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Abstract  

A hybrid dynamic model of a planetary gear set 

has been developed to calculate dynamic loads 

and analysis of dynamic stresses of gears in 

aviation engine gearbox. The effect of sun gear 

support stiffness on the dynamic stresses in the 

system, as well as the effect of the ratio between 

satellites mesh phases in planetary gearbox is 

analyzed. It is shown that the maximum dynamic 

stresses occur in the ring gear as a result of its 

natural vibration with bending forms. On the 

basis of the developed dynamic model, 

recommendations to decrease dynamic loads in 

planetary gearboxes are formulated. 

1  Introduction  

The task of decrease dynamic forces in the 

gears in aviation transmissions and drives 

continues to be relevant to develop modern 

aircraft engines. Its levels largely determine the 

noise and vibrations in the drive as well as the 

durability of the gears and other elements of the 

design, both the gearbox and the engine itself. 

Due to the dense spectrum of vibrations in the 

meshing of planetary gearbox, resonant 

vibrations occur in the compressor blades and 

other parts resulting in a longer engine 

development time [1]. Some cases of destruction 

of the turbofan disks in operation owing to 

resonant oscillations caused by the over-

excitement from the gear set occur. The reasons 

of the over-excitement were the overestimated 

parameters of the profile modification of the gear 

teeth. 

 As for the aircraft engines, the most loaded 

gears include the cylindrical and herringbone 

gears of the planetary gear sets of the geared 

turbofan engines (such as PW-1100G, PW-

1400G, UltraFan) operating at speeds up to 

10,000 rpm. The requirements for minimizing 

the mass necessitate an increase in the accuracy 

of the strength calculations of aircraft gears and 

the development of modeling methods for both 

meshing and the entire planetary gear set [2, 3]. 

This article describes the developed hybrid 

dynamic model of the planetary gear set 

combining the advantages of meshing simulation 

in FEM and solving dynamics problems by 

analytical methods. 

2 Dynamic model  

Two types of dynamic models are usually 

used to study dynamic processes in planetary 

gear sets: mathematical models with lumped 

parameters, in which the meshing is represented 

in the form of hard disks connected by an elastic-

damping coupling [4, 7, 8], and models based on 

the finite element method (FEM) [5, 6], which 

allow the most accurate calculation of the 

compliance of all system elements. 
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Fig. 1 Model of basic element of planetary gear system – sun-planet and ring-planet gear pairs  

 

This paper studies the hybrid dynamic 

model combining the speed of solving process of 

the analytical model and the accuracy of 

calculating the mesh stiffness characteristics 

using the FEM. 

The planetary set with three satellites is 

considered to simplify the system. The main 

subsystem of the planetary gear set dynamic 

model is a hybrid dynamic model of cylindrical 

gear pair (fig. 1). 

2.1 Model of gear pair 

The dynamic model of gear is represented 

as a 6-degree-of-freedom nonlinear system [9] 

consisting of: 

- gear pair represented by rigid disks with 

mass m1 and m2 and  inertia moments J1 and J2, 

respectively, and connected by an elastic-

damping coupling with variable mesh stiffness 

kz(t), directed along the line of action; 

- bearing supports of gear shafts 

characterized by the stiffness of kbx and kby in 

accordance with the directions of the selected 

orthogonal coordinate system for each gear. 

The system is balanced by torque applied in 

opposite directions to the gears (fig. 1). 

The governing equations of motion for the 

model depicted in fig. 1 can be written as follows 

in the matrix form: 

 

[M]{q̈} + [K(t, q)]{q} + [C]{q}̇ = {F(t)} +

{F𝑓𝑟(t, q)}                            (1) 

𝑤ℎ𝑒𝑟𝑒    [M] = 𝑑𝑖𝑎𝑔[𝐽1, 𝐽2, 𝑚1, 𝑚1, 𝑚2, 𝑚2] 
is an inertia diagonal matrix, the elements of 

which are inertia moments and mass of gears; 

[K(t,q)] is a symmetric stiffness matrix; [C] is a 

damping matrix obtained by analogy with the 

stiffness matrix [K(t,q)]; {q} =
{𝜑1, 𝜑2, 𝑥1, 𝑥2, 𝑦1, 𝑦2}𝑇 is a column matrix of 

system generalized coordinates which are the 

angles of rotation, horizontal and vertical 

movements of the centers of mass of the gears; 
{F(t)} = {𝑀1(𝑡), 𝑀2(𝑡), 0,0,0,0}𝑇  is a column 

matrix of external forces; {F𝑓𝑟(t, q)} is a column 

matrix of frictional forces; 
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𝑘𝑧 = 𝑓(𝑡, 𝑞) is a periodically varying mesh 

stiffness. Time varying mesh stiffness is the main 

source of kinematic excitation of parametric 

vibration in a dynamic gear system [9]. The finite 

element method (FEM) is used to calculate the 

mesh stiffness function and the transmission 

error. 

Figure 2 shows graphs of mesh stiffness of 

spur gears with various parameters of profile 

modification. Gear tooth profile modification is 

introduced to optimize contact patterns and 

stresses, to compensate for manufacturing errors, 

and to reduce gear dynamics. Microgeometry 

modification of the involute gear teeth 

dramatically affects the static and dynamic 

performances of the gear system [11].  

 

 

Fig. 2 Finite element calculation of tooth mesh 

stiffness for varying amount of tip profile 

modification 

 

Figure 3 shows the comparison of the 

harmonic amplitudes mesh stiffness functions for 

various depth parameters of the profile 

modification. As can be seen, the spectral 

composition of fig. 3 introduction of the profile 

modification generally reduces the amplitudes of 

the harmonics multiples of the tooth. However, if 

the modification depth is too great, it is possible 

to decrease the contact ratio ε, which can lead to 

an increase in the amplitude of the first harmonic 

in the spectral composition of the polyharmonic 

mesh stiffness function 𝑘𝑧 = 𝑓(𝑡, 𝑞). 

 

 

 

Fig. 3 Comparison of the harmonic amplitudes 

of mesh stiffness for varying amount of tip 

profile modification 

The time varying mesh stiffness function is 

non-linear function due to tooth separation 

(impact) on resonance vibration and for the 

sampling of the side gap, is taken into account in 

the stiffness matrix through the additive to the 

dependences determining the mesh stiffness: 

 

𝑘(𝒒, 𝑡) = ℎ(𝛿12)𝑘
^

(𝑡),               (2)   

ℎ(𝛿12) = {
1, 𝛿12 > 0,
0, 𝛿12 ≤ 0.

               (3) 

𝛿12 = 𝑟b1𝜑1 + 𝑟b2𝜑2 + 𝑒(𝑡) + (𝑦1 −

𝑦2)𝑐𝑜𝑠𝛼 + (𝑥1 − 𝑥2)𝑠𝑖𝑛𝛼,                       (4) 

where, 𝑘
^

(𝑡)is a linear, periodically varying 

mesh stiffness, calculated using FEM; 𝛿12 is a 

value of the relative displacement of spring 

points imitating the mesh stiffness of the gears; α 

is an pressure angle. 

FEM helps to determine the characteristics 

of the dependence of bending and contact 

stresses in meshing, depending on the angle of 

rotation of the gears during one meshing period 

in a quasi-static setting. 

Figure 4 shows the graphs of the bending 

stress distribution curves for different profile 

modification parameters. As can be seen in the 

figure, the using of the profile modification leads 

to an increase in the maximum bending stresses 

in the tooth root. 
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Fig. 4 Finite element calculation of bending root 

stress for one mesh cycle in gear tooth for 

varying amount of tip profile modification 

Further, the results of the FEM calculations 

for the static formulation are combined with the 

results of the solution of the analytical system of 

the dynamic transmission model (1) - (4). The 

nonlinear differential equation of motion is 

solved numerically by using a fourth order, 

variable step Runge-Kutta (Dormand-Prince 

pair) numerical integration routine available in 

MATLAB. The amplitude-frequency response 

(AFR) of the system can be calculated due to the 

results of combining the simulation results. 

Furthermore, one way to decrease dynamic 

forces is to use gear pair with a high contact ratio 

ε>2. Figure 5 shows two AFR of the dynamic 

response factor Kv=Fdyn/Fstat for gears with ε=1, 

68 (red line) and ε=2,05 (blue line). 

 

 

Fig. 5 Dynamic factor as function of rotating 

speed for varying amount of contact ratio ε 

Figure 5 shows that gears with ε>2  operate 

with lower dynamic response factor in the zone 

of parametric resonance. There is also a 

significant narrowing of the zone of nonlinear 

resonance vibration caused by the loss of contact 

in the teeth. 

2.2 Model of planetary gear set  

To estimate the behavior of the nonlinear system 

of gears of the planetary set, it is necessary to 

consider a system with N = n + 2 lumped adjoint 

masses (fig.6) connected by elastic-damping 

springs, where n is the number of satellites of the 

planetary gear set. The system is balanced by the 

torque applied to the sun gear and the ring gear 

Me and Ms, respectively. 

 

 
 

Fig. 6 Dynamic model of planetary gear set 

 

The equation of motion for a planetary gear set 

with n satellites will have the following form: 

 

𝑴 ∙ 𝑞̈ + 𝑪 ∙ 𝑞̇ + 𝑲(𝑡, 𝑞) ∙ 𝑞 = 𝑭(𝑡),       (5) 

 

where column vector 𝒒 =
[𝜑𝑠 , 𝑥𝑠, 𝑦𝑠, 𝜑1, 𝑥1, 𝑦1, … , 𝜑𝑁, 𝑥𝑁, 𝑦𝑁 , 𝜑𝑒, 𝑥𝑒, 𝑦𝑒]𝑇 

- describes the movements of the gearbox 

elements: the sun gear, the epicycle, the 

satellites, respectively; F (t) - represents a vector 

of forces from applied externally loads, namely, 

external torque in the sun and the epicycle; x and 

y are the horizontal and vertical movements of 

the elements, 𝜑  is the angular displacement in 

radians relative to the center of the carrier for the 

central gears and relative to the center of the 

satellite satellites. The letters s and r refer to the 
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sun gear and the epicycle, respectively, and the 

numeric characters 1 ... n refer to the satellite 

number. The total number of degrees of freedom 

of such a system is 3n + 6. 

The use of floating sun gear configuration in 

the planetary gearbox of jet engine allows to 

equalize the loads between satellites and to 

compensate their technological misalignment 

errors. To consider the influence of the suppoting 

stiffness on dynamic loads in the gearbox, the 

most common designs supports of the planetary 

set elements are simulated (fig.7).  

 

 

Fig. 7 Radial gear orbit of a three-planet gear 

set 

Figure 8 shows the sun gear center orbit for 

different types of sun gear supports and the 

combination of meshing phases of satellites. The 

coincidence of the "satellite-sun" meshing 

phases, achieved by the number of teeth of the 

sun gear by the number of satellites, ensures a 

minimal displacement of the center of mass of 

the sun gear even with its floating suspension and 

the incompatibility of the "satellite-ring gear" 

phases (Fig. 8(I)). Figure 2 (II) shows the sun 

gear center locus on a floating support with an 

occasional phase shift in meshing with the 

satellites, as a result of which the amplitude of 

oscillations of its center of mass increases 

significantly, and the trajectory has an 

asymmetrical character.  

Figure 8 shows the orbit of the sun gear 

when it is mounted on supports with stiffness 

exceeding the stiffness of gears (free support of 

sun fear). The mode amplitude of the center of 

mass is damped compared to the non-locating 

bearing, but at the same time the dynamic forces 

in the gears increase, especially in case of large 

spacing errors and technology inaccuracy.  

 

 

Fig. 8 Radial sun gear orbit of a three-planet 

gear set with: I – free support of sun gear 

without phase shift of meshing frequency; II - 

free support of sun gear with phase shift of 

meshing frequency; III – fixed support of sun 

gear 
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On fig. 9 shows the results of the dynamic 

simulation of a planetary gearbox with optimal 

modification teeth of gears (blue line) and for no 

modification gears (red line).  

 

Fig. 9 Dynamic factor as function of rotating 

speed of sun gear with modification teeth (blue 

line) and no modification gears (red line) 

To analyze the dynamic stress of the 

planetary gear set parts under the action of 

dynamic forces as well as to assess the degree of 

the effect of the ring gear compliance, a dynamic 

simulation of the planetary set was carried out 

using a finite element method in the dynamic 

analysis module using the Newmark method. A 

three-dimensional model of a planetary set with 

three satellites mounted on fixed axes was 

considered. The finite element model is 

constructed with the use of 20-node 3d finite 

elements and contact elements [10] with a side 

size of 0.8 mm. The simulation results are 

presented in fig. 10. 

 

Fig. 10 Finite element calculation of bending 

root stress in ring gear teeth of planetary gear 

set model 

Modeling with the help of FEM in dynamic 

formulation by an implicit method (Newmark 

method) showed that bending stress of a 

compliant ring gear can cause high values of 

bending stresses in the tooth root of the ring gear. 

Different values of thickness of the ring gear rim 

influence the strain-stress state in which the 

maximum stresses in the hollow teeth do not 

arise in the process of meshing with the satellites 

and after meshing in a position corresponding to 

the maximum deflection of the ring gear (fig.10). 

3 Summary and Conclusion 

This paper studies the influence of the sun 

gear supporting stiffness and the ratio of the 

phases of the satellite meshing to the dynamic 

forces in the gear set on the basis of the 

developed hybrid dynamic model of a planetary 

gear set. The combination of analytical methods 

and the finite element method makes it possible 

to obtain accurate estimates of dynamic forces in 

gears at low time costs achieved by simulating 

the process of gear meshing in the FEM and 

taking into account the possible loss of teeth 

contact. The results of the simulation show the 

possibility of significant reduction of dynamic 

forces in the planetary gear sets by introducing a 

profile modification of the teeth, the use of gears 

with a high contact ratio as well as by choosing 

the optimal combinations of the stiffness of the 

sun gear and the compliance of the ring gear. 

Modeling of the meshing of the planetary gear set 

with the help of FEM in dynamic setting shows 

that bending stress of the compliant ring gear can 

cause high values of bending stresses in the tooth 

root of the ring gear. 
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