ters, may become too costly [9].

Intended to run before the climb mode, the
scan mode performs an initial survey of the po-
tential updraft zone, acquiring data for the first
thermal estimation procedure. It specifies an
‘8 shaped’ reference path in order to explore
the four quadrants. A system identical to the
climb mode low level controller (section 3.1)
tracks the predefined set—point vector composed
by constant radius (r, = rgqn = 120m) and air-

speed (V; = Vyean = 110km/h) values. Once the
first turn is completed, a second turn is requested
to the opposite direction.

3.3 Logic of Operation

Figure 1 illustrates the logic of operation of the
proposed ATS algorithm.

; ,»
CLIMB MODE rermal | Vi [ monevee | Ve [ owever | CL PLANT Viz
ENGAGED ESTIMATOR MPC T MPC 3
r
Y

NO

YES EVALUATE NO LEAVE YES ENGAGE
PATH? THERMAL? SEARCH MODE

SEARCH MODE WAYPOINT SET-POINT VI LOW LEVEL (/L PLANT ‘/u'.:
ENGAGED CALCULATION CALCULATION [/, MPC )
"
NO Y

YES_/ WAYPOINT NO YES ENGAGE
REACHED? SCAN MODE

ENGAGE
CLIMB MODE

/iy Ty
SCAN MODE CURVE CENTER, s ENGAGE
ENGAGED SWITCH SEARCH MODE

Fig. 1 Proposed ATS algorithm flowchart.

The following decision steps play a major
role in dictating the system overall behaviour:

— Evaluate Path: Every AT,,r = 10s a new
thermal estimation followed by a run of the high
level MPC controller is executed, otherwise the
last calculated reference trajectory is kept as set—
point to the low level MPC controller;

— Leave Thermal: the thermal is abandoned
if the height gain during the last AT,;;, = 120s is
smaller than Ah.;, = Om;

— New Thermal: 1If at a given time step
¢/ (k) is greater than a predefined threshold (é5,c =
Om/s) and, at the same time, it is less than its
previous value, ¢/ (k — 1), the algorithm under-
stands that a potentially usable updraft area was
reached. Note that ¢’ is the total specific energy
rate (Eq. 10), derived from measurements;

y _ V/V/

é - (10

— Strong Thermal: a good thermal is as-
sumed to exist if ¢’ has remained above a given
threshold (é504n, = 0.5m/s) for at least OlseanATscan
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seconds, where AT, 1s the scan mode run time
and Olyeqn = 0.2.

4 SIMULATION RESULTS

Several numerical simulations have been exe-
cuted in an integrated Scilab’/Fortran framework,
but only the results related to a single baseline
scenario are presented herein. The unpowered
UAV is allowed to fly over a 9km? quadrilateral
area without altitude limitations, relying on the
ATS algorithm to remain aloft. Randomly gener-
ated non—homogeneous clusters of thermals that
can merge with each other and are surrounded by
downdraft zones compose the environment. Each
cluster is assumed to have a finite lifespan (from
10 to 20 minutes [!]) during which its intensity
varies according to a sinusoidal law around the
peak value. This explains why the medium at the
end is completely different from the one found at
the beginning of the run (Fig. 2 versus Fig. 3).

3000

V.2 [M/s]

. hd .
5 000 ' . >3.0
. . 1.0t0 3.0
1000 . .
. . -01t0 0.1
0 . <-0.1
-8 90a® o
-2 000 ‘ . . .
@ -
|'® ” e

T
-2 000 0 2 000

0.1to 1.0

ylm ]

-3 000

z[m]
Fig. 2 Atmospheric environment at ¢ = Os.

Table 2 summarizes the main controller pa-
rameters. Some of them reflect airframe limita-
tions (e.g, stall speed and control bounds), while
others were selected according to practical con-
siderations or tuned during the simulations. Note
that the climb mode high level controller works
with a AT = 2s sampling time, updating the refer-
ence signals every AT,,r = 10s. The related pre-
diction horizon of 50s (NAT) has been found to

3 Available at https://www.scilab.org/en
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3000
. . w ' V2 [M/s]
=>3.0
2000 .
. 1.0to 3.0
1000 . 0.1to 1.0

-0.1t0 0.1

0 . <-0.1

.
®
.,.. : l. 'L

ylm ]

-1 000

-2 000 .
. .
. T .—

T
-2 000 0 2000

-3 000

x[m]

Fig. 3 Atmospheric environment at # = 3600s.

be a good trade—off between desired closed loop
behaviour and computational effort. Regarding
the lower level controllers, a AT = (0.2s sampling
time and a shorter horizon (4s) have proven to
yield accurate tracking of the set—points.

Table 2 Main controller parameters.

Low Level Controllers!

AT s N M CLio
0.2 20 5 0.1
CLup Criols™ Crupls™]  u[’]
1.4 —0.1 0.1 —70.0
Gup ] d)lo [°/s] d)up [°/s]  Vie[km/h]
70.0 -9.0 9.0 67.0
High Level Controller'
AT s] N M ajo[m/s?]
2.0 25 25 —-0.9
auplm/s?]  diolm/s’)  auplm/s’]  wp,[°/s]
0.9 —0.2 0.2 —30.0
WOup[°/s] /5% @up°/5?] Vielkm/h]
30.0 -3.0 3.0 75.0

The o and up subscripts stand for lower and upper
bound respectively.

The simulation started with the aircraft over
coordinates (—2100m,—2100m) at a height of
1000m. Figures 4 and 5 present the resultant tra-
jectory in 2D and 3D format respectively, indi-
cating that the aircraft has scanned a great part of
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the airspace, thanks to the search mode strategy.
It was able to keep safe altitudes during the entire
flight (minimum of 887m, see Fig. 0).

2000

1500 +

1000 -

500 -

-1 000 +

—1500 +

—2 000 ~

—2 500

t t t t
—2 000 -1 000 0 1000 2000

2000

2000
Fig. 5 Flight path after 1 hour — 3D view.

The operation mode was switched 22 times
and the climb mode engaged in five occasions
(labels T'1-T5 in Fig. 4). In three opportunities
(labels M1-M3), a updraft was found but the al-
gorithm understood it was too weak and no cir-
cling was attempted. The flight terminated with
a height gain of 1684m, while the mean rate of
climb in thermals varied from 0.1 to 1.8m/s with
the average turn radius ranging from 59 to 75m.

A detailed view of the flight path immediately
before the climb mode latching as result of the
encounter with the second thermal is presented

3000 po-mmmopooeee- i i Tt T T T j
D S S e S S
2600 4 -----ckoooooorooeoe-

2400 4------ R R A NG
2200 4------ R Y AR . e T A

2000
1800

him]

1600
1400
1200 § -/ AR AR — e AR IR :

1000 o= -f----- oo oeeee oeeee o o o 3

800 F F F : : : : i
0 500 1000 1500 2000 2500 3000 3500 4000

t[s]

Fig. 6 Height variation.

in Fig. 7. After the ‘8 shaped’ exploratory orbit
imposed by the scan mode, it converged to a cir-
cular trajectory around the core, as indicated in
Fig. 8. About 6.5 minutes after the climb mode
engagement (the instant of time shown in Fig. 8),
the updraft intensity was considerably lower, in-
dicating that it would soon be abandoned.

2000

V.2 [mys]
1800 o =3.0
1600 - 1.0to 3.0
1400 4 0.1to 1.0
-0.1to 0.1
— 1200 -
E <-0.1
= 1000 4
800
600
400 4
200

T T T
500 1000 1 500 2 000

z[m]
Fig. 7 Flight path 55s after the encounter with T2.

Figures 9 and 10 reveal how the airspeed and
radius behaved during the exploration of the sec-
ond thermal. The reference signals are also indi-
cated, even though the two sets of curves are al-
most indistinguishable on the scale of the figures,
except for a temporary low level controller track-
ing deviation around 435s, which corresponds to
the instant when the curve direction change was
commanded by the scan mode. At approximately
t = 460s the climb mode is latched and from that
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Fig. 8 Flight path 445s after the encounter with T2.

moment on the set—points were updated by the
high level MPC controller every 10s, explaining
the small steps seen in the responses.
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Fig. 9 Airspeed during the encounter with T2.

As soon as the climb mode was engaged, the
ATS algorithm started to reduce the airspeed until
a value slightly superior to the aircraft minimum
sink velocity (see Table 1) was reached and main-
tained. At the same time the radius decreased to
values between 45 and 65m approximately. Pos-
sibly flying faster at the beginning was preferred
because reaching the updraft central region was
more important than saving height. Moreover,
the initial thermal environment evaluations tend
to be less accurate, forcing the airplane to seek
every new estimated core. Note that the airspeed
lower bound (67km/h, Table 2) was activated at
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Fig. 10 Radius during the encounter with T2.

nearly 400s, but not crossed, illustrating the natu-
ral way constraints are treated by MPC schemes.
Table 3 presents a summary of the algorithm
computational performance. It refers to the pro-
posed test case run on a 1.80GHz quad—core
CPU, 16 GB RAM personal computer executing
Scilab version 5.5.0 under Ubuntu Linux 64 bits.
The displayed time intervals encompass the en-
tire set of operations needed for a single step.

Table 3 Required computation time per step.

Full Step' Regular Step
Average [s] 0.61 0.05

Maximum [s] 1.04 0.12

Includes the thermal estimation and the high level
MPC run (see figure 1).

The maximum recorded computation time
when only the low level control actions are car-
ried out is roughly half the sampling time (AT =
0.2s), which is a promising result for a future
real-time usage on flight hardware. However,
possible complications arise when the full com-
putations have to be performed (every AT, =
10s when the climb mode is latched), since cal-
culation times greater than the elementary 0.2s
sampling time were registered (up to 1.04s). For-
tunately, there is a straightforward way to deal
with that problem. It consists in keeping the pre-
viously computed reference path (given by the



GREGORI POGORZELSKI , FLAVIO JOSE SILVESTRE

high level MPC controller) until the current cal-
culation is completed. In fact, to emulate that, the
simulation whose results were presented through-
out this section has been run with a fixed 1.2s
lag in the high level controller response. This ap-
proach can also serve as a tool for handling in-
feasibility problems, since the previous reference
can be used until the high level prediction horizon
elapses. The NLP problem solution is respon-
sible for about 60% of the calculation time per
step. Although the LINCOA code worked suc-
cessfully, it is not indicated for very large num-
bers of variables. Hence, the adoption of codes
which are more suitable to high dimensional NLP
problems could further improve the performance.

S CONCLUSION

The performed 3 DOF numerical simulations are
the first step to demonstrate the feasibility of the
proposed ATS strategy. They indicate that en-
ergy from the convective phenomena which take
place on the lower atmosphere could be suc-
cessfully harvested without violating the aircraft
performance limitations. Critical aspects of the
methodology have been tested. Most notably,
the simplified kinematic relations with quasi—
steady sink corrections (the algorithm’s core)
have proven to yield sufficiently accurate predic-
tions. Its capability of producing simpler and
smaller nonlinear optimization problems has also
been demonstrated. For instance, the high level
controller used in the test case of section 4 re-
quires a NLP problem with only 50 variables and
150 linear inequalities to be solved at each step,
covering a 50s prediction horizon. If the differ-
ential constraints had to be explicitly imposed,
for example by directly using the 3 DOF nonlin-
ear EOM for prediction, the number of variables
would be much larger (by a factor of four approx-
imately) and extra nonlinear constraints would
have to be considered. Hence, one concludes that
the present approach has the potential to facili-
tate the implementation of less complex, faster
and more efficient codes. Indeed, the obtained
computation times and adopted implementation
strategies point to viable real-time operation.
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