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Abstract

This work presents a methodology for system
identification of a large flexible aircraft operat-
ing in closed-loop. The feedback in some cases
is necessary because the system in open-loop is
unstable or because a controller, known or not,
is present on system and is not possible to re-
moved it. The synthetic data of a nonlinear dy-
namic to the aircraft considering three symmetric
and two anti-symmetric flexible modes are used
in the identification algorithm. The identifica-
tion algorithm is a non iterative subspace method
well applied for both open and closed-loop data.
The preliminary results suggest a representative
model for the aircraft, obtaining the state-space
matrices that are of very interest and used for
control system analysis and design.

1 Introduction

The identification of aircrafts with flexible struc-
ture have been investigated [1], [2] mainly due to
the coupling of dynamics. In [3] a study about
the influence of aircraft loads is presented in or-
der to include known flexible effects because of
the new structural designs concepts.

In this way, dynamic models of aircrafts con-
tained the efforts of aerodynamics are needed to
system analysis as well as to closed-loop con-
trol system design based on an accuracy aircraft
model [4]. Techniques to estimate the aerody-
namics coefficients have been applied and may
be obtained, for example, from wind-tunnel tests
while others may be estimated via numerical

techniques. In both cases, efforts are needed to
determine aerodynamics coefficients with confi-
dence [5], [6].

Others approaches that have been applied to
obtained representative models are the subspace
methods [7]. Although they are referred to as
black-box models, they offers an advantageous
that are not an optimization algorithm and do
not suffer from the inconveniences encountered
in applying this methods, being an efficient alter-
native for system identification.

In cases of closed-loop operation, some clas-
sical methods, e.g., the prediction error method
(PEM) and the output error method (OEM), may
be fail and produce biased estimates. So, another
class of identification algorithms based on sub-
space theory have been applied, just to deals with
some difficulties that the feedback provides [8].

In this way this work presents an identifica-
tion procedure to identify a flexible aircraft in
closed-loop operation. The follows sections de-
scribe the problem formulation and the results
obtained from closed-loop simulated data.

2 Problem formulation

The subsection 2.1 presents the equations of mo-
tion of a large flexible aircraft well known in the
literature as Rockwell-B1 aircraft [9]. Some me-
chanical characteristics used for simulation and
the flexible modes are presented. The subsec-
tion 2.2 describes a flight condition used to ob-
tain a linear model, in which the eigenvalues are
used to distinguish the modes of longitudinal and
lateral-directional dynamics, including the flex-
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ible modes. An identification procedure is de-
scribed in subsection 2.3.

2.1 The aircraft dynamic

The mathematical model used to develop the sim-
ulation is available in the open literature [10]
and a source-code implemented by the author is
in MATLAB/SIMULINK. The MIMO system,
shown in Fig.1, has seven control-surfaces de-
flections and the propulsion thrust acts along the
vehicle’s fuselage, in X-axis. The propulsion
thrust is not able to generate moment.

Fig. 1 Rockwell-B1 aircraft.

The mechanical characteristics, mass and in-
ertial properties of the aircraft are summarized in
Tab.1, while the modal frequencies and the gen-
eralized masses are given in Tab.2.

Table 1 Mechanical characteristics.
Wing geometry Mass and Inertias

S=1,946 ft2 m=288,017 lb
c̄=15.3 ft Ixx=950 × 103 slug.ft2

b=70 ft Iyy=6,400 × 103 slug.ft2

Λ=65 deg Izz=7,100 × 103 slug.ft2

- Ixz=-52.7 × 103 slug.ft2

- Ixy=Iyz=0

The aerodynamics efforts acting in longitudi-
nal and lateral-directional dynamics are govern-
ing by forces and moments equations.

Considering this aircraft, the aerodynamic

Table 2 Vibrations modal frequencies and gener-
alizes masses.

Symmetric modes Anti-symmetric modes
ω (rad/s) µ (sl-ft2) ω (rad/s) µ (sl-ft2)

12.6 184 12.9 28,991
14.1 9,587 16.5 136
21.2 1,334 - -

forces coefficients are,

CX = CX0 +CXδH δH +CXq

qc̄
2V

+CXδsp |δsp| (1)

CY = CYβ
β+CYδRU δRU +CYδRLδRL +CYδH δH + ...

CYδsp |δsp|+CYcvanti + ...

CYη4
η4 +

CYη̇4

u
η̇4 +CYη5

η5 +
CYη̇5

u
η̇5 (2)

CZ = CZ0 +CZδH δH +CZq

qc̄
2V

+CZδsp |δsp|+ ...

CZδcvsym
(δcvsym +0.866− ε)+ ...

CZη1
η1 +

CZη̇1

u
η̇1 +CZη2

η2 +
CZη̇2

u
η̇2

+CZη3
η3 +

CZη̇3

u
η̇3 (3)

and the aerodynamic moments coefficients are,

Cl = Clββ+ClδRU δRU +ClδRLδRL +ClδDH δDH + ...

Clδspδsp +Clp

pb
2V

+Clr
rb
2V

+ ...

Clη4
η4 +

Clη̇4

u
η̇4 +Clη5

η5 +
Clη̇5

u
η̇5 (4)

Cm = Cm0 +CmδH δH +Cmα̇

α̇c̄
2V

+Cmq

qc̄
2V

+ ...

Cmδsp |δsp|+Cmδcvsym
(δcvsym +0.806− ε)+ ...

Cmη1
η1 +

Cmη̇1

u
η̇1 +Cmη2

η2 +
Cmη̇2

u
η̇2 + ...

Cmη3
η3 +

Cmη̇3

u
η̇3 (5)

Cn = Cnβ
β+CnδRU δRU +CnδRLδRL +CnδH δH + ...

Cnδspδsp +
69.7

136.7
CYcvanti +Clη4

η4 +
Clη̇4

u
η̇4 + ...

Clη5
η5 +

Clη̇5

u
η̇5 (6)

The generalized forces coefficients due to
three symmetric flexible modes can be expressed
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as

CQ1 = CQ1α
α+

1
u

CQ1qq+CQ1δsp
|δsp|+CQ1δH

δH + ...

CZδcvsym

0.56
15.3

(δcvsym +0.866×57.3− ε)+ ...

CQ1η1
η1 +

1
u

CQ1η̇1
η̇1 +CQ1η2

η2 +
1
u

CQ1η̇2
η̇2 + ...

CQ1η3
η3 +

1
u

CQ1η̇3
η̇3 (7)

CQ2 = CQ2α
α+

1
u

CQ2qq+CQ2δsp
|δsp|+ ...

CQ2δH
δH +CZδcvsym

0.56
15.3

(δcvsym +
0.866
57.3

− ε)+ ...

CQ2η1
η1 +

1
u

CQ2η̇1
η̇1 +CQ2η2

η2 +
1
u

CQ2η̇2
η̇2 + ...

CQ2η3
η3 +

1
u

CQ2η̇3
η̇3 (8)

CQ3 = CQ3α
α+

1
u

CQ3qq+CQ3δsp
|δsp|+ ...

CQ3δH
δH +CZδcvsym

0.4
15.3

(δcvsym +
0.866
57.3

− ε)+ ...

CQ3η1
η1 +

CQ3η̇1

u
η̇1 +CQ3η2

η2 +
1
u

CQ3η̇2
η̇2 + ...

CQ3η3
η3 +

1
u

CQ3η̇3
η̇3 (9)

and the generalized forces coefficients due to two
anti-symmetric modes can be expresses as

CQ4 = CQ4β
β+CQ4RU δRU ++CQ4RLδRL + ...

CQ4DH δDH +
1
u

CQ4 p p+
1
u

CQ4rr+ ...

0.7
15.3

CQ4(α,δcvanti)
+CQ4η4

η4 +
1
u

CQ4η̇4
η̇4 + ...

CQ4η5
η5 +

1
u

CQ4η̇5
η̇5 (10)

CQ5 = CQ5β
β+CQ5RU δRU ++CQ5RLδRL + ...

CQ5DH δDH +CQ5spδsp +
1
u

CQ5 p p+ ...

1
u

CQ5rr+
0.55
15.3

CQ4(α,δcvanti)
+

CQ5η4
η4 +

1
u

CQ5η̇4
η̇4 +

CQ5η5
η5 +

1
u

CQ5η̇5
η̇5 (11)

where the definitions of the total force are obvi-
ous, according to the literature [11].

2.2 A flight condition

The nonlinear model was linearized about the
flight condition of straight and level cruise at an
altitude of 5000 ft, or 1524 m, and at an velocity
of 0.6 Mach, or 658,27 m/s. The Tab. 3 summa-
rizes the flight condition.

Table 3 Equilibrium condition for a straight and
level cruise.

p (deg/s) 0 F (kN) 164.78
q (deg/s) 0 δH (deg) -6.62
r (deg/s) 0 δsp 0
V (m/s) 658.26 δH 0
α (deg) 0.73 δDH 0
β (deg) 0 δRU 0
φ (deg) 0 δRL 0
θ (deg) 0.73 δcvsym 0
H (m) 1,524 δcvanti 0

η1 (deg) 34.61 η̇1 (deg/s) 0
η2 (deg) 2.48 η̇2 (deg/s) 0
η3 (deg) -3.16 η̇3 (deg/s) 0
η4 (deg) 0 η̇4 (deg/s) 0
η5 (deg) 0 η̇5 (deg/s) 0

The eigenvalues of dynamic matrix obtained
from linearizion procedure is plotted in Fig.2. It’s
possible to note that not exist a significant inter-
action between the rigid and flexible dynamics.
So, the problems due to coupling the dynamics
seems to be avoided but not least the problem
formulation of to recover the flexible system dy-
namic remains.

2.3 The identification procedure

The identification of multivariable systems in
closed-loop operation has been investigated in
the last decades since open-loop system are un-
stable or when a controller already is mounted in
the system and it’s not possible remove it. So, an
identification procedure in closed-loop have to be
applied in order to recover the system dynamic
and at the same time avoid the biasing of esti-
mates, due to correlation between the input and
the noise caused by feedback action.
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Fig. 2 Eigenvalues of the linearized dynamics.

Table 4 Parameters of the eigenvalues of the
linearized dynamics: natural frequency wn and
damping factor ξ.

eigenvalues wn ξ mode

−0.64± j1.78 1.9 0.34 short period
−0.0065± j0.07 0.07 0.09 phugoid

0 - - due altitude

eigenvalues wn ξ mode

0.0286 0 -1 spiral
−1.33 0 1 roll

−0.0021± j1.68 1.68 0.001 dutch roll

eigenvalues wn ξ mode

−0.42± j12.39 12.4 0.03 1 sym.
−2.65± j17.84 18 0.14 2 sym.
−0.43± j21.24 21.2 0.02 3 sym.
−1.68± j14.67 14.8 0.11 4 anti.
−0.37± j16.59 16.6 0.02 5 anti.

There are three approaches described in [7]
just for system identification applied to closed-
loop data with a typical configuration as shown
in Fig.3. The first approach ignores the existence
of the feedback and applying the open-loop iden-
tification methods directly in input-output data
(u,y). Since the correlation between the input
signal and the noise is relatively small, the results
obtained are satisfactory.

The second approach considers that the con-

Fig. 3 A feedback system.

troller is known and it’s possible to calculate the
system dynamic from transfer function of (r,y)
data. And the third approach uses data of in-
put, output and reference signal just to identify
the plant and the controller when both are un-
known. It’s should also be noted that choice what
approach can be applied depends on the purpose
of the model.

In this work, the first approach is applied in
the identification procedure, since a controller
dynamics is not the most important role com-
pared with the many parameters involved in the
equations of motion which includes the aerody-
namic coefficients.

The subspace method presented in [12] was
implemented in MATLAB script and is applied
in this work for system identification of the flex-
ible aircraft. The identification procedure con-
cerns in applying of the DSR algorithm [13] to
input-output data (u,y) and identify a linear in-
novation model,

xk+1 = Axk +Buk +Kεk (12)
yk = Cxk + εk

where xk is the system states vector, uk is the in-
put vector, yk is the output vector and εk is the
innovation method. The identification problem
consists in determine the model matrices A, B
and C and the Kalman gain K.

3 Results

The closed-loop system was performed with a
pitch-rate control augmentation systems design,
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namely pitch-rate CAS, in order to became more
fast the closed-loop dynamics, providing a large
damping, and generating synthetic data for iden-
tification based on a typical configuration of feed-
back control. The SIMULINK diagrams for the
pitch-axis CAS is shown in Fig.4. The pitch-
rate CAS is an integrative controller, performing
feeding back both the pitch-rate and attack angle.

Fig. 4 Pitch-rate CAS design implemented in
MATLAB/SIMULINK.

A typical doublet signal was applied to the
system just to evaluated the closed-loop opera-
tion. In open-loop the phugoidal mode has a set-
tling time about 400 seconds while in closed loop
about 6 seconds.

Fig. 5 Closed-loop operation: a pitch-rate CAS
control.

The following sections present the results of
the closed-loop identification.

3.1 Subspace algorithm: DSR (combined de-
terministic and stochastic system identi-
fication and realization)

The DSR algorithm proposed by [12] is a sub-
space method composed basically by two steps.
In the first step, the experimental data is divided
in two parts, a deterministic part yd

J/1 and an in-
novation part εJ/1. In the second step, a discrete
state-space model is obtained solving a determin-
istic identification problem according to [14].

An alternative procedure to solve a determin-
istic problem was performed applying the N4SID
(numerical algorithms for subspace state space
system identification) algorithm [13]. Results in-
dicate that the methodology is a viable alternative
to solve the deterministic identification problem.
The block diagram referred to the algorithm DSR
is shown in Fig.6.

Fig. 6 DSR algorithm using the N4SID to solve
the deterministic identification problem.
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The deterministic component is obtained by

yd
J/1 = YJ/1/

[
U0/J
Y0/J

]
(13)

and the innovation sequence is estimate by

εJ/1 = YJ/1−YJ/1/

[
U0/J
Y0/J

]
(14)

The Hankel matrices from input-output data
used to uncorrelate the noise and the future input
signal, are define as

U0/J+1 =

[
U0/J
UJ/1

]
(15)

Y0/J+1 =

[
Y0/J
YJ/1

]
After the uncorrelation process, a determi-

nation of the system matrices may be obtained
solving the following determinism identification
problem,

xk+1 = Axk +
[
B K

][uk
εk

]
(16)

yd
k = Cxk

with a new data set being defined as

uk :=
[

UJ/1
εJ/1

]
(17)

yk := yd
J/1

where k = J,J+1,J+2, ...,N−1 and the number
of samples is N := N− J.

The closed-loop system identification apply-
ing this methodology in an large flexible aircraft
operating in closed-loop is described in the fol-
lowing subsection.

3.2 Closed-loop system identification

The problem formulation consists in identify the
system matrices of a discrete state-space model
from input-output data. The first step to closed-
loop system identification is to apply a excitation
signal and to collect data, in this case using input-
output data from simulation.

In the identification procedure, a maneuver
using elevator as input was performed in the
aircraft based on pitch-rate reference signal as
shown in Fig.7. In this work, only the longitu-
dinal dynamic is excited and is assumed whereas
in straight and level cruise the longitudinal and
lateral-directional dynamics are decoupled. The
same flight condition presented in previous sec-
tion is applied in order to obtain the closed-loop
data.

Fig. 7 Closed-loop data.

Analyzing the pitch-rate output, as shown in
Fig.8, it’s possible to verify the existence of an
oscillation about 11.25 rad/s compared to the be-
havior if the aircraft is only rigid. This oscillation
frequency suggests the presence of the first mode
in the pitch-rate measurements.

A single control design consisting of a pitch-
rate CAS [16] was implemented based on lin-
earized matrices in order to obtain the closed-
loop data. Measurements noises were added with
suitable signal-to-noise ratio and the nonlinear
dynamic was performed considering the five flex-
ible modes previous described at flight condition
already mentioned.

To perform the identification algorithm, a
transformation of variables is necessary, such
that, d = φη. The linear displacements d may be
obtained by strain-gauges sensors located along
the flexible wing and the modal shapes φ may be
obtained from a vibration test [15]. Therefore,
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Fig. 8 Enlarged Fig.7: influence of the flexible
modes.

for the identification procedure is used a general-
ized coordinate that includes the variables η and
η̇.

In the system identification are used one in-
put, four output from longitudinal dynamic and
generalized displacements and velocities of the
five flexible modes, in all, one input measure and
fourteen output measure.

A singular value decomposition obtained
with identification parameters J=30 and L=2 that
corresponding at past and future horizons, re-
spectively, is shown in Fig.9. The order n=14 was
adopted to the model, based on the more repre-
sentative singular values.

The model obtained from the application of
SIM method can be referred as black-box model
and one difficulty is to explicit the aerodynamic
coefficients and the identified model have no
physical meaning, but the preliminary results in
this work suggest a representative model when
compared with the OEM (output-error method)
method well known in literature [17].

It’s shown in Fig.10, Fig.12, Fig.13 and
Fig.14 the Bode diagrams obtained from identi-
fied model. The results empathize that the model
recovery the dynamic of aircraft along the excited
frequency range without biasing.

The transfer function referred to ratio of
pitch-rate to elevator deflection from identified

Fig. 9 Order estimation based on Singular Value
Decomposition of the orthogonal projection of
the future data onto the past data.

Fig. 10 Bode diagrams obtained from identified
model: (a) ratio of pitch-rate to elevator deflec-
tion, q(s)/δe(s).

model is shown in Fig.11.
In closed-loop identification literature [8], the

problems with closed-loop experiments are dis-
cussed and explained why some well known
identification methods cannot be used for closed-
loop identification and in closed loop generating
informative data is more complicated due to the
controller. Referring to the last case, the identifi-
cation results of this work indicates that for low
frequencies, the identified model not capture the
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Fig. 11 Ratio of pitch-rate to elevator deflection,
q(s)/δe(s), from identified model: a result by ob-
tained via MATLAB.

Fig. 12 Bode diagram obtained from identified
model: (a) ratio of velocity to elevator deflection,
V (s)/δe(s).

Fig. 13 Bode diagram obtained from identified
model: (a) ratio of attack angle to elevator de-
flection, α(s)/δe(s).

Fig. 14 Bode diagram obtained from identified
model: (a) ratio of pitch angle to elevator deflec-
tion, θ(s)/δe(s).

phugoidal mode and the channel between the el-
evator and velocity was the poorest representa-
tion suggesting a input non persistently exciting
of this dynamic.

4 Conclusions

This work presents a closed-loop system identi-
fication of a large flexible aircraft well known in
the literature. The goal of this work was to ap-
ply a subspace algorithm to recover the longitudi-
nal dynamic even in presence of a feedback, that
sometimes causes biasing of the estimates due to
correlation between the noise and the input sig-
nal.

So, the applied algorithm avoids the biasing
of estimates producing a representative discrete
state-space model. The methodology presents in
this work is an alternative to obtain aircraft mod-
els, using low computational efforts and not re-
quiring an expertise in basic aerodynamics of lift-
ing surfaces.

Another work, in progress by the authors,
concerns to identify the flexible aircraft dy-
namics, specifically an unmanned aerial vehicle
(UAV) with flexible wings, even in closed-loop
operation.

Preliminary analysis obtained in this work,
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show that the feedback loop produces a input non
persistently exciting. So, in closed-loop systems,
the identification depends of the control law and
feedback variables.

Further, the future works of system identifica-
tion of flexible aircrafts concerns in find a great
flight test to guarantee informative data in order
to recover the rigid and flexible modes.
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