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Abstract

This paper applies a new statistical approach
to model aircraft flight characteristics with real
flight data. The motivation of this study is to im-
prove reliability of the model as comparable as
estimation by using wind tunnel tests and com-
putational fluid dynamics analyses. The relia-
bility will be compensated by not only perform-
ing point estimation but also giving distribution,
which relies on a Bayesian estimation technique;
Markov chain Mote Carlo (MCMC). Application
to real flight data to make a statistical model of
lift and drag coefficients is performed to demon-
strate the capability of the proposed approach.
The results shows that the method can plausibly
estimate not only coefficients but also confidence
interval.

1 Introduction

It is important to decrease inconsistency between
estimated and real flight performance of aircraft
for cost reduction in new aircraft development.
Whenever there is inconsistency, development
process must be iterated and more resource is
consumed. Therefore, improvement of design
tools to make their outputs more realistic is fun-
damental. According to the background, this
study focuses on flight characteristics of aircraft
represented by aerodynamics coefficients. Typ-
ically, the characteristics are estimated by using
results of ground tests represented by computa-
tional fluid dynamic (CFD) analyses and wind

tunnel tests in design phase. Then, they are val-
idated by using flight test data before production
phase. The ground tests, especially CFD analy-
ses, can be substituted for the flight tests in terms
of the flight characteristics estimation, when they
always output completely realistic results.

In order to improve the accuracy of the
ground tests, comparison between the ground and
flight test results should be the first choice. How-
ever, the typical procedure of the validation be-
tween the ground and flight tests is insufficient
for the comparison. It is just a simple test whether
difference between parameters predicted and ob-
tained by ground and flight tests, respectively,
are in an acceptable range, and does not provide
quantitative information required for the ground
test improvement. The reason why the valida-
tion is too simple is mainly constraints of the
flight tests, with which incomplete results seem
to be obtained compared to the ground tests due
to their uncontrollable environment such as un-
avoidable gust. Therefore, in order to get the
quantitative and reliable difference of these mul-
tiple tests, a new method to model the flight char-
acteristics by using the flight test data is pro-
posed.

The key of the proposed method is to model
the characteristics in a statistical manner. More
specifically, it is based on Bayesian estimation
framework, which treats probability distribution
of parameters. This results in the following two
superior points. Firstly, it gives not only point
estimation results but also distribution, which en-
ables to discuss the comparison results with ap-
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propriate weight. For example, it is difficult
to obtain sufficient flight data under condition
where flight is unstable. The proposed method
will return prospect with less confidence under
such condition, which guides us to rely on the
ground test results heavier than those of the flight
tests. The other is it can utilize knowledge as
much as possible by regulating a priori distri-
bution. The knowledge varies from geometrical
and physical relation to experience of the former
ground tests. The second point contributes to get
a reasonable model whose difference from the
ground test results is easily interpreted.

In the following, the proposed method are ex-
plained in Sec.2. Firstly, the Bayesian estima-
tion is explained briefly as the basis of the pro-
posed method, and Markov chain Monte Carlo
(MCMC) sampling utilized in this study as one
of the modeling techniques is introduced. Then,
an application of the method to real flight data
will be described with its results in Sec.3. As
a demonstration, lift and drag coefficients of
one of research aircraft “Hisho” owned by Japan
Aerospace Exploration Agency (JAXA) are mod-
eled with real flight data. Finally, conclusion re-
marks and future works are summarized in Sec.4.

2 Proposed method

In this section, the fundamental parts of the pro-
posed method, that is, Bayesian estimation and
MCMC sampling, will be explained briefly. Al-
though both of them are versatile, the application
of them to the flight characteristic modeling by
using flight data is intensively described here. In
addition, the next section, in which their imple-
mentation for this study problem is mentioned,
will compensate for the abstractness of this sec-
tion.

2.1 Bayesian estimation

The proposed method depends on Bayes’ theo-
rem

p(ϑ|D) ∝ p(D|ϑ) p(ϑ) , (1)

where p(x) is probability of observingx, and
p(x|y) is conditional probability of observingx

under observingy. In this study,ϑ andD repre-
sent the flight characteristics to be modeled and
flight data, respectively. p(ϑ) and p(ϑ|D) is
prior and posterior probabilities, respectively. In
other words,p(ϑ) is editable input; it can be
no information by applying sufficiently wide uni-
form distribution, while CFD and wind tunnel
test results can be applied if a model balanced
between ground and flight tests are preferred. On
the other hand,p(ϑ|D) is output. p(ϑ) and
p(ϑ|D) are typically represented with probabil-
ity distribution. Finally, p(D|ϑ) is a likelihood
function, which governs statistical structure of a
target problem. The likelihood function is also
designed by a user based on a priori knowledge;
in this study, geometrical and physical relation as
well as empirical formula are utilized.

2.2 Markov chain Monte Carlo (MCMC)
sampling

In order to determine the posterior probability
p(ϑ|D), there are several ways. When the distri-
bution and likelihood function are sufficient sim-
ple, for example, representation of generalized
linear model (GLM) [1] is adopted, they can be
determined analytically. On the other hand, as the
modeling of the flight characteristics is so com-
plicated that its structure is not linear and hierar-
chical, the distribution will be estimated heuris-
tically. The simplest but most inefficient way
is to repeat sufficiently random sampling, i.e.,
Monte Carlo. Thus, MCMC, an improved ver-
sion of Monte Carlo, is utilized in this study. The
MCMC sampling (Chapter 11 of Bishop [2]) en-
ables accurate estimation of the distribution with
smaller number of repetition. As its name im-
plies, this is done by generating a next random
sample to be correlated with its previous sample.

3 Application to real flight data

This section describes how Bayesian estimation
and MCMC sampling are applied to model the
flight characteristics with flight data. The target
problem is chosen as modeling of lift and drag
coefficients of JAXA’s research aircraft “Hisho”,
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becasue these coefficients are fundamental pa-
rameters representing aircraft perfoirmance. In
the following, the target aircraft and flight data
used for the modeling are introduced firstly.
Then, MCMC tool with statistical model with
which the coefficients and flight data are asso-
ciated are explained. Finally, the results will be
shown.

3.1 Target aircraft and flight data

The flight data used for the modeling is col-
lected by “Hisho” shown in Fig.1. This aircraft
was originally Cessna 680 Citation Sovereign,
which is fixed wing, twin turbojet powered air-
craft, and has been modified for various research
purposes [3]. The flight data used for the mod-
eling consists of air data, inertial force, control
surface deflection, and engine operating status
captured with full authority digital engine control
(FADEC). The air data is composed of airspeed,
angle of attack, and pressure altitude. The inertial
force is acceleration and angular speed measured
with inertial measurement unit (IMU). The indi-
rect data such as its total weight and thrust force
is secondarily estimated from the direct observed
data. With the data and physical properties of the
aircraft, the aerodynamic coefficients are calcu-
lated by using equation of motion:[

CL

CD

]
=

1
qS

[
Rot(α,β)

(
m⃗a− T⃗

)]
z,x

(2)

is applied for calculation of the liftCL and drag
CD coefficients, whereq, S, m, a⃗ and T⃗ are dy-
namic pressure, wing area, accelerometer out-
puts, and thrust force, respectively. Rot(α,β) is
a coordinate transformation matrix from body to
wind axes. It is noted that the data recorded at
the maximum frequency of 50 Hz is down sam-
pled to 1 Hz for the modeling for reduction of
computational load.

In order to get a practical model of the lift and
drag coefficients, the flight data used for the es-
timation is selected to include various flight con-
ditions. Actually, shown in Fig.2, the various
combination of altitude and Mach number, which
mostly covers the flyable envelop of “Hisho”, is

Fig. 1 Research aircraft “Hisho”, which means
fly higher in Japanese

included in the flight data. In addition, for sim-
plicity, the flight data is arranged to have only
clean configuration and trimmed condition parts,
in which the flaps are 0◦, the landing gears are
retracted, and the active maneuvering is not per-
formed.
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Fig. 2 Altitude and Mach number variation of
used flight data

3.2 Model definition and MCMC tool

The lift coefficientCL is supposed to be mod-
eled well with a commonly used linear model, in
which the total lift can be separated into parts var-
ied with changes of angle of attackα, stabilizer
positionδstaband elevator deflectionδe:

CL ≈CL0+CLαα+CLδstab
δstab+CLδeδe (3)

whereCL0 andCLx are baseline and contribution
of x, respectively. On the other hand, the drag
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coefficientCD are assumed to be

CD ≈CD0+CDRelog10Re

+CDc

(
1√

1−M2
−1

)
+CDiC

2
L

(4)

based on Chapter 12 of Raymer [4]. The last of
the left hand side is known as the induced drag,
and the other terms compose the parasitic drag.
In this assumption, the skin friction drag affected
by Reynolds numberRe is extracted from the
parasitic drag as the second term. In addition,
the transonic compressibility drag (wave drag),
whose contribution is measured by Mach num-
ber M, is also separately considered as the third
term.

The MCMC sampling will estimate the dis-
tribution of the goal variables appeared as the
symbolC in Eqs. (3)-(4). Before the estimation,
the flight data must be checked because if there
is collinearity between several explanatory vari-
ables, the results are deteriorated. Figure3 shows
pair of scatter, frequency, and correlation plots.
Especially, the upper triangle elements are the
correlation plots, whose values are scaled Spear-
man’s rank correlation coefficients [5]. 100 and -
100 of the coefficients mean full positive and neg-
ative correlated pairs, respectively. It is noted that
absolute values of the coefficients are intention-
ally omitted.

Except for the combinations with the goal
variables, i.e.,CL andCD, the angle of attackα
and stabilizer positionδstabrecorded in the flight
data are strongly correlated as Spearman’s value
is -96. Therefore, in order to perform better es-
timation, the stabilizer position is dropped from
the model, then, Eq. (3) is

CL ≈CL0+CLαα+CLδeδe. (3’)

It is noted that this phenomena is probably de-
rived from autopilot of “Hisho”, which is mostly
utilized to perform its trimmed flight.

For the MCMC sampling, a software named
Stan [6] is utilized. Stan has an effective
MCMC implementation, No-U-Turn Sampling
(NUTS) [7], which enables us to get plausible

distribution with relatively small number of sam-
ples compared to other algorithm when a prob-
lem is complicated. Stan requires an input model
to define a problem, and the model described in
Listing 1 is used in this study . The model de-
clares that the observed values are governed by
Eqs. (3’) and (4), and their residuals are assumed
to be normally distributed with their standard de-
viation depicted byσ(CL) and σ(CD), respec-
tively. Other configuration for Stan is summa-
rized in the followings: initial distribution is non-
informative prior. Both the number of iteration
for warm up and sampling are 1000. Thining,
which truncates samples to get less self correlated
distribute, is 3, and 4 chains are used to check the
estimated distribution.

Listing 1 Model for Stan

1 data {
2 int<lower=1> N; // Number of samples
3 vector[N] alpha_deg;// α
4 vector[N] de_deg;// δe
5 vector[N] cL; // CL
6 vector[N] re; // Re
7 vector[N] mach;// M
8 vector[N] cD; // CD
9 }

10 parameters{
11 real cL0; // CL0
12 real cLa; // CLα
13 real cLde;// CLδe

14 real<lower=0> sigma_cL; // σ(CL)
15 real cD0; // CD0
16 real inv_epar;// CDi
17 real cDre;// CDRe
18 real cDc; // CDc
19 real<lower=0> sigma_cD; // σ(CD)
20 }
21 model {
22 cL ~ normal(cL0
23 + (cLa∗ alpha_deg)
24 + (cLde∗ de_deg),
25 sigma_cL); // Eq. (3’)
26 cD ~ normal(cD0
27 + ((cL .∗ cL) ∗ inv_epar)
28 + (cDre∗ log10(re))
29 + (cDc∗ ((1 ./ sqrt(1− (mach .∗ mach)))

− 1)),
30 sigma_cD); // Eq. (4)
31 }
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(a) For lift coefficient (CL). The symbols correspond to those in Eq. (3).

(b) For drag coefficient (CD). The symbols correspond to those in Eq. (4).

Fig. 3 Pair plots for lift and drag coefficient modeling. For each set, the diagonal elements show
frequency plots. The elements in the lower and upper triangle areas are scatter and correlation plots of
each two variables, respectively.
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3.3 Results

The estimated distribution of the parameters con-
sisting the model are summarized in Fig.4 and
Table 1. It is noted that while the baseline of
the lift and drag coefficients have been estimated,
their relative differences from the sample mean
values are indicated as∆CL0 and ∆CD0, respec-
tively. Before discussion of the results, valid-
ity of the estimated distribution will be checked
with R̂ values. According to Chapter 11 of Gel-
man [8], when R̂< 1.1 for all parameters sub-
ject to three or more chains, sampling is suc-
cessfully converged to get accurate distribution.
The R̂ values shown in Table1 satisfy this con-
dition, and the distribution results in being suffi-
ciently accurately estimated. The convergence is
also checked with the trace plots in Fig.5, which
shows that the samples are sufficiently random.

There are some interesting details of the re-
sults which can be revealed with the distribution
estimation. Firstly, the estimation of the base-
line lift is easier than the baseline drag because
standard deviation ofσ(CD0) is larger than that
of σ(CL0). It is typical that the drag is smaller
force than the lift and this result is reasonable.
The analogy can be applied to the relation be-
tween the overall and elevator driven lift; stan-
dard deviation ofCLδe is comparably larger. The
compressibility dragCDc is well estimated be-
cause the distributed values are always positive,
which means the drag increases as Mach number
goes higher. Although the skin friction drag in
association with Reynolds numberCDRe is esti-
mated with relatively less confidence as the scale
of mean and standard deviation equal, it seems
to be plausible because its contribution is suffi-
ciently smaller than the induced dragCDi .

Fig. 6 shows lift curve and drag polar. The
observed values are depicted by small circles.
The shallow and dense gray areas are 80 % and
50 % Bayesian prediction intervals, respectively.
In both the lift curve and drag polar, most of ob-
served values are covered by the intervals. There-
fore, it is concluded that the distribute estimation
driving the prediction is performed appropriately.
In Fig. 7, the observed and predicted coefficients

are indicated. It also supports the appropriate es-
timation, because most of them are located on
or near the diagonal line, which corresponds to
match the prediction with the observation. It is
noted that for the prediction ofCD, the altitude
and airspeed are fixed as their mean values of the
flight data, which causes small prediction error.

4 Conclusion

This paper described the new modeling method
of aircraft flight characteristics with real flight
data. The method was intended to make the com-
parison of the results of CFD, wind tunnel tests,
and flight tests easier by using the framework
of Bayesian estimation. Its significant difference
from the typical method is that its model is rep-
resented with probability distribution, which en-
ables us to gain more information than the con-
ventional point estimation. For the demonstrative
purpose, the relation of the lift and drag coeffi-
cients of the fixed wing aircraft was successfully
modeled with the real flight data by using the
proposed method. Actually, the method argued
how accurate the estimated aerodynamic coef-
ficients are in addition to the point estimation.
Moreover, the reasonable changes of skin coef-
ficient and transonic compressive drag in associ-
ation with Mach and Reynolds number were suc-
cessfully extracted. The method can be applied to
more complex modeling, for instance, dynamic
effects, which is one of future works of this study.
It is noted that this work was supported by JSPS
KAKENHI Grant Number 15K06612.
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Fig. 5 Observed and predicted coefficients
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(a) Lift curve (b) Drag polar

Fig. 6 Observed values and Bayesian prediction intervals

(a) Lift coefficient (b) Drag coefficient

Fig. 7 Observed and predicted coefficients. The vertical bars represent 80 % prediction interval.
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