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Abstract  

In recent years, surrogate-based modeling and 
optimization have received much attention in 

the area of aerodynamic design optimization 
(ADO). However, for high-dimensional 
problems with large number of design variables, 

surrogate-based optimization (SBO) is suffering 
from the prohibitive computational cost 

associated with evaluating a large number of 
sample points by high-fidelity and expensive 
computational fluid dynamics (CFD) 

simulations. In this paper, we propose to use 
gradient-enhanced kriging (GEK) to combine 

the adjoint-based and surrogate-based 
optimizations, to greatly improve the efficiency 
of global optimization. The GEK model is 

integrated to a surrogate-based optimizer and 
demonstrated for Benchmark Case 1, Case 2 

and Case 4 developed by the AIAA Applied 
Aerodynamics Discussion Group (ADODG), 
with the number of design variables in the range 

from 18 to 42. It is observed that, GEK model is 
much more efficient than the traditional kriging 

model, indicating that the proposed method has 
great potential for breaking or at least 
ameliorating the “curse of dimensionality” for 

higher-dimensional engineering design 
problems. 

1 Introduction 

Over past few decades, CFD–based 
aerodynamic design optimization (ADO) has 

been highly developed and widely applied in the 
area of aircraft design. The CFD-based ADO 

methods can be classified into three categories: 

direct gradient-based optimization algorithm, 
derivative-free optimization algorithm and 

surrogate-based optimization (SBO). Among 
them, the gradient-based optimization with 
gradients calculated by using an adjoint 

approach has proved effective and got 
popularity for aerodynamic shape optimization 

via high-fidelity CFD methods [1]. It can deal 
with the optimization problems with 100-1000 
design variables [2]. However, the drawback of 

this method is that it can be sensitive to the 
initial design and can be trapped into a local 

minimum. In contrast, the derivative-free 
methods, e.g. Evolutional Algorithms (EA), is 
capable of finding global optimum, whereas the 

computational cost can be prohibitive due to the 
evaluation of a large number of high-fidelity 

CFD simulations. Typically, at least thousands 
of CFD simulations are required when using an 
EA method for aerodynamic shape optimization. 

The third method, SBO, represents a type of 
algorithm that makes use of surrogate models to 

approximate to the expensive objective and 
constraint functions, throughout the design 
space or within specific region, driving the 

addition and evaluation of new sample point(s) 
towards global or local optimum(s)[3][4]. It has 

been proved very effective for ADO problems. 
However, when dealing with complex aircraft 
configuration parameterized by many design 

variables, a large number of expensive-to-
evaluate samples will be needed to construct a 

reasonably accurate surrogate model, which 
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inspires the use of cheap-to-evaluate auxiliary 

information, such as lower-fidelity data or 
gradient information, to improve the accuracy of 

building surrogate models towards the reduction 
of the number of high-fidelity CFD simulation.  

In this paper, we propose to combine 

adjoint-based and surrogate-based optimizations 
through GEK model. The cheap gradient 

information is obtained by using an adjoint 
method. Then the gradient information is 
directly included in the kriging equations 

system by augmenting the weighted sum of the 
gradients to the weighted sum of the observed 

functional values. This way of exploiting the 
benefit of cheap gradient information on the 
constructing of a kriging model is called direct 

GEK [5][6][7]. The GEK model is integrated to 
a surrogate-based optimizer and demonstrated 

for three benchmark cases defined by the AIAA 
aerodynamic design optimization discussion 
group (ADODG). The first two cases are the 

drag minimizations of NACA 0012 airfoil and 
RAE 2822 airfoil in transonic flow, using Euler 

and Reynolds-averaged Navier-Stokes (RANS) 
flow solvers, respectively, with the number of 
design variables in the range from 18 to 42. To 

fully explore the proposed method’s capability 
for more complex aerodynamic shape 

optimization case, the lift-constrained drag 
minimization of the ADODG Common 
Research Model (CRM) wing using a RANS 

solver is also formulated, with 38 design 
variables. 

The remainder of the paper is organized as 
following: section 2 and 3 review the theory 
and algorithms of adjoint method and GEK 

model; section 4 introduces the in-house SBO 
toolbox SurroOpt and the open source CFD 

solver SU2; section 5 presents examples to 
compare the performance of GEK model and 
kriging model when used for aerodynamic 

design optimizations. The last section gives 
conclusions and outlook. 

2 Overview of Adjoint Method 

Here we only give a brief overview about the 
adjoint method. The readers are referred to 

literatures such as [8] for more details about the 
formulation. 

In an aerodynamic design such as airfoil or 

wing design, the aerodynamic shape can be 
parameterized by a set of design variables

  , 1,..,ix i n x . The cost function (e.g. drag 

coefficient) is a function of x  and flowfield 
variable W  : 

 ,I I W x  ,                               (1) 

and a change in x  results in the change 

T TI I
I  

 
 
 

W x
W x

 . (2) 

Suppose that the governing equations of the 

flowfield can be written as 

  0W,xR  .                              (3) 

Then W  can be determined from  

0  
 
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R R
R  .           (4) 

After introducing a Lagrange multiplier   , we 
have 
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.(5) 

Choosing   to satisfy the adjoint equation 

[ ]T I 


 
ψ

W W

R
.                            (6) 

Then the first term of equation (5) can be 

eliminated, and the gradient can be found by 

  [ ]T TI I  
  
  

G x ψ
x x x

R
.          (7) 

We can see that the computational cost of 
evaluating the gradients of I  is nearly 

independent of number of design variables. 
Once the cheap gradient is obtained, it can 

used to improve the accuracy of a surrogate 
model, such as kriging. The details of 
constructing such a kriging model are given in 

next section. 

3 Gradient-Enhanced Kriging Formulation 

3.1 GEK Predictor and Its MSE 

For an m - dimensional problem, suppose we are 

concerned with the prediction of an expensive-
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to-evaluate high-fidelity aerodynamic function

: my  . Firstly, we choose n  sample sites by 

using the method of design of experiments (DoE) 

and then run CFD and adjoint codes to get the 
responses of the aerodynamic function as well 

as its gradients with respect to the design 

variables. Then the sampled dataset   ,
S

S y  are 

formed as 

 

   

(1) ( ) ( ) T ( )

(1) ( ) T

S

1

[ , , , , , , ]

[ , , , , , , ]
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n n nm

m

y y
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x x

 



 

 
 

 

S x x x x

y

. (8) 

The prediction of a GEK model at an 

untried x is formally defined by augmenting the 
weighted sum of the observed gradients to the 

weighted sum of the observed function values as 

( )
( ) ( ) ( )

1 1 1

ˆ( )
in m n

i i i

j

i j i j

y
y w y

x


  


 


 x ,          (9) 

where  i
w  represents the weight coefficient for 

the observed values of aerodynamic function at 

i-th sampling site, and  i
j  denotes the weight 

coefficient for an observed partial derivative of 

the aerodynamics function, taken at i-th 
sampling site and with respect to j-th design 

variable. There are (1 )n m  weight coefficients 

in total, whose optimal values are to be obtained 

by using a Lagrange multiplier method. 
As for a kriging model, the GEK predictor 

can be proven to be of the form 

T 1

0 S 0
ˆ( ) ( ) ( )
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y    

V
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,          
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(11) 

and R  and r  are the augmented correlation 
matrix and correlation vector, respectively. 

They are of the form 

        

( ) ( )
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(12) 

The mean-squared error (MSE) of the GEK 

prediction, as a kind of uncertainty at any 
untried x  can be proven to be 

2

2 T 1 1 2 T 1

ˆMSE{ ( )} ( )

{1.0 (1 ) / ( )}

y s

   



   

x x

r R r FR r F R F

 . (13) 

3.2 Validation of GEK Model 

In this subsection, the following two-
dimensional test function is used to explain the 

procedure of building a GEK model and to 
verify its correctness: 

  
2

2

1

1 2

( ) 10cos 2

, [ 5.12,5.12]

i i

i

f x x x

x x




 

 

 . (14) 

Forty sampling sites are chosen by Latin 
hypercube sampling (LHS) [9] method and the 
functional response values as well as 

corresponding gradients are obtained 
analytically. The results are shown in Fig 1. The 

GEK model is compared with the exact function 
by plotting both the contour and isocline, which 
validates the correctness of the proposed GEK 

model. 

  

  
(a) Exact function (b) GEK 

Fig 1. Validation of GEK model for a 2-D test function 

4 Methodology 

4.1 SBO Framework 

The GEK model has been integrated into an in-

house optimization code called “SurroOpt” 
[10]-[15]. SurroOpt is a state-of-the-art, 
surrogate-based optimization code developed 

for academic research and engineering designs 
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driven by expensive numerical simulations. It 

can be used to efficiently solve arbitrary single 
and multi-objective (Pareto front), 

unconstrained and constrained optimization 
problems.  

In SurroOpt, building GEK models and 

solving sub-optimization problems 
corresponding to the infill-sampling criteria are 

taken as an optimization mechanism, whose role 
is the same as any of the conventional gradient-
based methods or heuristic optimization 

algorithms. This new optimization mechanism 
leads to the automatic clustering of sample 

points near the optimum and the GEK models 
are not necessarily accurate throughout the 
whole design space. As a result, the selection of 

initial samples and the approximation accuracy 
of the initial GEK models have less effect on the 

final optimum. The framework of proposed 
GEK-based method is shown in Fig 2. 

 
Fig 2.  Framework of proposed GEK-based method that 

combines adjoint gradients with surrogate-based 

optimization [10] 

4.2 SU2 software suite 

In this paper, the Stanford University SU2 code 
[16] is applied for the geometric 

parameterization, mesh deformation, as well as 
flow solution and adjoint gradient evaluation 
based on the Euler and RANS equations.  

SU2 is an open-source computational 
analysis and design package that has been 

developed to solve multi-physics analysis and 
optimization tasks using unstructured mesh 
topologies. It provides a number of geometry 

parameterization techniques. In this paper, a 
free- form deformation (FFD) strategy is adopted 

to parameterize the airfoil and wing geometry. 
In this method, the object (airfoil and wing in 

this paper) is encapsulated by an initial FFD box 

which is parameterized as a Bézier solid. A set 
of control points on the surface of the box are 

defined as design variables, and the geometry of 
the object inside the box can be deformed by 
modifying these control points. After perturbing 

the geometry, an approach based on the linear 
elasticity equations [17] is used to propagate the 

deformation to the surrounding volume mesh.  
Both continuous and discrete adjoint 

approaches for the Euler and RANS equations 

are available in SU2, while the discrete adjoint 
method is applied in this paper to efficiently 

compute the gradients required by building the 
GEK model. 

5 Examples 

5.1 Benchmark Case I: Drag Minimization of 

NACA 0012 Airfoil in Transonic Inviscid Flow 

The optimization problem of this work is the 
drag minimization of a modified NACA 0012 
airfoil at a free stream Mach number of 0.85 and 

at a zero angle of attack, subject to a full 
thickness constraint. In summary, the 

mathematical model is of the form 

 baseline

minimize           

with respect to 0.0

                  0,1 .

d

l

c

c

y y x



  

  (15) 

An O-type grid for inviscid flow 
simulation is applied to this case as shown in 

Fig 3. Furthermore, since the airfoil is 
symmetrical and the angle of attack is fixed at 

zero, only the half-plane is considered to avoid 
the difficulties due to non-symmetrical solutions. 
A series of grids are generated using a 

hyperbolic mesh generator to perform a grid 
convergence study as shown in Tab 1. The 

middle grid size is used for optimization, since 
the difference between the medium-size and 
large-size grids is less than 0.1 counts (1 drag 

count is dc =10-4) 
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Fig 3. The half-plane of O-type mesh used in case 1 

Tab 1. Grid convergence study for NACA 0012 airfoil 

Grid size NACA 0012 (cd counts) 

L1:126×126 470.036 

L2:256×256 470.804 

L3:512×512 470.872 

Two FFD frames are used in this work. 
The first is a coarser FFD volume with 48 

control points arranged in a 15×2 pattern, 
corresponding to 19 design variables in total, as 

shown in Fig 4. The second FFD is based on a 
finer pattern (26×2), with 42 design variables 
chosen to examine the performance of GEK in 

the problems with a middle size of design 
variables. It is worth noting that the method 

considers both x and y coordinates of specific 
control points near the leading and trailing edge. 

 

 

 
Fig 4. Sketch of two kinds of FFD frames (the red control 
points can move in both x and y direction, while the blue 

points can only move in y direction and the others are fixed. 

To validate the accuracy of the gradient 
information obtained by the discrete adjoint 

formulation, a comparison was made between 
the discrete adjoint approach and finite- 

difference approach. The step size of the FFD 
deformation for both methods is 0.001c. The 
results are shown in Fig 5. And one can see that 

the gradients obtained by using the adjoint 
method agree well with the results from the 

finite-difference method, indicating that the 
adjoint solver has a reasonable accuracy in 
calculating gradients. 

 
Fig 5. Comparison of adjoint method and finite difference 

method for the gradients of drag w.r.t. the design variables 

In this benchmark, 5 initial sample points 
are chosen by LHS method. Note that EI+MSP 

(maximizing the expected improvement and 
minimizing the surrogate prediction) infill-

sampling criterion is used to choose new 
samples and drive the optimization towards 
optimum.  

Fig 6 shows the convergence histories of 
optimizations based on GEK or kriging model. 

When using a GEK, the drag coefficient is 

reduced to 56.11 counts (1 drag count is dc  

=10-4) with 19 design variables, comparing with 
61.06 counts for kriging model. When the 

number of design variable is increased to 42, we 
found that the cost of building a GEK model 

dramatically increased, which is caused by the 
huge correlation matrix of a GEK. The current 
optimal value for this setting is 67.05 counts, 

which is higher than using 19 design variables 
(56.11 counts). The possible reason is the ill-

conditioning of correlation matrix due to poorly 
spaced samples, which is a major challenge 
necessary for robust and efficient GEK 

emulators. The situation for the kriging model is 
much worse, with a value of 181.42 counts after 

infilling nearly 80 samples. Some further 
improvement is likely possible, but it will need 
a large number of sample-point evaluations. 

This is consistent with our experience that one 
will need a large number of samples to build a 

sufficiently accurate kriging model for high-
dimensional problems, which is also known as 
the “curse of dimensionality”.   

We can see from both cases that the GEK-
based method is much more efficient than the 

kriging-based method, especially for the 
problems with a medium size of design 
variables. 
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C
d

G
ra

d
ie

n
ts

0 5 10 15 20

-0.2

0

0.2

0.4

Finite_Difference

Discrete_Adjoint



HAO WANG, ZHONG-HUA HAN, S HAO-QIANG HAN, YU ZHANG, CHEN-ZHOU XU, WEN-PING SONG 

6 

 
(a) 19 design variables 

 
(b)  42 design variables 

Fig 6. Convergence history of optimization for ADODG case 1 

The surface pressure distributions of 

NACA 0012 and optimal airfoils are exhibited 
in Fig 7. The leading edge has become 
extremely blunt in all cases. This is the expected 

optimal result for this problem, though this 
shape would have poor viscous performance. By 

the final design, the containment constraint is 
satisfied everywhere. 

 

 

Fig 7. Shapes and pressure coefficient distributions for 

baseline and optimized airfoils 

Tab 2. Drag coefficients (counts) of baseline NACA 0012 and 

optimal airfoils  

 GEK Kriging 

Baseline 470.80 

 19 DVs 56.11 61.06 

 42 DVs 67.05 181.42 

5.2 Benchmark Case II: Drag Minimization 

of RAE 2822 Airfoil in Transonic Viscous 

Flow 

Case II revisits transonic airfoil design (Mach 
0.734), but this time with more realistic design 

constraints. The objective is again to reduce the 
drag, while constraints are imposed on lift, 

pitching moment (which is initially violated) 
and the area: 

2

minimize             

with respect to    0.824

                           0.092

                  Area Area 0.07787

d

l

m

initial

c

c

c

c



 

 

 . (16) 

A hybrid mesh is adopted, as show in Fig 8. 

the grid convergence study is conducted and the 
results are shown in Fig 9. The medium-size 

grid is used for optimization. 

 
Fig 8. The hybrid mesh used in case 2 

Tab 3. Grid convergence study for RAE 2822 airfoil  

Grid size cl cd (counts) 

30079 0.824 199.0 

41573 0.824 196.8 

53510 0.824 197.4 

The definition of FFD frame is shown in Fig 
9, corresponding to 18 design variables in total.  
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Fig 9. The definition of FFD frame used in ADODG case 2 

In this benchmark, 6 initial sample points 
are chosen by LHS method and the EI infill-
sampling criterion is applied. The convergence 

history of optimization is shown in Fig 10, 
which indicates GEK can significantly improve 

the efficiency of optimization, when compared 
with kriging, although the optimum obtained 
from kriging is slightly better than that of GEK. 

 
Fig 10. Convergence history of ADODG benchmark case 2 

Tab 4. Performance convergence of baseline RAE2822 

airfoil and optimal airfoils 

          Area 

Baseline 196.8 0.824 -0.095 0.07784 

GEK  124.7 0.824 -0.083 0.07784 

Kriging 123.0 0.824 -0.089 0.07784 

 

 

Fig 11. Shapes and pressure coefficient distributions for 

baseline and optimized airfoils 

From Fig 11, one can see that the shock is 
nearly eliminated for both optimal airfoils, 

indicating the multimodality of this optimization 
case. 

5.3 Benchmark Case Ⅳ: Drag Minimization 

of CRM Wing in Transonic Viscous Flow 

The final case is a wing design optimization 

problem at Mach 0.85. The objective is to  
reduce the drag, subject to a lift constraint and a 

pitching moment constraint, which is initially 
violated. The baseline geometry is the Common 
Research Model (CRM) wing. The planform is 

fixed, while variation in the vertical direction is 
permitted, including airfoil design and sectional 

twist. The wing is required to maintain its initial 
volume and also to maintain at least 25% of its 
original local thickness everywhere. The full 

optimization problem is 

minimize             

with respect to    =0.5

                            0.17

                           Volume Volume

                           Thickness 0.25Thickness

             

D

L

M

initial

initial

C

C

C  





TE

LE,root

              0

                           0

Z

Z

 

 

  

(17) 

Fig 12 shows the structured mesh used in 

this test case. The parameters in this case are the 
vertical displacements of control points located 

on the FFD control box, corresponding to 38 
design variables. The FFD volume definition is 
shown in Fig 13. 

 
Fig 12. The structured mesh used in ADODG case 4 
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Fig 13. CRM wing FFD control box (in blue) and selected 

control points (in red) as design variables 

A comparison of gradients was made 
between the discrete adjoint approach and finite 

different approach, as shown in Fig 14. The 
results verify the accuracy of the gradients 

obtained from the discrete adjoint method. 

 
Fig 14. Comparison of adjoint method and finite difference 

method for the gradients of drag w.r.t. the design variables 

16 initial sample points are chosen by LHS 
method and the EI infill-sampling criterion is 

used to repetitively select new sample points. 

Fig 15 shows the convergence history of 

optimization. One can see that the GEK-based 
method outperforms the kriging-based method 

in terms of the efficiency and the final optimum, 
with the drag being reduced by 8.9 counts and 
6.5 counts respectively.  

 
Fig 15. Convergence history of ADODG benchmark case 4 

Tab 5. Force coefficients and volume of CRM wing and 

optimal wings 

    
   (counts)           
          

Baseline 0.500 143.8 61.1 -0.1728 0.2583 

GEK 0.500 133.9 61.3 -0.1699 0.2584 

Kriging 0.500 136.4 61.2 -0.1699 0.2585 

 
(a) The optimal wing by GEK-based optimization 
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(b) The optimal wing by kriging-based optimization 

Fig 16. Comparison between the baseline and the optimized wings 

Fig 16 shows the comparison between the 
baseline and the optimized wings. In these 
figures, the results of baseline wing are shown in 
blue and the optimized wing results are shown in 
red. At the optimum, the lift coefficient target is 
met and the pitching moment is reduced to the 
lowest allowed value. The baseline wing exhibits 
a strong shock, while the two optimized wings 
from GEK-base and kriging-based methods both 
have a lower pressure drag associated to a 
weaker shock wave at the inboard sections. 
However, there still exists a relative strong shock 
wave at the outboard sections for both optimized 
wings. Existing literature indicates that, to 
achieve a strong reduction of the pressure drag, 
the optimization algorithm has to make at the 
same time the inboard sections very thick and the 
outboard sections very thin [18]. This 
mechanism is not captured in our work. The 
possible reason could be the lack of the design 
variables. In the future, a larger number of 
design variables should be adopted to have a 
finer control over the geometry, especially the 
leading edge of wing.  

6 Conclusions and Outlook 

In this paper, we build a GEK model to 
combining the adjoint gradients with surrogate-
based optimizations. It is then integrated to a 

surrogate-based optimizer and demonstrated for 
benchmark cases 1, case 2 and case 4 defined by 
the AIAA ADODG. We conclude that the GEK-
based method is much more efficient than the 
traditional kriging-based method, and it has great 
potential for breaking or at least ameliorating the 
“curse of dimensionality” for higher-dimensional 
engineering design problems. 

In the future, we will continue to make 
effort to improve the optimization efficiency and 
quality of GEK-based SBO, and perform 
optimizations on more complex cases with a 
larger number of design variables. 
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