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Abstract

In this paper, the fault tolerant control system of
aircraft by feedback error learning with online
model estimation is investigated. Conventional
feedback error learning method takes time to re-
acquiring the inverse model and control would
be unstable during the re-learning. To avoid this
problem the online model estimation based on
linear regression was introduce. Using model in-
formation, required parameter change and learn-
ing time of the controller is reduced. To evaluate
the stability and followability of pitch control of
the boeing 747, the computer simulation of the
longitudinal motion was performed with 2 fault
cases, the elevator gain reduction and the longi-
tudinal static stability loss.

1 Introduction

In recent years, the air transportation demand
has been increasing by 5% per year [14], with
a presuming high increasing ratio because of
globalization and a growth of developing coun-
tries. At the same time, the number of flight
increases, with a increase of the number of ac-
cident. Thanks to a large investment in aircraft
technology, the accidents caused by technical
factors have been greatly suppressed and the ac-
cident rate has been decreased. However, the ac-
cident caused by human factor are left to be de-
tected and controlled to reduce at best the overall
ratio of accidents. In order to minimize the hu-
man factor in accidents, current civil aircraft are
operated with multiple pilot to ensure their safety,

hence pilots monitors each others, and work as a
backup in case of pilot incapacitation.

Consequently a pilot manipulation assist sys-
tem is required to make aircraft more safe and
to solve the pilot shortage problem even if any
fault happens. These systems rely on complex
controllers that adapt the input command given
by pilot in order to ensure the safety and dy-
namic of the aircraft. Several approaches has
been proposed (see [10, 6], among several oth-
ers, for a survey on aircraft control systems) to
improve the efficiency of aircraft controls. A
possible approach comes from the control sys-
tems and artificial intelligence communities, with
the use of fuzzy systems or neural networks that
aim at learning the optimal adaptation function
of the controller with respect to input command
[16, 9, 11, 6, 1, 13, 12, 2]. Neural networks has
been empirically demonstrated to show good per-
formances to replace different PID controller, as
they are able to approximate non-linear and very
complex functions. The aircraft controller is re-
quired high reliability. However the neural net-
work is too complicated to understand the inner
state for human. Moreover there are problem that
the multiple layer neural network takes the long
learning time and its control signal is not optimal
during learning.

Therefore The fault tolerant control system of
aircraft fault by feedback error learning with on-
line model estimation (MeFEL) is investigated in
this paper. FEL is an adaptive control method
proposed by Kawato’s team. The system estima-
tion of the control target aircraft is performed and
the estimated parameters are used as the input of
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the MeFEL controller according to the aircraft
model formula. So in this proposed method, the
single perceptron can be used as the adaptive con-
troller and it is simple and easy to understand for
human operator. MeFEL is divided into 2 blocks,
a linear regression-based system estimator and a
neural adaptive controller using estimated param-
eters. In this paper, MeFEL fault tolerant control
stability and readiness were evaluated by the sim-
ulations with two fault model, the elevator gain
reduction and the longitudinal static stability loss.
MeFEL shows that it is superior in terms of sta-
bility and readiness.

2 Background

2.1 Aircraft Modeling

In this paper, aircraft pitch angle is a control tar-
get. Aircraft longitudinal motion is described by
2 parts, the elevator dynamics and the aircraft
body dynamics. The elevator dynamics can be
written as Eq.1, and the aircraft body dynamics
can be written as Eq.2, respectively.

δ̇e = τ [Kδec−δe] (1)

ẋxx = AAAxxx+BBBδe (2)

where δe is an elevator angle deflection, δec is an
elevator angle command, τ is a time constant of
elevator, K is a elevator gain, xxx = [ u v q θ ]T is a
state vector, and AAA, BBB are the state-space matrices,
respectively.

2.2 Feedback Error Learning

Feedback Error Learning (FEL) is proposed by
Dr. Kawato, which is mimicking the learning
mechanism of the motor nerves system in the hu-
man cerebellum [7]. Ordinarily, a neural con-
troller is attached in parallel to the feedback con-
troller. The weight parameters of FEL neural
controller are trained with the stochastic gradient
descent by using the feedback control signal as
teacher signal. Using a feedback error as an in-
put of the FEL neural controller, the FEL neural
controller learns as a kind of regulator [5], which

equations are described as the followings:

ub = Kpξ+Ki

∫
ξdt + (3)

un = f (θ̈d, θ̇d,θd, θ̇,θ,Wc) (4)
u = ub +un (5)

JC =
1
2

u2
b (6)

π̇ = −η∇W JC (7)

where θ and θd is the pitch angle deflection and
its command, ξ = θd −θ is a residual error, f (·)
is a neural network, W is a weight parameter, Jc
is a cost function, η is a learning rate, ∇W is a
gradient operator for each weight.

2.3 Adam

Adam is an one of stochastic gradient descent
method which is well known at machine learning
community [8]. Adam has been proposed based
on the momentum SGD, and method which has
auto-tuned learning rate like AdaGrad [3], RM-
SProp [15].

m = β1m+(1−β1)∇J (8)
v = β2v+(1−β2)∇J2 (9)

m̂ =
m

1−βT
1

(10)

v̂ =
v

1−βT
2

(11)

∆WWW = −α
m̂√
v̂+ ε

(12)

Originally T indicates the number of learning
step, however in this study T = t + 1 second is
used, t is a simulation time. 1− βT should be
almost 1 in the normal flight.

3 Model Estimation Feedback Error Learn-
ing

The FEL neural controller takes a time to re-
acquire the inverse model of control target after
change of system by occurring fault. During re-
learning, the control of FEL can not be said sta-
ble. Therefore, we tried to reduce learning time
and keep stability during learning by using the
real-time estimated parameters of the control tar-
get as input information.
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3.1 Real-time Model Estimation

Many parameter estimation are proposed in vari-
ous communities [4]. The linear regression-based
online SGD method is adapted in MeFEL.

To control the aircraft longitudinal attitude,
the long term mode, like Phugoid mode, affects
a little. Therefore only short term mode is con-
sidered and it is known that it can be modeled as
second order lag system as bellow:

θ̈ =−Mqθ̇−Mwθ+Mδeδe (13)

So the linear regression model for θ can be con-
sidered with an input vector consisted with θ̈, θ̇

and δe as the followings:

θ̇p = WWW e
Txxxe (14)

Je =
1
2
(
θ̇p− θ̇

)2 (15)

∆WWW e = Adam(∇WeJe) (16)

where xxxe =
[

θ̇ θ δe
]T is an input vector, WWW e =

[We1 We2 We3 ]
T is a parameters to be estimated

as the system parameters of the aircraft short term
dynamics as WWW e→

[
−Mq −Mw Mδe

]T.

3.2 MeFEL construction

In previous research, the input vector of FEL
neural controller is constructed by derivatives of
the pitch command up to second order as xxx f el =[

θ̈ θ̇ θ
]T with regarding the aircraft as second

order lag system. The conventional FEL network
takes time to find optimal parameters to be the in-
verse model. The inverse model is described by
transforming Eq.(13) as below:

δe =
1

Mδe

θ̈+
Mq

Mδe

θ̇+
Mw

Mδe

θ (17)

Therefore considering these coefficients, esti-
mated parameters are used for the input vector
of MeFEL Fig.(1). The input vector of MeFEL is
constructed as below:

xxxc =

[
1

Mδe

Mq

Mδe

Mw

Mδe

]T

� xxx f el (18)

Fig. 1 MeFEL block diagram

where � indicates Hadamar product. Using this
input vector, the controller network output is
written as below:

unn =WWW T
c xxxc (19)

Therefore the elevator command is:

δec = unn +u f b (20)

4 Simulation

In this paper, the computer simulation was per-
formed to evaluate the ability of MeFEL.

4.1 Experimental Settings

As a control target aircraft, the linear longitudinal
model of Boeing 747 was used. The elevator time
constant was τ = 1/37, and the elevator gain was
K = 1. The state-space matrices were described
as the followings:

AAA=


0 4.8585 −32.1434 0

−0.1085 −105.8 −1.3802 651.3479
0 0 0 1

0.00004 −0.3895 0.00002 −0.6439



BBB =


0

−25.1185
0

−1.6895


Adam parameters has the recommended values

proposed in the original paper [8]. According to
this recommended values, β1 = 0.9, β2 = 0.999,
ε = 10−8 were used. In other hand, the adaptive
speed α = 0.1 was used as the MeFEL original
value.

3



NOBUYUKI YOSHIKAWA

Fig. 2 Model parameter estimation

Fig. 3 Model parameter estimation on fault oc-
currence

4.2 Estimation

4.2.1 Initial Estimation

To find an initial values for the state estimator, a
simulation of the parameter estimation with nor-
mal state aircraft model was performed Fig.(2).
As an initial condition, the zero vector was used
as the state estimator parameters as We = 000 ∈R3.
Pitch angle command was a rectangle wave with
an amplitude Aθ =±2 deg., a period Tθ = 30 sec.,
through a second order low path filter as:

F(s) =
1

(0.5s+1)2 (21)

4.2.2 Fault Detection

The elevator gain reduction and the longitudinal
stability loss were assumed as the fault model.
The 80% reduction of elevator effectiveness is as-
sumed as the elevator gain reduction as Mδe =
−1.6895 → −0.3379. The stability derivative
Mw =−0.3895→ 0.19475 is assumed as the lon-
gitudinal stability loss. Both fault were occurred

Fig. 4 Pitch angle response on the fault of the
elevator gain reduction

at t = 300 sec. The initial parameters of the
model estimator was WWW 0

e = [−1.307 −2.784 −
0.01756 ]T. Fig.(3) shows the result of fault de-
tection by the model estimator. The upper panel
and lower panel show the estimated parameters
on the elevator gain reduction and the longitudi-
nal static stability loss, respectively.

4.3 Fault Tolerant Control

4.3.1 Elevator gain reduction

Occurrence of reducing elevator efficient in flight
was assumed. Pitch angle command period was
Tθ = 60 sec. was used. Initial estimator weight
parameters were same to section 4.2.2, and other
conditions were 4.1 and 4.2.

Simulation results of pitch angle control re-
sponse by the state feedback, the conventional
FEL, and MeFEL are shown in Fig.(4). The
followability by the conventional FEL had been
deteriorated immediately after fault happened.
Following learning progresses of controller, fol-
lowabolity had recovered however vibration was
seen even at t = 900 seconds. MeFEL followa-
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Fig. 5 The estimator and controller parameters
change on the fault of the elevator gain reduction

bility also had been decrease, however it had re-
covered after 100 seconds. Fig.(5) shows the
weight parameter changes, upper and lower panel
indicate the system estimator and the MeFEL
neural controller, respectively. After fault hap-
pened both of the estimater and MeFEL con-
troller weight parameters were changed. After
learning,the parameter We3 corresponding to the
elevator gain Mδe was reduced 80.0% as We3 =
−1.037→−0.208. The MeFEL parameters were
temporally varied soon after fault happened, and
they were finally converged to 0.99 ∼ 1.15 times
initial values.

4.3.2 Longitudinal stability loss

The loss of the longitudinal static stability in
change in the center of gravity was assumed.
Fault characteristic was same to section 4.2.2,
and other condition were same to section 4.3.1.

Fig.(??) shows the pitch angle responses by
state feedback, conventional FEL, and MeFEL.
There was not any divergence nor large reduction
of followability in all control method. The vibra-
tions were observed in all method. However the
amplitude of vibration with MeFEL was smaller
than other methods. The estimator and MeFEL
weight parameter changes are shown in Fig. (7).
The weight parameter We2 corresponding to Mw
was changed −0.26 times as We2 = −2.783→

Fig. 6 Pitch angle response on the fault of the
longitudinal static stability loss

Fig. 7 The estimator and controller parameters
change the fault of the longitudinal static stability
loss
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Fig. 8 Loss function of the fault tolerant control,
gain reduction and stability loss by PID, FEL,
and MeFEL

0.726, and We3 was changed to 1.4 times initial
value.

5 Discussion and Conclusion

To evaluate the control stability between each
method, the loss function consisted with square
sum of the residual error of pitch angle and pitch
angle velocity was defined as below:

J =
1
2
[
(θc−θ)+q2] (22)

The losses for each method are shown in Fig.(8).
In both fault occurrence, the losses of MeFEL
was smaller than conventional FEL control ex-
pected soon after fault happened. In conven-
tional FEL scheme, the FEL network has to learn
and re-acquire the inverse model by changing
controller weight parameters to adapt the sys-
tem change due to fault. A large learning rate is
generally used to improve learning speed, how-
ever it leads the parameter oscillation in normal
state flight, and the too large over shoot during
re-acquiring the inverse model. These parame-
ter variations make the control unstable. In other
hand, MeFEL scheme can use small adaptive rate
for both of neural controller and the model esti-
mator. Because the model estimator’s learning
rate is slightly large than the controller, the es-
timator can learn the system change faster than

controller. It requires small parameter change in
the neural controller, and it can be said that im-
proves the control stability when the fault hap-
pens.

In this paper, the model estimation-based
feedback error learning (MeFEL) was investi-
gated, and evaluated its fault tolerant control sta-
bility of aircraft longitudinal motion. MeFEL
was improved the stability better than conven-
tional FEL by using online model estimation
based on linear regression and introducing the
Adam method.
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