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Abstract  

The problem of maximization of the aircraft 

range is considered. The solution is based on 

the Pontryagin maximum principle. New 

analytical solutions taking into account 

constraints on the path angle rate are obtained 

within a framework of the approximate pseudo-

conservative model of motion. The solution for 

the comprehensive model of motion is obtained 

by the homotopy method and the approximate 

analytical solution as the initial base solution. 

1 Introduction  

The maximum range problem is a classical 

problem in aircraft design considered in many 

publications. The interest in this problem is 

caused, on the one hand, by its importance for 

practice, and on the other hand, by the known 

objective difficulties of its solving in a rigorous 

statement, caused by the degeneracy of the 

optimization problem.  

The aim of this paper is to present, 

following for [1], some new qualitative results 

of investigation of the problem on the base of 

the Pontryagin maximum principle [2], 

especially alternative solutions to the traditional 

steady flight.  

Let us point some results of other authors, 

which are mainly close to the subject considered 

in this paper.   

The main statements are as follows: 

1. The range maximization with fixed fuel 

mass, 

2. The range maximization with fixed time, 

3. The range maximization with fixed fuel 

mass and time. 

In [3] the models of motion that differs from 

each other by simplifications are investigated. 

Authors suggest the point mass model where the 

lift equals the weight and the flight path angle is 

small. The flight path angle and the thrust 

throttle are the control variables.  

A qualitative analysis of the statements 1 

and 2 is performed in [4]. The problem is 

considered by the energy approach, where the 

altitude and the thrust are the control variables.  

In [5] the statement 1 is considered. It is 

proved that the steady level flight fails the 

Jacobi optimality conditions. It is also shown 

that the oscillatory trajectory can increase the 

range when compared with the level flight. 

In [6]-[8] on specific examples it is shown 

that the periodic solutions have an advantage 

over the level flight. In [6] the thrust throttle and 

the lift coefficient are the control variables. In 

[7] the thrust throttle and the flight path angle 

are the control variables, and the flight path 

angle and its rate are small. In [8] solution 

obtained by selection of parameters of a sine 

law for altitude changes.  

In [9] and [10] some examples of the 

periodic optimal solutions are demonstrated in 

the cruise-dash problem. The thrust and lift 

coefficient are the control variables here. In [10] 

the existence of the singular optimal control is 

investigated. 

In [1] statements 2 and 3 are considered. 

The analytical solution with oscillatory optimal 

trajectories are obtained in the statement 2 

suggesting the pseudo-conservative model of 

the motion with the path angle as the control 

variable.  

This paper considers the extension of the 

statement [1] of the range maximization with 

fixed time problem. The procedure of transition 
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from the pseudo-conservative model, where the 

flight path angle is the control variable, to a 

comprehensive model is described. This 

procedure is held in two stages. On the first 

stage the extended pseudo-conservative model 

is used but the lift coefficient is taken as the 

control variable. The analytical solutions are 

obtained for this statement. It is proven that the 

optimal control has a singular arc. Then, the 

transition from the pseudo-conservative to the 

comprehensive model, where the lift coefficient 

and the thrust are the control variables, is 

performed by the homotopy method. The 

numerical results are presented.  

2 Problem Statement 

The motion is governed by the equations [3]: 
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(2.1) 

where V is the velocity, h is the altitude,   is the 

flight path angle, x is the range, m is the mass 

assumed constant, Tmax(V,h) is the maximum 

thrust, µ is the throttle setting, qSCD D  is the 

aerodynamic drag, qSCL L  is the aerodynamic 

lift, g is the acceleration of the gravity, 

),( LD CMC  is the drag coefficient, M is the 

Mach number, 
LC is the lift coefficient, q is the 

dynamic pressure, S is the reference area.  

Let us use the dimensionless variables: 
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where the index «dim» designates dimensional 

variables, Vi is the initial velocity. 

Then, equations (2.1) take the following 

dimensionless form: 

.cos

,sin

,
cos

,sinmax










Vx

Vh

VV

L

DTV

















 (2.3) 

We take 
LC  and µ as the control variables 

that are subjected to the inequality constraints: 
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The following boundary conditions are 

used. At the initial time ti=0: 

      .00,0,0  xhhVV ii
 (2.5) 

At the final given time tf: 

    ffff hthVtV  , .
 (2.6) 

The functional is the range: 

max)(  ftxΦ .
 

(2.7) 

3 Optimality Conditions  

According to the maximum principle [2] the 

optimal control  ,L
T Cu   is determined by 

the condition: 

  Htu
u

opt maxarg ,
 

(3.1) 

where fλ
TH   is the Hamiltonian, f  is the 

vector of the right sides of equations (2.3),

 xhV
T   ,,,λ is the vector of conjugate 

variables, which corresponds to the variables of 

the phase vector x
T
={V,, h, x} and satisfies the 

vector differential equation: 
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The transversality conditions are reduced to: 
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When 0V  the optimal control variables are: 
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where    
minmax LL CHCH  and 

LС
~  is 

obtained from: 
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When 0V : 
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When 0V : 
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where 
*  is the singular control that satisfies 

(2.4). The existence of the singular arc and the 

chattering control ( 0 ) is not considered here.  

Thus, the problem consists of finding (0), 

 0V  and  0h  to solve the two-point boundary-

value problem for the differential equations 

(2.3) and (3.2), and the boundary conditions 

(2.5), (2.6) and (3.3).  

The phase system (2.3) is autonomous, so 

the first integral takes place at the optimal 

control: 

. 
opt

constH u   
(3.8) 

Note that the same integral holds at a constant 

control: 

. constH constu 
 

(3.9) 

The properties (3.8) and (3.9), as was shown in 

[11], are useful for verification of a 

mathematical model of an optimization software 

package. 

4 The Analytical Optimal Solution for the 

Pseudo-Conservative Model of Motion 

The analytical solution for the pseudo-

conservative model of the motion has been 

obtained in [1].The following assumptions has 

been made:  

• the thrust is equal to the aerodynamic 

drag,  

• the path angle, as a fast variable, is taken 

as the control. 

The assumptions are quite appropriate for 

studying the motion of aircraft with high lift to 

drag ratio. The first assumption is consistent 

with the quasistationary conditions. The second 

assumption broadens significantly the class of 

acceptable trajectories in comparison with 

quasistationary ones due to no restrictions on 

the path angle. 

After these assumptions, the next analytical 

solution has been obtained: 
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(4.1) 

According to (4.1) the optimal trajectories 

are oscillatory. The local extremals (satisfying 

necessary optimality conditions) are not unique 

and their quantity depends on task parameters.  

If V and h at the left and right ends of the 

trajectory are equal then the level flight is 

among admissible trajectories. However, it has 

been proven [1] that the level flight does not 

satisfy the necessary optimality conditions. 

The following result of the analytical 

investigation [1] is of interest for the next. The 

aerodynamic load is always limited on the 
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optimal trajectory independently on the task 

parameters: 

 
𝐿

𝑚𝑔
 
𝑢𝑜𝑝𝑡  𝑡 

≤ 2. 

The simulation of maneuverable aircraft 

motion with the ideal flight director system that 

follows up a local extremal oscillatory control 

program has shown a high coincidence with the 

analytical solution in the range (inaccuracy is 

less than 1%).  

5 The Analytical Optimal Solution for 

Extended Pseudo-Conservative Model of 

Motion 

Let us make the same assumption as in previous 

section: 

 the thrust is equal to the aerodynamic 

drag, 

but assume   as the state variable and 
LC  as the 

control variable. 

Then the equations (2.3) take the form: 
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(5.1) 

We can omit the third equation since the 

altitude depends on the velocity due to the 

energy integral in frame of the pseudo-

conservative model: 

.5.0 2 consthVE 
 (5.2) 

So we get the following motion equations: 
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The Hamiltonian for (5.3) is: 
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According to (3.2) and (5.4) the conjugate 

system is: 
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According to the principal maximum the 

optimal control is: 
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Let us investigate the singular optimal arc 

with the control 
*

LC . From (5.5) we obtain:  

0sincos   VV
  

(5.7) 

or 

 tanVV  .
 

(5.8) 

Taking the time derivative from (5.7) and using 

(5.3), (5.5) and (5.8) we get the singular optimal 

control: 

qS
CL

cos2*  .
 

(5.9) 

Substituting (5.9) in (5.3) we obtain the 

analytical solution of (5.1) on the singular arc: 
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(5.10) 

where
1V  and 1 are the velocity and the path 

angle at the initial point of the singular arc 

correspondingly.  

The solution (5.10) coincides with the 

optimal solution (4.1).  
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6 The Optimal Solution for the 

Comprehensive Model of Motion 

The analytical solution obtained in previous 

section we use as the initial approximation for 

continuation to obtain a solution of the problem 

(2.3)-(2.7). For this, let us represent the Tmax in 

the following form: 

,max TqSCT st

D 
 

(6.1) 

where st

DC  is the drag coefficient at the level 

flight with parameters (2.5). The equations of 

motion (2.3) we can write as: 
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(6.2) 

where
1  and 

2  is homotopy parameters. 

Equations (6.2) for 01   and 02 

have the analytical solution (4.1).  

 

 
Fig.1. Normalized optimal lift coefficient 

history 

The example of the optimal control 

program )(tС
optL

 of (4.1) is shown in Fig.1. 

The equality of V=330 m/s and h=7 km at the 

left and right ends of the trajectory is assumed 

here. Changing 
1 from 0 to 1 we obtain the 

solution to the model that is close to the pseudo-

conservative model, where we assumed that the 

thrust is equal to the drag. But now we use 
LС  

as the control variable.  

Then, assuming: 

qSCTT st

D max  
(6.3) 

and changing 
2 from 0 to 1 we obtain the 

solution of the initial problem (2.3)-(2.7). 

7 Numerical Results 

Let us consider the application of the obtained 

results for the example of the range optimization 

for the aircraft F-4 [6], which characteristics in 

Appendix are given.  

The atmosphere parameters are taken from 

[12]. 

The optimal dependences of the altitude, 

velocity and path angle on the range are shown 

in Figures 2-4. It is seen, the range 

maximization is achieved by acceleration due to 

descent.  

 

Fig. 2.The optimal dependence of the altitude on 

the range. 
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Fig. 3.The dependence of the optimal velocity 

on the range. 

 

Fig. 4. Dependence of the optimal flight path 

angle on the range. 

The dependence of optimal 
LC  is shown in 

Fig. 5 and the optimal throttle opt  is equal to 

unity on the whole trajectory. 

 

Fig. 5. Dependence of the optimal lift 

coefficient on the range. 

The examples of changing the quantity 

NJacobi of iterations with calculations of the 

Jacobi matrix in dependence on the homotopy 

parameters 
1  and 

2  are presented in Fig.6 

and Fig. 7. The good convergence of iterative 

process is shown. 

 

 
Fig. 6 The number of iteration NJacobi vs the homotopy 

parameter 
1 . 
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Fig. 7 The number of iteration NJacobi vs the homotopy 

parameter 
2 . 

8 Conclusions  

The new approach of solving the maximization 

range problem with the fixed flight time is 

considered. It uses the analytical solution for the 

pseudo-conservative model as the initial 

approximation to solve the optimization 

problem for the comprehensive model by the 

homotopy method.  
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Appendix 

The following characteristics of the aircraft F-4 

are used in paper. The reference area is 

49.25 m
2
. The mass is 35000 kg.  

The drag coefficient is given as function of 

M and CL: 
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The maximum thrust in Newton has the 

following dependence:  
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where: 



A.E. Sagalakov, A.S. Filatyev 

8 

.100.6097151-100.2665875

+ 0.29088446-10-0.1314679

,100.2094355 +100.9524995 

 -10143555 1 0. +100.9983243 -

, 100.10380902-100.5187934

0.7301197-100.1922648 

,100.6250142-100.100436

+0.38000872-100.4304853 

39-24-

3

4

38-24-

3

3

38-24-

4

2

310-24-

4

1

hh

hc

hh

hc

hh

hc

hh

hс

















 

 

Contact Author Email Address 

Mailto: filatyev@yandex.ru 

Copyright Statement 

The authors confirm that they, and/or their company or 

organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they 

have obtained permission, from the copyright holder of 

any third party material included in this paper, to publish 

it as part of their paper. The authors confirm that they 

give permission, or have obtained permission from the 

copyright holder of this paper, for the publication and 

distribution of this paper as part of the ICAS proceedings 

or as individual off-prints from the proceedings. 
 


