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Abstract

Vortex methods has shown their effectiveness for
several kinds of incompressible fluid dynamics
problems, were the viscosity effects can be ne-
glected. However simulation of viscous flows via
vortex methods meets difficulties because of the
viscosity term in the vorticity evolution equation
that needs to be resolved.

In this paper we give a general overview of
several viscosity models that we apply to the
Vortex Element Method based on fragmentons.
We consider three different approaches: Particle
Strength Exchange, Diffusion Velocity Method
and a hybrid scheme to approximate the viscosity
term.

Finally, we show two simple simulation ex-
amples of the diffusion of rectilinear vortex and
vortex ring in viscous fluid.

1 Introduction

Vortex Methods (VM) are a Computational Fluid
Dynamics (CFD) tool used for resolving incom-
pressible fluid dynamics problems [1]. VM be-
ing lagrangian methods, might be an alternative
to conventional CFD mesh methods for external
aero- and hydrodynamics problems [2, 3]. VM
can be especially effective for Fluid-Structure
Interaction (FSI) problems [4, 5], where mesh
methods may have difficulties with handling
moving boundaries because of the need to adapt
the mesh on the boundary position every time
step [6], or use special multiple-mesh technics
(CHIMERA). Simulation of FSI problems with

these kind of methods may lead to significant
computational and time costs, which would not
be the case for VM.

Let us consider the three-dimensional mo-
mentum equation for incompressible viscous
fluid in boundless space

∂ωωω

∂t
+(VVV ·∇)ωωω = (ωωω ·∇)VVV +ν∆ωωω (1)

where VVV = VVV (xxx, t), ωωω = ∇×VVV are velocity and
vorticity fields respectively, t ∈ [0,T ]; ν – kine-
matic viscosity.

Basically, vortex methods consist in approx-
imation of the continuous vorticity field ωωω with
the superposition of a finite number of Vortex El-
ements (VE) ωωωk. As a result, (1) can be rewrit-
ten as series of ODEs describing the evolution of
each vortex particle (see section 2). In the case
of ideal fluid VEs follow the trajectories of fluid
particles.

Though VM are mostly based on Kelvin’s
Theorems that describe the dynamics of vortic-
ity in ideal flow, lots of attempts have been made
to extend the applicability of the VMs to viscous
flows. As a result, several approaches have ap-
peared to treat the viscosity term in the vortic-
ity evolution equation. Here we consider three of
them:

• Particle Strength Exchange (PSE) uses the
approximation of the diffusion term ν∆ωωω

with the integral operator of the specific
form [1, 7].

• In the Diffusion Velocity Method (DVM)
for viscous flows vortex particles follow
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special trajectories defined by the so called
’diffusion velocity’ and conserve their in-
tensities unchanged [8, 9]. DVM is based
on the reformulation of (1) in the con-
vective form, which can be effectively re-
solved with the existing classical vortex
methods. Works only for 2D and axisym-
metric flows.

• To overcome this issue for general flows
a special hybrid DVM-PSE approach was
proposed by Mycek in [10]. The basic idea
is to extract from the diffusion term ν∆ωωω

the dominating part that can be treated with
DVM, while the remaining part to be re-
solved with the PSE-approximation.

2 Vortex Element Method for ideal fluid

Consider a flow of ideal fluid with nonzero vor-
ticity ωωω. We approximate ωωω(xxx, t) a superposition
of vortex element basis functions ωωωk(t):

ωωω(xxx, t)≈
N

∑
k=1

ωωωk(xxx− xxxk) (2)

where xxxk = xxxk(t) is the k-th VE marker position.
The choice of a basis function can signifi-

cantly influence on the quality of the approxi-
mated vorticity field. First, the vorticity field
is always solenoidal and we normally want it to
vanish at infinity. Therefore, a good basis func-
tion should satisfy these constraints. Also, if a
basis function is somehow ’adapted’ to the struc-
ture of vorticity field, this would also benefit in
approximation quality and in reducing the re-
quired number of VE to simulate the flow.

The classical, well known and the most com-
monly used model of VE is a singular point δ-
function, called ’vorton’ [1]

ωωωk(xxx, t) = αkδ(xxx− xxxk) (3)

where αk = αk(t) is vector coefficient, which de-
scribes intensity and orientation of the vorton.

Singular point vorton (3) constitutes, basi-
cally, the classical particle approximation of the
vorticity evolution equation (1). In the stud-
ies [11] reader can find a complete theoretical

analysis of the vortex method based on vortons,
namely, its convergence towards the solutions of
Euler equations for incompressible fluid.

However, vorton (3) has two principle prob-
lems:

• (3) violates the solenoidity of the approxi-
mated vorticity field; 1;

• vorton model denotes amount of vorticity,
concentrated in a singular point. If we look
at the vorticity field as at the set of vortex
lines, then it becomes clear that the use of
’vector particles’ is not the best choice to
approximate vortex lines.

We consider from now the so called ’frag-
menton’ model for the vortex element basis func-
tion (fig. 1). Fragmenton can be considered as
a fragment of a vortex line. Its basis function
is obtained by integration of the singular point-
wise vorton (3) along the vector 2hhhk, which can
change its length and direction:

ωωωk(xxx, t) = γγγk

∫ 1

−1
δ
(
xxx− (xxxk + shhhk)

)
ds (4)

xxxk = xxxk(t) denotes the k-th fragmenton’s marker
position (the middle point of 2hhhk); γγγk = γγγk(t) is
intensity (circulation); all the three parameters
xxxk,γγγk,hhhk can change in time. γγγk is chosen to be
collinear with hhhk, so it is convenient to write it as

γγγk = γkhhhk, (5)

where γk is a scalar weight coefficient that de-
scribes the intensity value with respect to the
fragmenton length.

Taking the Bio-Savart integral of (4) one can
find the velocity field, induced by a single frag-
menton, placed into point xxxk (see fig. 1)

VVV k =
γk

4π

hhhk× sss0

|hhhk× sss0|2

[(
sss2

|sss2|
− sss1

|sss1|

)
·hhhk

]
(6)

1Using the Helmholtz theorem vorton can be comple-
mented to become solenoidal. Such basis function got the
name "Novikov’s vorton" [12]
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Fig. 1 Fragmenton model

Substitution of (4) into (2) and then into the
vorticity evolution equation for ideal fluid ((1)
with ν= 0) allows to rewrite the original equation
into the system of ODEs of fragmentons’ param-
eters xxxk, hhhk and γk [13]

dxxxk

dt
=VVV (xxxk),

dhhhk

dt
= hhhk ·∇VVV (xxxk),

dγk

dt
= 0.

(7)

Analysis of (7) shows that as in classical par-
ticle methods, the markers xxxk follow the velocity
field. However, the fragmenton orientation vec-
tor hhhk can change its length and direction. VVV (xxx) is
the velocity field, reconstructed as the superposi-
tion of (6); ∇VVV (xxxk) is the velocity gradient tensor
at point xxxk, it acts as deformation operator for hhhk.
The explicit form of ∇VVV (xxx) can be found in [13].

It should also be noted, that the scalar inten-
sities γk of the vortex elements stay constant over
time for ideal fluid (ν = 0). If we consider a vis-
cous fluid with the PSE or DVM-PSE scheme for
the diffusion term ν∆ωωω, it will not be the case
anymore. Fragmenton approximation of the ini-
tial vorticity ωωω0(xxx) gives the initial data for this
ODE system): 

xxxk(0) = xxx0k,

hhhk(0) = hhh0k,

γk(0) = γ0k.

(8)

3 Particle Strength Exchange

Vorticity evolution equation for viscous fluid has
the diffusion term ν∆ωωω that need a special treat-
ment. The method was suggested and extensively
analyzed by Degond & Mas-Gallic (1989) [7] as
the mean to solve the advection-diffusion equa-
tions with the particle method as an alternative
to splitting algorithm and the "random-walk" ap-
proach for diffusion [14].

PSE basically consists in approximation of
the diffusion term ν∆φ with the integral operator
of the form

Qε(φ) =
ν

ε2

∫
R3

ηε(xxx− yyy)(φ(yyy, t)−φ(xxx, t))dy,

(9)
where ηε(xxx) = 1

ε3 η
(xxx

ε

)
; η(xxx) ∈ L1(R3) is called

kernel function and ε is a cut-off parameter. Ker-
nel function must satisfy several moment condi-
tions in order to make Qε(φ) converge towards
ν∆φ in certain norms when ε→ 0. Details on the
kernel function choice can be found in [7].

Consider an advection-diffusion equation

∂φ

∂t
+∇ · (VVV φ) = ν∆φ, (10)

where VVV =VVV (xxx, t) is a known vector field, ν – dif-
fusion coefficient, φ = φ(xxx, t) – unknown scalar
function.

Here we want to show the particle method ap-
proach combined with the PSE approximation of
the viscosity term ν∆φ. To do this consider the
particle approximation φN of the field φ

φN(xxx, t) =
N

∑
k=1

αkδ(xxx− xxxk), (11)

Substituting the (9) and (11) into (10) we get
dxxxk

dt
=VVV (xxxk)

dαk

dt
=

ν

ε2

N

∑
q=1

ηε(xxxq− xxxk)
(
φ(xxxq)σq−φ(xxxk)σk

)
(12)

where the PSE-integral is ’compensated’ with the
Dirac δ-functions. The particles follow the given
field VVV that can be interpreted as velocity.
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We perform, basically, the same procedure
for the complete vorticity evolution equation (1)
and apply there VE- and PSE-approximation.
Omitting the calculations we come to the follow-
ing ODEs (full derivations can be found in [15]):

dxxxk

dt
=VVV (xxxk),

dhhhk

dt
= hhhk ·∇VVV (xxxk),

dγγγk
dt

= hhhk ·∇VVV (xxxk)+
ν

ε2

N

∑
q=1

Gkq(γγγqσk− γγγkσq).

(13)
here σk is the ’weight’ of the k-th VE, which has
a physical meaning of volume of space, occu-
pied by one fragmenton. σk stay constant in time.
Gkq denotes the exchange coefficient between k-
th and q-th fragmentons, which depends on their
length and mutual orientation.

Gkq =
∫ 1

−1

∫ 1

−1
ηε(xk+τhhhk−xxxq−shhhq)dsdτ (14)

4 Diffusion Velocity Method

Consider the advection-diffusion problem (10)
given in section 3. One can rewrite the diffusion
term ν∆φ ≡ ∇ · (ν∇φ) in the form −∇ · (VVV dφ),
where VVV d =−ν

∇φ

φ
is called diffusion velocity, so

that the equation (10) takes pure advective form

∂φ

∂t
+∇ · (VVV e f f φ) = 0, (15)

where

VVV e f f =VVV +VVV d =VVV −ν
∇φ

φ
. (16)

The introduced vector field VVV e f f nonlinearly
depends on the unknown function φ. Before uti-
lizing the particle approximation one should re-
formulate VVV e f f in the integral form. Consider a
positive scalar function ζ(xxx), which satisfies the
norming condition

∫
R3 ζ(xxx)dxxx = 1. Then, denot-

ing ζε(xxx) = 1
ε3 ζ(xxx

ε
) we approximate ∇φ and φ as

follows

∇φ ≈ φ?∇ζε, (17)
φ ≈ φ?ζε, (18)

where the star ? denotes the convolution prod-
uct in space. Using these approximations, we get
smoothed diffusion velocity

VVV dε =−ν
φ?∇ζε

φ?ζε

(19)

Substitution of (11) into VVV dε leads to the par-
ticle approximation of the diffusion velocity VVV N

dε
:

VVV N
dε
(xxx) =−ν

∑
N
i=1 αi∇ζε(xxx− xxxi)

∑
N
i=1 αiζε(xxx− xxxi)

(20)

Combining everything together we reformu-
late the original advection-diffusion equation
(10) into a set of ODEs over the particle positions
xxxk. Note that particle intensities αk stay constant
over time unlike in the PSE (13).

dxxxk

dt
=VVV (xxxk)+VVV N

dε
(xxxk) (21)

One should admit that there exists no any
known practical way to obtain the diffusion ve-
locity for the vector diffusion term ν∆aaa, where aaa
is arbitrary vector field, unless this field is either
two-dimensional or axisymmetric. This is also
true for the vortex methods, which successfully
utilize the concept of diffusion velocity to simu-
late 2D and axisymmetric viscous flows [9].

5 Hybrid DVM-PSE approach

To overcome the mentioned issue the idea of
a hybrid DVM-PSE scheme was suggested in
[8, 10]. It involves splitting of the diffusion term
ν∆ωωω into two parts, one of which can be refor-
mulated via the diffusion velocity (DVM part),
another part to be treated with the PSE method. It
can be done in different ways, however, the most
reasonable way to do this is to keep the DVM part
maximal possible with respect to the PSE part.
In what follows we will consider the splitting ap-
proach, suggested by Mycek (2016) [10], where
the dominating DVM-part is found with the least
squares method.

Consider the vorticity evolution equation
written in the following form

∂ωωω

∂t
+∇ ·(VVV ⊗ωωω) = (ωωω ·∇)VVV +∇ ·(ν∇ωωω), (22)
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We decompose ν∇ωωω as the sum of two ten-
sors

ν∇ωωω =−VVV d⊗ωωω+ B̂, (23)

where VVV d =VVV d(xxx, t) is the diffusion velocity field
to be found, B̂ is a tensor of a second order. We
want to minimize B̂ = ν∇ωωω +VVV d ⊗ωωω with the
relevant choice of the components Vdi of VVV d in a
least squares manner as

VVV di = argmin
xd

3

∑
j=1

(Âi j + xiωωω j)
2 (24)

where Â denotes ν∇ωωω.
Minimization of the objective function in (24)

with respect to xdi gives the diffusion velocity of
the form

VVV d =−ν
∇|ωωω|
|ωωω|

(25)

and tensor B̂ (see [10] for details):

B̂ = ν|ωωω|
(

∇
ωωω

|ωωω|

)
(26)

Substituting (25) and (26) into the vorticity
evolution equation in (22) gives

∂ωωω

∂t
+∇ · ((VVV +VVV d)⊗ωωω) = (ωωω ·∇)VVV +∇ · B̂.

(27)
Here ∇ · B̂ is the part of the vorticity diffusion

term ν∆ωωω that can be approximated with the PSE
method.

We follow the DVM-PSE splitting concept
and adapt both DVM and PSE schemes for the
fragmenton model. First we approximate the dif-
fusion velocity (25), using the cut-off function ζε

to smooth ∇|ωωω| and |ωωω|:

VVV d =−ν
∇|ωωω|
|ωωω|
≈ −ν

|ωωω|?∇ζε

|ωωω|?ζε

(28)

Application of the quadrature rule for both
numerator and denominator of smoothed VVV d
yields

VVV d ≈−ν
∑

N
k=1 |γγγk|

∫ 1
−1 ∇ζε(xxx− xxxk− shhhk)ds

∑
N
k=1 |γγγk|

∫ 1
−1 ζε(xxx− xxxk− shhhk)ds

,

(29)

where

|γγγk|=
∫

Sk

|ωωω(xxx)|dS≈ |ωωω(xxxk)|Sk (30)

The diffusion term ∇ · B̂ (26) in the DVM-
PSE scheme has the form of a general diffu-
sion operator ∇ ·

(
D(xxx)∇aaa(xxx)

)
, appropriate for

the PSE integral approximation. Following La-
combe and Mas-Gallic (1987) [8], one can write

∇ · B̂≈ ν

2ε2

∫
R3

ηε(xxx− yyy)(|ωωω(xxx)|+ |ωωω(yyy)|)·

·
[

ωωω(yyy)
|ωωω(yyy)|

− ωωω(xxx)
|ωωω(xxx)|

]
dyyy (31)

Combining the both DVM and PSE parts and
applying the VE-approximation to (27) we get to
the following ODE system over the fragmenton
parameters xxxk, hhhk, σk and γγγk:

dxxxk

dt
=VVV e f f (xxxk),

dhhhk

dt
= hhhk ·∇VVV e f f (xxxk),

dσk

dt
= (∇ ·VVV d(xxxk))σk,

dγγγk
dt

= γγγk ·∇VVV (xxxk)+
ν

2ε2

N

∑
q=1

Gkq

[(
|hhhq|
|hhhk|

γqσk+

+
|hhhk|
|hhhq|

γkσq

)(
hhhq

|hhhq|
− hhhk

|hhhk|

)]
(32)

where VVV e f f =VVV +VVV d .

6 Simulation examples

Here we give two representative examples of dif-
fusion of two typical vortex structures: a recti-
linear infinite vortex tube and a vortex ring with
finite core radius. Both structures are rather reg-
ular and do not fully demonstrate the efficiency
of the viscosity models, and we give them as the
first step of investigation of the models.

Concerned problems have the distinctive fea-
ture that the adjacent fragmentons, which consti-
tute both vortex structures, stay parallel to each
other. This considerably simplifies the governing
equations of all the viscosity models. In these
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Fig. 2 Vortex tube section filled with fragmentons.

conditions one cannot even speak about the hy-
brid DVM-PSE model, because the PSE part of it
is zero if hhhk is parallel to hhhq (32). So here we dis-
cuss the vortex tube diffusion, simulated with the
PSE and DVM approaches, and the vortex ring
with the DVM.

6.1 Vortex tube diffusion

Consider infinite rectilinear vortex tube of radius
R, constructed with layers uniformly filled with
fragmentons as shown on fig. 2. All the fragmen-
tons have length 2hhh and are oriented normally to
the layer. In such configuration all the fragmen-
tons stay parallel to each other and do not change
their length. Practically it means that velocity
gradient of such flow is always normal to hhhk so
that hhhk ·∇VVV ≡ 0 in both models (13),(32).

It is known from theory that infinitely thin
vorticity thread with initial circulation Γ0 spreads
in space and at time t has the following vorticity
profile (in the plane, normal to thread)

ω(r, t) =
Γ0

4πνt
exp
(
− r2

4νt

)
. (33)

Circulation at time t over the circle of radius
R

Γ(t) = Γ0

(
1− exp

(
− R2

4νt

))
(34)

For the simulation we consider developed
vortex tube with initial vorticity distribution
ω(r, t0), where t0 is a moment of time, set as a
parameter.

For both PSE and DVM simulations, the fol-
lowing parameters are chosen: Reynolds number
Re = 100; viscosity ν = 0.01; initial circulation

Fig. 3 Vortex tube vorticity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – PSE simulation; dashed line – theory

Fig. 4 Vortex tube velocity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – PSE simulation; dashed line – theory

Fig. 5 Vortex tube circulations over circles of
radii R = 0.8, R = 0.4 and R = 0.27. Dots – PSE
simulation; dashed line – theory
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Fig. 6 Vortex tube vorticity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – DVM simulation; dashed line – theory

Fig. 7 Vortex tube velocity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – DVM simulation; dashed line – theory

Fig. 8 Vortex tube circulations over circles of
radii R = 0.6, R = 0.3 and R = 0.2. Dots – DVM
simulation; dashed line – theory

Γ0 = 1; fragmentons’ length 2h = 0.1 (with a to-
tal of 1259 VEs in a layer); number of considered
layers (for viscosity modeling): 3; average dis-
tance between the VEs in layer ∆ ≈ 0.041; cut-
off parameter in the PSE model ε = 0.041; cut-
off parameter in the DVM model ε = 0.1; time
parameter t0 = 1.

Equations (13), (32) are integrated up to time
1 either with the explicit 4th order Runge-Kutta
method with fixed step ∆t = 0.01 (DVM), or with
the 1st order Euler with the same step (PSE).

Figures 3-4 show vorticity and velocity pro-
files of the vortex tube for times 0, 0.5 and 1.
Dashed line denotes the analytical results, calcu-
lated with (33), (34), while the dots correspond to
simulated results for the PSE approach. Figure 5
gives the circulation change in time over the cir-
cles of fixed radii 0.8, 0.4 and 0.27.

Figures 3-8 give the same graphs for the
DVM simulation of the problem. Circulation
graphs were obtained over the circles of radii 0.6,
0.3 and 0.2.

One can note small deviations of the dots’ po-
sition from the analytical curves. This can be ex-
plained by close (or far) location of a fragmen-
ton near the point of interest, while the calcu-
lated profiles in average show good correspon-
dence. One can also notice some excessive dif-
fusion in the DVM simulation, which can be cor-
rected with the right choice of the parameter ε

in diffusion velocity (28). This reveals the de-
pendence of DVM over the model parameters,
like inter-fragmenton distance and ε, which by all
means must be bigger then the former.

6.2 Vortex ring diffusion

In this part we consider a test problem of vor-
tex ring diffusion in viscous fluid. Though this
problem does not have the exact solution, it can
be solved analytically under the assumptions of a
Stockes flow [16], where the viscous forces dom-
inate over the convective forces. In particular,
for vortex rings in a viscous fluid this model de-
scribes the ring’s final development stage.

This ’Stokes’ ring model has been intensively
investigated theoretically by Kaplanski and Rudi

7
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Fig. 9 Vortex ring model

[16] (we denote it as KR model). Comprehen-
sive numerical analysis of vortex ring dynam-
ics in a viscous flow and experiments [17] show
that the model stays functional and give reli-
able results both for vortex ring formation stage
and for its evolution stage, not necessarily with
low Reynolds number. Therefore, we adopt this
model and use it to compare with VEM simula-
tion using the DVM-approach.

Consider an infinitely thin circular vortex fila-
ment of radius R0 with the circulation Γ in a fluid
with viscosity ν. Kaplanski [18] showed that in
a Stokes flow vorticity field evolves in time and
space as follows:

ω =
ΓR0

4
√

πν3t3
exp
(
−

r2 + z2 +R2
0

4νt

)
I1

(
rR0

2νt

)
,

(35)
where r and z are the coordinates in a cylindri-
cal frame that is translated with the ring so that
the origin stays always in the ring center; I1(x) –
modified Bessel function of the first kind.

As for the vortex tube, for the simulation we
consider developed vortex ring with initial vortic-
ity distribution ω(r,z, t0), where t0 is a moment of
time, set as a parameter.

The figure 9 shows a vortex ring constructed
with fragmentons. It consists of 30 sections
of 225 fragmentons forming 8 circular layers in
each section; circulation Γ0 = 1; viscosity ν =
0.01; Reynolds number Re = Γ0/ν = 100; ring
radius R = 1; initial distance between adjacent
fragmentons ∆ ≈ 0.011; initial time parameter
t0 = 0.1; cut-off parameter in the DVM model
ε = 0.012.

Equations (32) are integrated up to time 1
with the 1st order Euler method with fixed time
step 0.01.

Fig. 10 Vortex ring vorticity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – DVM simulation; dashed line – theory

Fig. 11 Vortex ring velocity profiles at the mo-
ments t = 0 (red), t = 0.5 (blue), t = 1 (green).
Dots – DVM simulation; dashed line – theory

Fig. 12 Vortex ring circulations over circles of
radii R = 0.5, R = 0.15, R = 0.075 and R = 0.05.
Dots – DVM simulation; dashed line – theory
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Fig. 13 Vortex ring self-translation velocity.
Dots – DVM simulation; dashed line – theory

Figures 10-11 show vorticity and velocity
profiles of the simulated vortex ring (dots) and
analytical solution using the KR model (dashed
line) for times 0, 0.5 and 1. Figure 12 gives the
circulations evolution in time over the circles of
radii 0.5, 0.15, 0.075 and 0.05. The circles’ cen-
ter moves with the central fragmenton since the
vortex ring moves in fluid. Figure 13 shows the
comparison of rings’ displacement velocity with
the one obtained from the KR model.

Comparison with the analytical results show
small deviation profiles in time. KR model
demonstrates more asymmetry in velocity pro-
files: the velocity closer to ring’s center is higher
than the further one. This effect is less revealed
with the DVM-simulation. One also notice the
deviation in the displacement velocity of the ring
that starts at t = 0.3. It may be explained with the
wrong methodology of ring’s velocity determina-
tion in the simulation, where it is calculated as the
velocity of the central fragmenton (in ring’s sec-
tion). The ’real’ center of the ring’s section may
not always coincide with the same fragmenton.

7 Discussions

It this paper we gave general review of some
approaches to model viscosity with the special
vortex method based on fragmentons, that has
showed good performance for ideal fluid simula-
tions with respect to classical singular-point vor-
tons. Here we show the outline and main results

of adaption of PSE, DVM and DVM-PSE models
for fragmentons. Each analyzed model ends with
the ODEs over fragmenton parameters.

The examples discussed in the previous sec-
tion show the correspondence to the theory. At
the same time they reveal certain difficulties with
the customization of the viscosity models, where
the distance between fragmentons and the cut-
off parameter ε may influence on the accuracy
of the simulations. Although these two problems
are very particular and by no means pretend to
approve the reviewed viscosity models, they are
important steps in further investigation of vortex
methods and their application in viscous flows
problems.

Before applying these models to more gen-
eral cases, where the adjacent fragmentons are
not parallel anymore, we cannot but mention the
problem that reveals in VEM based on fragmen-
tons. In viscous fluid fragmenton intensities γγγk
and their direction hhhk are not necessarily collinear
as it was the case for ideal fluid. This may com-
plicate the velocity reconstitution from a set of
fragmentons. This is the question of further in-
vestigation.
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