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Abstract  

In this paper an efficient framework is 

developed for aerodynamic database generation 

and management of reentry vehicles during 

aerodynamic configuration evolution and 

design phase. For reentry vehicles with wide 

range of flight envelope, a large number of data 

is required to full-fill the aerodynamic multi-

dimensional tables. To reduce the number of 

high-fidelity analyses without considerable 

accuracy loss, a proper combination of 

sampling, interpolation and data fusion methods 

are required. To show the capabilities of the 

developed framework, Orion reentry capsule 

with wide flight envelope is assumed as a test 

case. Orion aerodynamic database is generated 

efficiently and the obtained results are in good 

agreement in compare with experimental data. 

It is demonstrated that if the reentry vehicle 

geometry undergoes some modifications, it is 

possible to update whole aerodynamic database 

with minimum computational effort using the 

presented computational framework. 

1 Introduction 

Atmospheric reentry flight is inevitable when 

we want to return a valuable payload from 

space. Mostly, reentry vehicles are containing 

astronauts or important objects, and 

consequently their design and development 

must be reliable and accurate. One of the key 

aspects of reentry vehicle development is 

aerodynamic design and simulation as an input 

for other aspects of design e.g. structure, 

thermal, stability and control [1]. For reentry 

vehicles, aerodynamic database generation 

process is challenging, time consuming and 

expensive because of wide-ranging flight 

envelope including hypersonic, supersonic, 

transonic and subsonic flow regimes. Typically, 

aerodynamic forces and moments of these 

vehicles are presented in multi-dimensional 

tables and a large number of aerodynamic data 

(~10
6
) is required to full-fill the table. For 

aerodynamic database construction, there are 

several sources and methods. The real and 

costly data are obtained from flight tests. Wind 

tunnel test is cheaper but has limitations regards 

scaling, blockage and measurements. 

Computational Fluid Dynamics (CFD) is 

another source of aerodynamic data that can 

predict non-linear flow physics. Another 

approach and the cheapest one is semi-empirical 

methods combined with approximate and linear 

aerodynamic theories. It is obvious that full-

filling whole aerodynamic table with high 

fidelity data is very expensive and nearly 

impossible and therefore employing different 

fidelity methods is unavoidable. Also, for the 

fusion of multi-fidelity data and improvement of 

the aerodynamic table accuracy, surrogate 

models can be used [2-5]. 

The main idea of this work is to extend the 

application of surrogate-based frameworks to 

the reentry vehicles’ aerodynamic database 

development and to update an available 

database of a base geometry with some 

modifications. Due to extensive range of flight 

envelope, database generation for reentry 

vehicle is more time consuming and expensive, 

in compare to aerial vehicles like aircrafts.  
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2 Computational Framework 

2.1 General Algorithm 

For reentry vehicle aerodynamic database 

generation, some special solvers like Newtonian 

solvers and also efficient combination of 

sampling, interpolation and data fusion methods 

must be used to reduce cost of computations 

without loss of accuracy. Moreover, different 

grid generation and solver settings should be 

optimally set for each regimes of flight i.e. 

hypersonic, supersonic, transonic and subsonic. 

On the other hand, to overcome the lack of fast 

solvers for generating initial trends of 

aerodynamic coefficients in all regimes of 

reentry flight, implementing more efficient 

sampling techniques is necessary in compare to 

the previous studies. In the current work, mean 

squared error (MSE) and maximum expected 

improvement (MEI) criteria are used for 

efficient selection of new samples locations. 

The process for generating aerodynamic data is 

started by initial sampling via LHS 

methodology. Low-fidelity solvers such as 

semi-empirical codes and Euler solver are 

implemented for producing aerodynamic data 

on these points. Once low-fidelity aerodynamic 

coefficients are produced by using solvers, 

Kriging interpolation is used to interpolate data 

and fulfill the gaps.  Then, MSE of the dataset is 

determined and a sample point is created in 

maximum of MSE to calculate new 

aerodynamic data. The process continues 

similarly until the MSE criteria is met. Now the 

trends of all aerodynamic coefficients are 

calculated. To increase accuracy of the trends, 

some high-fidelity samples must be considered 

in whole flight envelope with Latin Hypercube 

Sampling (LHS). The minimum of these 

samples is 16 due to possible permutations for 

including extreme bounds of each flight 

envelope parameters (Mach, angle of attack, 

sideslip angle and altitude). Considering 16 

samples in this manner, avoids the need of 

extrapolation. For new sample points of 

database, Navier-Stokes solver is used as an 

accurate aerodynamic data generator. Then, Co-

Kriging data fusion method is used to combine 

low and high-fidelity datasets. Hence, 

Maximum of Expected Improvement (EI) 

function is calculated and new sample points are 

created and accurate aerodynamic data are 

calculated by Navier-Stokes solver further. The 

procedure will be pursued until the EI criteria is 

met. Eventually, the final database is prepared 

in form of 5-D matrices. Five-dimensional 

matrices are composed from different 

combinations of variables e.g. (M, , , Re, Ci) 

and they will form the complete aerodynamic 

database of the reentry vehicle.  

If an initial database of a similar geometry is 

available, the database of a new geometry (with 

some modifications in comparison to base 

geometry) can be constructed with only a few 

new sample points to update the basic database 

by using co-Kriging method (Fig. 1). 

 
Fig 1. The surrogate-based framework for updating an 

initial aerodynamic database to a new similar geometry 

database 

2.2 Theoretical Foundations  

If f(x) is defined by a k-vector of design 

variables x, all the information that we can 

obtain from f(x) is through discrete samples, 
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where n is the number of sample points. The 

samples could be shown in matrix form, 

2 
                     

that x itself is a k-dimensional vector of design 

variables. To achieve uniform accuracy in all of 

the design sites, the samples must be dispersed 

uniformly. Latin hypercube is a method of 

sampling that can spread samples uniform in all 

of the design space. Building a Latin Hypercube 

can be done by splitting the design space into 

equal size bins. Samples are placed in the bins 

in a way that no other sample should exist in 

any direction of bins axis [6, 7].  

According to the sampling plan, the samples 

and their relative outputs can be represented in 

the following way [8, 9]: 
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 A radial basis function of    can be considered 

in a fixed form as below [24, 25]: 
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that can be represented in a matrix form like 

     where                    . In 

Equation 4, c(i) denotes the ith of the nc basis 

function center,   denotes weighting matrix 

and   is the basis function that can be assumed 

as below [8]: 
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This basis function is known as Kriging. The 

parameter   determines the significance of jth 

component and exponent    is related to the 

smoothness of the function. Y matrix is a set of 

random vectors that can be expressed as: 
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This random field has a mean of 1      the 

variables are correlated with each other using 

the Kriging basis function expression: 

7                     

            
   

   
    

  
 

   

  

 

Now we can construct an n×n correlation matrix 

of all the observed data [25]: 
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and a covariance matrix (see Appendix), 
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where    is the standard deviation of Y. These 

corrections depend on the absolute distance 

between sample points and the parameters 

   and   . To compute the Kriging model, the 

parameters           and    can be estimated 

using the Maximum Likelihood Estimates 

(MLEs).  

Once the model parameters found, the Kriging 

correlation can be used to predict new values 

based on the observed data. A new prediction of 

   at x, should be consistent with the observed 

data and therefore with the correlation 

parameters we have found. So, the observed 

data y should be augmented with the new 

prediction    to give the vector            .  So 

a vector of correlations between the observed 

data and the new predictions can be defined as 

Equation 10: 
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Now, the augmented correlation matrix can be 

written as: 
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Note that the last element of    is 1 which 

represent the correlation of a point with itself is 

1. So the MLE for    will be, 
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Finally, the mean squared error (MSE) and the 

expected improvement function of the Kriging 

predictor are derived as [8], 
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To correlate multiple sets of data from different 

sources, Co-Kriging can be used. If the most 

accurate high-fidelity data has values ye at 

points Xe and the less accurate low-fidelity data 

has values yc at points Xc. The combined set of 

sample points and their values can be assumed 

as below [8, 10]: 
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So the complete covariance matrix is, 
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Consequently, in co-Kriging we have more 

parameters to estimate, i.e.                (a 

constant scaling factor). Also, cheap data 

parameters, i.e.  ,   
 ,   ,    can be estimated by 

maximizing likelihood function [8, 10]. 

Once the co-Kriging parameters estimated, 

       i.e. final prediction can be obtained: 
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where, c is a column vector of the covariance of 

X and x. The corresponding MSE can be 

calculated as below too, 
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3 Results and Discussion  

Using the designed framework, it can be 

supposed that if the aerodynamic coefficients' 

trends of an assumed geometry are available, 

they can be used for other similar geometry. 

These trends can be updated only with a few 

number of accurate data and the updated 

aerodynamic database can be generated 

efficiently via Co-Kriging method. For example, 

Orion aerodynamic database [11] is generated 

and available (Fig. 2). If the aerodynamic 

configuration is required to be changed to 

another one like ARD geometry (Fig. 3), the 

aerodynamic database of new geometry (i.e. 

ARD) can be generated by updating Orion 

aerodynamic database with a few number of 

accurate CFD data. High fidelity data should be 

generated on some sample points that can be 

determined by sampling methods like LHS. In 

just few hours, aerodynamic database of the 

modified geometry can be updated entirely. As 

shown in Fig. 4, the results are compared with 

experimental data of ARD configuration [12]. It 

can be observed that not only the aerodynamic 

database is updated successfully using a few 

sample points but also the accuracy of the trend 

is in good agreement with experimental results. 

In Fig. 5, Lift coefficients of Orion reentry 

vehicle in angle of attack of 14 degree are 

considered as a trend of ARD lift coefficient in 

its trim angle of attack. With the samples, Orion 

lift coefficient trend is updated for ARD vehicle 

lift coefficients successfully.  Moreover, this 

process can reduce the total time of 

aerodynamic database generation and 

modification about 80 percent in compare to 

recalculation of whole aerodynamic database. In 

conclusion, the proposed framework can be 

implemented well in aerodynamic configuration 

evolution and development of reentry vehicles.  
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Fig 2. Orion configuration 

 

 
Fig 3. ARD configuration 

 

 

 

 

 

Fig 4. Drag coefficient vs. Mach number for Orion and 

ARD reentry vehicles 
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Fig 5. Lift coefficient vs. Mach number for Orion and ARD reentry vehicles (co-Kriging data is 

comparable with ARD Experimental data) 

 


