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Abstract  
Requirements for a CAT-II/III capable service 
type of the Ground Based Augmentation System 
(GBAS) were derived from the definition of a 
safe landing of an aircraft within a pre-defined 
touchdown zone on the runway. The 
contributions to the total system error come 
from the navigation system on the one hand and 
the autopilot performance on the other hand. In 
order to quantitatively assess the touchdown 
performance of a given aircraft and its 
autopilot, Monte-Carlo simulations are 
performed and the results modelled. The 
touchdown performance is usually described by 
a fitted Gaussian distribution. This distribution 
is used for deriving the navigation system 
requirements. This paper argues that fitting the 
data to a Gaussian distribution is inappropriate 
and may lead to an underestimation of the 
residual risks of landing outside the touchdown 
box. It therefore describes two alternative 
methods to model the touchdown performance: 
a Gaussian overbound and a Johnson 
distribution. Both methods are described and 
the implications of modelling the performance 
in these ways are discussed.  

1  Introduction  
The Ground Based Augmentation System 
(GBAS) is a precision approach guidance 
system for aircraft based on Global Navigation 
Satellite Systems (GNSS). A ground station at 
an airport generates locally relevant corrections 
for the navigation signals in order to eliminate 
errors introduced mainly by ionospheric and 

tropospheric effects, as well as ephemeris and 
other errors originating from the satellite. 
Currently commercially available are GBAS 
stations supporting operations down to CAT-I 
minima. In the past years the concept to provide 
also service under CAT-II and CAT-III 
conditions was developed and standardized. The 
main method for the derivation of the required 
performance of CAT-III capable GBAS is based 
on the concept of a safe landing and the trade-
off between the flight technical error (FTE), i.e. 
the ability of the autopilot to land the aircraft on 
a pre-defined spot, and the navigation system 
error (NSE), i.e. how well the avionics can 
determine the aircraft’s position. In this process 
a safe landing is characterized by touching 
down in a predefined area on the runway, the 
so-called touchdown box. This box is described 
in the Certification Specifications for All-
Weather operations [1] and the Advisory 
Circular on Criteria for approval of Category III 
Weather Minima for Takeoff, Landing, and 
Rollout [2]. It extends from a distance of 200 ft 
behind the runway threshold to 2700 ft (or 
3000 ft in certain cases) and laterally to 5 ft 
from the edges of the runway and is depicted in 
Fig. 1. Furthermore, it is assumed that the FTE 
can be described by a nominal touchdown point 
(NTDP) on the runway and a dispersion around 
that point modelled by a Gaussian distribution 
with a standard deviation FTEσ . In the 
certification process of aircraft and autoland 
systems, the FTE performance is determined in 
Monte-Carlo simulations. It is usually modelled 
by fitting a Gaussian distribution to the obtained 
touchdown results.  
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Fig. 1 Illustration of the Touchdown Box on the Runway 
 
The Navigation System Error (NSE) is also 
considered to follow a Gaussian distribution and 
is also described as dispersion in along-track 
direction with zero mean. The along-track error 
results from a nominal vertical position error 

vertNSE (e.g. due to multipath and residual 
ionospheric and tropospheric errors) that 
translates into an along-track error atrkNSE  at 
touchdown given by  

 
tan( )

vert
atrk

NSE
NSE

GPA
=  (1) 

where GPA is the glide slope angle of the 
approach (typically 3°). This assumption is 
made based as the vertical guidance is switched 
from the GBAS or ILS to the aircraft’s own 
radar altimeter at a predefined height above 
ground. Any vertical position error from the 
navigation system therefore results in an along-
track position error at touchdown.  
The NSE is considered to be independent of the 
FTE such that the Total System Error (TSE) can 
also be described by a Gaussian distribution 
centered at the NTDP with a standard deviation 
given as the root sum square of the standard 
deviations of the NSE and the FTE respectively:  
 2 2

TSE NSE FTEσ = σ + σ  (2) 
 
The problem with the described approach of 
allocating error budgets is that the Gaussian 
model does generally not fit, especially to the 
FTE performance. Fitting the obtained results to 

a Gaussian distribution may thus lead to an 
underestimation of the risk of landing outside 
the touchdown box. 
In this paper, we therefore revisit the problem of 
properly modelling the FTE in a way that it is 
appropriate for the subsequent derivation of 
navigation requirements on the basis of a total 
error budget for automatic landings.  

2 Autoland simulations and obtained results  
Assessing the touchdown performance of an 
autopilot is a challenging task as the touchdown 
behavior is influenced by a number of 
parameters. The previously mentioned 
documents [1],[2] give a list of parameters that 
have to be taken into account when performing 
these simulations. They include wind, different 
configurations of the aircraft, weight and 
balance and airport and runway characteristics, 
such as slope of the runway or elevation of the 
airport. In the following an exemplary analysis 
is performed.  

2.1 Autoland simulations  
For exemplary simulations an autopilot model 
of an Airbus A320 was used. The goal of these 
simulations was not to perform a full 
qualification of the autopilot model, but rather 
to obtain a somewhat representative set of 
touchdown performance data and to analyze the 
results with respect to the modelling of the data. 
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Fig. 2 Touchdown points for 500 landings with light turbulence and steady wind of 1m/s (cyan 
asterisks), 2.5m/s (blue triangles) and 5m/s (magenta boxes) 
The simulations therefore neglected a variety of 
parameters: 500 approaches using only one 
approach path to a specific airport (in this case 
Runway 26 in Braunschweig in Northern 
Germany at an elevation of 261 ft) was 
simulated, assuming a perfectly flat runway. 
Furthermore, only one specific weight (64.5 t, 
corresponding to the maximum landing weight 
of the A320) and one specific center of gravity 
location (22.2% MAC) were chosen. For the 
wind influence in the initial simulations, the 
Dryden wind model according to [3] was used 
simulating a pure headwind (coming from 265° 
corresponding to the runway orientation) with 
steady wind speeds of 1 m/s, 2.5 m/s and 5 m/s 
and different turbulence intensities as described 
in the following subsection. At a later stage 
recorded wind speeds from Munich Airport in 
Germany were used in order to have a realistic 
distribution of winds. The wind direction and 
speed relative to the runway were used as input 
to the Dryden wind model’s reference wind.  

2.2 General results 
In order to show the general nature of the 
results, the first part of the discussion shows the 
obtained touchdown points on the runway for 
the simulations described previously, with the 
three different steady wind cases and the 
turbulence intensity set to “light” in the Matlab 
Aerospace Blockset Dryden wind model block. 
For each steady wind case 500 landings were 
simulated. The resulting dispersion of the 
touchdown points for each case is shown in Fig. 

2. On the x-axis the distance from the runway 
threshold is plotted, on the y-axis the deviation 
from the centerline of the runway. Recall that 
the touchdown box limits the area where the 
aircraft has to land to the area between 200 ft 
(~60 m) and 2700 ft (823 m, corresponding to 
the right side plotting limit). The lateral limits 
are 5 ft (~1.5 m) from the edge of the runway. 
Assuming a 45 m wide runway this would 
correspond to a distance of 21 m from the 
centerline. The obtained results show only very 
small deviations from the centerline (almost all 
within 1 m). The reason is mainly that the wind 
was simulated to be aligned with the runway 
direction. In a more realistic case the touchdown 
points would also scatter somewhat more in the 
lateral direction. As the along-track error (and 
therefore the vertical NSE according to Eq.  (2)) 
is more constraining, the lateral errors are not 
further considered in this paper. From the 
results in Fig. 2 it becomes already apparent that 
the touchdown points are not really Gaussian 
distributed, especially for the cases with higher 
wind speeds. This is also confirmed when the 
data is tested for Normality e.g. with the 
Anderson-Darling test [4] or the Kolmogorov-
Smirnov test [5] at a 5% significance level. 
Similar results were also obtained e.g. by 
Boeing in the certification process of the 
autoland system of the B757/B767 [6] and in 
previous work performed at DLR [7]. The next 
section therefore introduces two different 
methods how to address the fact that the data is 
not Gaussian distributed.   
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Fig. 3 Experimental distribution (blue)  and Gaussian overbound (red)

3 Modelling of obtained FTE performance 

In this section the problem of appropriate 
modelling of the touchdown performance of an 
aircraft is discussed, based on the obtained data 
described in the previous section. A general 
approach that is usually taken and acceptable for 
many applications is to fit the data to a Gaussian 
distribution. However, for the purpose of 
deriving navigation requirements using a 
Gaussian fit is not a suitable way forward. 
Fitting the data may describe the data well at the 
core of the distribution. The risk in the tails of 
the distribution of the touchdown points may, 
however, be larger than described by a fitted 
Gaussian. In order to not underestimate the risk 
of landing short or long and consequently 
deriving navigation system requirements not 
properly bounding the errors, two techniques are 
described in the following that solve the 
problem. 

3.1 Gaussian Overbounding 

The first alternative is called Gaussian 
Overbounding. The overbound is constructed in 
such a way that the risk in the tails of the 

Gaussian overbound is properly bounding the 
experimental touchdown performance results. 
Of course, if the distribution is conservative in 
the tails, the data at the core of the distribution 
is not properly described (as the integral over all 
probability density functions has to equal 1). 
For the purpose of integrity, this is not of 
concern. As the bounding condition needs to 
hold in the tails the mathematical formulation of 
the overbounding condition can then be written 
as  

 
( ) ( ) 1.5
( ) ( ) 1.5

overbound overbound

overbound overbound

x x x NTDP
x x x NTDP

Φ ≥Φ ∀ ≤ − ⋅σ
Φ ≤ Φ ∀ ≥ + ⋅σ

(3) 

where ( )
x

f x dx
−∞

Φ = ∫  is the cumulative 

distribution function (CDF) of a random 
variable x with a Gaussian probability density 
function (PDF), NTDP is the nominal 
touchdown point on the runway (assumed to be 
located at 1190 ft behind the runway threshold 
according to [8]). The ±1.5 overboundσ  term 
describes the area in the core of the distribution 
where the overbounding condition does not 
have to be fulfilled. The value of ±1.5 overboundσ  
was found to be a value that does not inflate the 
overbound beyond reasonable values. The 
choice is, however, not fixed and subject to 
engineering judgement. Fig. 3 shows the 
obtained results for the obtained touchdown 
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distribution for a 5m/s reference wind with 
severe turbulence. The blue curve shows the 
CDF (the left branch shown as dashed blue line) 
and 1-CDF (the right branch shown as solid 
blue line) curves of the sample distribution. The 
red curve is the CDF (red dashed line) or 1-CDF 
(red solid line) of the Gaussian overbound. The 
overbounding condition (Eq. (3)) ensures that 
the mass in the tails of the overbounding 
distribution is larger than that of the sample 
distribution (i.e. the red line stays above the 
blue line) outside of the ±1.5 overboundσ  area that 
is indicated by the black line and that is centered 
at the NTDP at 1190 ft or 364 m behind the 
runway threshold.  

In case of a non-symmetric distribution of the 
touchdown points and a distribution that is not 
centered at the NTDP (as it is the case in this 
example and is generally to be expected for 
different aircraft types and autopilot 
realizations) it becomes obvious that the 
overbound is driven by one side of the 
distribution and may be very conservative for 
the other side. Thus, while being conservative 
and ensuring safe error bounding when deriving 
navigation requirements the result may become 
very conservative on one side of the 
distribution. In this case the land-short limit for 
the overbound is about 1.9e-2 while the land-
long probability is just 9.1e-4. It is thus 
desirable to consider a way of describing the 
data in a more suitable way, e.g. better 
describing non-symmetric data. One such way 
to describe the touchdown performance is by a 
Johnson distribution.  

3.2 The Johnson distribution  

The Johnson distribution is a four-parametric 
distribution obtained by a transformation of a 
Gaussian distribution. It has the general form  

 ( )z g yg δ= +  (4) 

z  is a Gaussian distributed random variable, 
xy x
λ
−=  and , ,  and γdξ   λ are the four shape 

parameters of the distribution and ( )g y is a 
transformation function. Depending on the 
transformation function chosen there are three 
different resulting types of distributions:  
For ( ) ln( )g y y= the log normal type (termed 

SL), for ( ) ln 1
yg y y

 
  
 

=
−

 the bounded type 

(termed SB), and for ( )1( ) sinhg y y−= the 
unbounded type (SU). For more details on the 
Johnson distribution the interested reader is 
referred to [9]. For data evaluation there is a 
Johnson Curve Toolbox for Matlab available 
that selects the most appropriate fitting method 
given the data to be analyzed [10]. It is available 
for download and was used for data analysis in 
this work. When comparing the two methods, it 
should also be noted that the Johnson Curve 
Toolbox also provides a fit to the data and not 
an overbound. As with a Gaussian fit this bears 
the risk of underestimating the actual risk of 
landing short or landing long. Appropriate 
inflation to safely bound the distribution in the 
tails should therefore also be performed if 
necessary. As compared to the method of 
choosing a Gaussian overbound that is centered 
at the NTDP, the Johnson fitting does not use a 
pre-defined position at which the curve is 
centered. The fit is therefore also already tighter 
than when using the previously described 
Gaussian fitting or overbounding method with a 
fixed NTDP as is done currently in the 
requirement derivation process. In order to have 
a fair comparison between the two methods, 
however, Fig. 4 shows again the CDF as dashed 
lines and 1-CDF as solid lines of the 
experimental touchdown data in blue, the 
Gaussian overbound now centered at the median 
of the data in black and the bounding Johnson 
curve in red. In order to also obtain more 
realistic touchdown data the wind was simulated 
according to actual observed winds at Munich 
Airport during the month of November 2012. 
The winds directions were rotated by 180° if the 
tailwind component would have exceeded 4 kts 
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as it can be assumed that in such a case the 
opposite approach direction would be used.  
As the data is non-symmetric and the core of the 
median of the distribution is located closer to 
the beginning of the runway, the land-short case 
is the more constraining condition. For the 
given dataset, however, the shape of the 

bounding distributions is driven by the data on 
the land-long side. The Johnson curve is 
generally following the experimental 
distribution closer than the Gaussian overbound. 
Both distributions show a significant margin 
towards the actual data for the land-short case 
and are thus quite conservative.  

 

Fig. 4 Experimental distribution (blue) and Gaussian overbound centered at the median of the 
data (black) compared to Johnson curve overbounding the data (red)

4 Discussion and conclusions 

The previous discussions showed that when 
performing touchdown simulations in order to 
determine the autopilot performance for a 
subsequent trade-off between navigation system 
error and flight technical error budgets it is not 
appropriate to just use a Gaussian fit to the 
touchdown data. This would bear the risk of 
underestimating the probability of landing short 
or long and may not lead to navigation 
requirements that ensure the required level of 
safety.  

To solve this problem two alternative methods 
of describing the touchdown performance were 
presented: Gaussian overbounding or the use of 
an overbounding Johnson distribution. The first 

method inflates the standard distribution until 
the mass in the tails of the overbound is larger 
than that of the experimental distribution 
obtained by the autoland simulations. The other 
alternative is to use a Johnson distribution that 
allows for a better description of skewed data. A 
comparison showed that the fitting is tighter and 
therefore the conservatism is reduced.  

However, in practical applications the Gaussian 
modelling is generally desired as it makes a 
trade-off easily understandable and analytically 
possible. In the case of a four-parametric 
Johnson distribution no analytical derivation of 
easy-to-implement requirements is possible. 
From an implementation perspective it is 
therefore necessary to judge if the obtained 
budget for the NSE by using a better fitting 
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method outweighs the potentially more difficult 
standardization process where the error budget 
would have to be determined by simple 
numerical methods.  
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