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Abstract

Nowadays flight load exceedance monitoring is
an important task to the aircraft manufacturer as
well as the operator. The estimation of flight
loads is required during development and oper-
ation of an aircraft. The requirements are usually
different for e.g. calculation of design loads for
certification and operational loads monitoring of
stress and fatigue. The ability to (more) precisely
determine aircraft operational loads may reduce
the time for analysing incidents and maintenance.

In this paper the system identification method
of Local Model Networks is applied to the field
of flight loads estimation for the use in offline-
analysis but also for on-board aircraft systems by
means of a data recorder storing direct loads in-
dicators like forces and moments from estimates.
The application of a previously developed mod-
elling approach for flight loads estimation based
on design and flight test data is used to model the
loads acting on the horizontal tail plane of an air-
craft.

1 Introduction

Structural hidden cracks due to maneuvers or fa-
tigue can lead to critical situations as for ex-
ample in the case of Air Transat, flight number
961 [1] or even loss of the aircraft. As shown
in [1], inspection procedures maybe inadequate
and therefore, fatigue effects in the structure are
not detected. A committee of the Aerospace In-
dustries Association (AIA) and the Air Trans-
port Association (ATA) evaluated existing spe-

cial inspection procedures for high load events
like severe turbulence encounter or extreme ma-
neuvering [2]. Instructions for such events are
typically specified in aircraft maintenance man-
uals and are typically referred to as “Unsched-
uled Maintenance” or “Special Inspections”. The
safety recommendations by the National Trans-
portation Safety Board (NTSB) address a bet-
ter detection of aircraft damage following an in-
service (high load) event before returning the air-
craft to service. They suggest areas where im-
provements can be implemented, for example to
“the introduction of additional objective criteria
using flight data to assist in the evaluation of
events” and “the development of refined algo-
rithms by the manufacturer that use multiple data
parameters to arrive at improved evaluations of
the severity of the loads actually experienced, and
corresponding required actions”.

An estimation of the loads acting on the air-
craft during normal and abnormal operation is
necessary. Resources are generally restricted on-
board an aircraft, therefore, efficient algorithms
with a small resource footprint such as the ones
presented in this publication are desired.

Targeting on-board systems several indirect
methods with their own advantages and disad-
vantages exist. Existing methods presented in the
first section of this paper show a respectable per-
formance. Previous studies [4] introduce the ap-
proach of LMNs to estimate loads on the vertical
tail plane (VTP) of an aircraft. Within this pub-
lication, the concept of LMNs will be improved
and applied to estimate load quantities on the hor-
izontal tail plane (HTP) of an aircraft, focusing



on events where high flight loads occur.

Following an introduction to LMNs, a section
provides the problem definition with respect to
HTP loads. After that, the data selection and the
training process to obtain the models for the HTP
are explained. Similar to [4] the 2-step-approach
to obtain the models is explained and presented.

The modelling (training-) process to obtain
the models to estimate flight loads on the HTP
is explained in detail. The LMN approach is
enhanced to cope with the characteristic of the
training data. A-priori knowledge is applied to
achieve better results. The derived models for
flight load estimation are presented. The results
are quantified with respect to the aircraft’s limit
loads and the estimation quality achieved using
the proposed method is presented.

A summary concludes the results and pro-
vides an outlook for future application of the
methodology in further scenarios.

2 Existing Methods

In general, flight loads can be measured directly
by instrumenting an aircraft with strain gauges
[6], fibre Bragg grating sensors [7], [8] or piezo-
electric sensors [9] at points of the aircraft struc-
ture where a measurement is desired. Such in-
strumentation can be found on test aircraft but is
not available on standard aircraft due to weight,
maintenance effort and costs. Therefore, typi-
cally indirect approaches are used instead.

Very often, due to their lightweight charac-
ter, artificial neural networks (ANN) are being
utilised to estimate flight loads based on models.
Examples for different types of aircraft have been
investigated in [10], [11], [12], [13], [14] or [15].
Further overviews of methodologies in the field
of loads monitoring are also presented in [5].

In [3] and [4] it was shown that compared to
ANN, LMNs are more robust due to their local
linear approximation and a controllable extrapo-
lation behaviour. It was summarised that LMNs
clearly outperform neural networks. Load esti-
mators for different target loads at structural parts
of an aircraft have been developed. Within this
paper LMNs are used again and have been further
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improved for the use-case of flight loads estima-
tion.

3 Local Model Networks

The Local Model Network (LMN) approach has
been described by [16], [17], [20], [5] and oth-
ers. The modelling approach is based on mea-
surement data used to create the models through
a “training phase”. During the training, the in-
put space is decomposed to allow a specific mod-
elling of different regions in the input space,
referred to as subspaces, local models or sub-
models. The models are obtained in an iterative,
self-organising process to cluster the input space.

For clustering the input space, different clus-
tering algorithms exist [18], [19], [21]. In this
paper, an axis-orthogonal decomposition of the
input space is used. The local models are repre-
sented by rectangular partitions along the axis of
the input space. In the case of high dimension-
ality these are hyper-rectangles. The behaviour
of the system is modelled locally by considering
only the training-data samples which lie within
a specific hyper-rectangle that defines a subspace
of the overall input space.

For a specific subspace i out of m subspaces,
a locally linear function is determined by a linear,
multivariate least squares approximation. The
vector of regression coefficients w is determined
by a least squares approach from the matrix of
input parameters U and the vector of output pa-
rameters y, both obtained from the measurement
data:

w=(UUu")~uly. (1)

For a system of k dimensions and an input
vector u, the linear approximation function y; for

the subspace i is
k

yi(u):wo+2wj~uj. 2)
=1

Due to the linear approximation, the locally
determined function y; which is valid for a certain
segment [a,~7 j--bi, j] of the input space will extrap-
olate for input data beyond the subspace used to
determine the function. The activity of the linear
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function (or local model of a subspace) is con-
trolled by a weighting-function which is defined
by normalised Gaussian for each dimension. The
center ¢ of each Gaussian function lies in the cen-
ter of the segment. The standard deviation of the
Gaussian is chosen to cover the range of the sub-
space in the respective dimension, while asymp-
totically becoming Zero outside of the subspace.
For an input u of a system, the combined activity
of all Gaussian functions for the current model i
is determined by the local activation y; as

ww =exp(~5 ¥ (Vo)) ®
2 ,_Zl Gij
with ¢; j = % and 0; j = % (bi,j _aiJ) §

as proposed in [20]. The factor s is called smooth-
ness factor and can be chosen during modelling
to control the width of the Gaussian. This reflects
the influence of one local model to its neighbours
in the input space. The normalised weighting-
function ®; is determined as( )
Hi\a
di(u) = ————. 4)
21}1:1 pj(w)
The equation for the overall local model net-
work follows to

m

k
) = Y (whvio+ X owij i) - 6)

i=1 j

The structure of the resulting model is de-
picted in figure 1. Due to the overlapping char-
acter of the Gaussian functions, the predictions
made by the different locally accurate models are
superimposed in boundary regions leading to a
steady transition between adjacent local models.

The input space decomposition is an iterative
process leading to a steadily increased accuracy
of the LMN. The decomposition is based on an
initial global model by bisecting the input space
orthogonally to each input dimension, resulting
in at least two new local models per input dimen-
sion. The bisection, or “split” is chosen either
by a-priori knowledge or (default case) such that
the largest reduction in the global prediction er-
ror is achieved. The decomposition stops at ei-
ther a certain prediction error or a certain maxi-

Fig. 1 Structure of a Local Model Network

mum number of local models. Due to the trans-
parent model structure and local linear functions,
the structure also allows for physical interpreta-
tion and specific adaptation.

4 Problem Definition

In [4], the structural flight maneuver loads of a
vertical tail plane (VTP) of a transport aircraft
have been modelled using the LMN approach. In
this paper, the loads at the horizontal tail plane
(HTP) are modelled using the same approach.
The flight loads considered hereby are the bend-
ing moment M,, the torsional moment M, and
the shear force F, (see figure 2). Only aircraft
system parameters available through a standard
aircraft instrumentation (measurement platform)
shall be used without any additional sensors. For
the loads, special attention is drawn to high load
occurrences.

Fig. 2 Load components at the root of a HTP

External loads caused by the interaction of
the aircraft with the environment result in maneu-
ver loads acting on the structure of the aircraft.



Maneuver loads are classified into steady loads as
in steady flight conditions and incremental loads,
induced by maneuvers or inhomogeneous flow
conditions as these are caused by gusts. At any
position of the structure the local structural load
Fj,c during flight is the result of the superimposed
external loads, namely aerodynamic loads Fye,,
propulsional loads Fp,,), inertial loads Fj.,, and
gravitational loads Fgqy:

Floc = f(FAero + FProp + Flnert + FGrav) . (6)

In this paper, internal structural loads shall
be determined, assuming knowledge of the exter-
nal loads. The desired models are a mathemati-
cal representation of a mapping function between
the measured signals and the loads, such that they
represent the aircrafts behaviour by means of the
occurring external loads. This mathematical for-
mulation is derived by applying the LMN ap-
proach and has been introduced more thoroughly
in [3] and [4]. In contrast to direct loads mea-
surement sensors, these models are “virtual loads
sensors”.

4.1 Data selection

For all data-driven modelling approaches and
especially for methods using training data like
LMNs, the selection of the data for training and
validation is vital to achieve a desired model ac-
curacy. Ideally, the input range should be evenly
sampled. The LMNs will interpolate or extrapo-
late in regions, where less or no data is available.
This can cause problems, shown and discussed in
[3]. However, flight test data is usually not dis-
tributed homogeneously across the input space at
all, therefore, special attention has to be paid to
prepare good training data.

A database containing the aircraft system pa-
rameters from a specific transport aircraft is used
as in [4]. This database was gathered through
structural design calculations based on computer
simulations and in different flight test campaigns.
It covers about 4400 of so-called “load cases”
of design calculations [22]. The maneuvers of
the design calculations are grouped and represent
a good coverage of the complete speed/altitude
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range of the aircraft. Such data is usually avail-
able even before the aircraft exists [22]. In con-
trast to that, there is also about 6 hours of flight
test data for different flight conditions available,
but only within a safe flight envelope [23]. There-
fore, the flight test data covers a much smaller
range, due to the safe flight envelope the aircraft
has to be operated in.

The advantage of design calculations over
flight test data is not only its complete flight en-
velope, they also account for extreme load cases.
In real flight tests, flight loads are usually be-
low 80% limit load. To cope with such, in
[4] a 2-step-approach has been proposed that is
used again for modelling the HTP loads. In the
first step, data from design calculations including
high loads is used to create and train the models
with focus on high loads. In a second step, flight
test data is used to refine the models.

Additionally, as in [4], correlated 2D load en-
velopes for combined loads are taken into ac-
count, because the occurrence of load combi-
nations can stress structural components signifi-
cantly more. The 2D load envelopes are available
throughout the aircraft structural design and de-
scribe the relation between two load components
such as torsional (My) and bending moment (M)
by means of the maximum allowable loads.

For each of the 4400 design calculations the
data samples with the highest loads are kept in the
training data for both load components to ensure
that the training data covers the areas with high-
est loads for each maneuver. To focus on high
loads, the remaining data below a certain limit
load threshold is reduced by re-sampling.

The resulting database is divided into train-
ing data where round-about 80% of the database
is used. The remaining 20% are added to the val-
idation data.

The data selection is done iteratively based
on the insights gained from the model making
use of its transparent character. For example:
As explained previously, LMNs are a compound
of local linear models with a Gaussian function
defining the activity of the linear model. Figure
3 shows the simulation results for one of the in-
dependent validation data sets (maneuvers). The
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reference values are in the upper part and the in-
fluence of the most dominant local models based
on their weighting functions are in the lower part.
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Fig. 3 Model weights with respect to model deficits

A large bias is observed starting at index 3500
that obviously corresponds to the local model no.
10. In the particular local model (subspace) are
too few samples and lead to a large interpolation
region. Providing more data within this subspace
reduces the bias significantly as shown in figure
4.
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Fig. 4 Improved model after updating the

database for training

Similar phenomena could also be the result
of an extrapolation. Again, this approach pro-
vides very good insight into the distribution of
the data in such particular subspaces. In [5] it
is explained, how providing additional data or
controlling the clustering algorithm leads to sig-
nificant improvements and numerical stable local
models.

4.2 Parameter selection

To find a model for the estimation of loads by
means of a mapping function the following lists
the parameters, which describe the state of the
aircraft sufficiently with respect to the considered
target loads on the HTP and is based on the ap-
proach as presented in [3] and [4].

Table | shows the parameters chosen for each
of the considered load components.

Description

Angle of attack

Sideslip angle

Horizontal stabiliser setting
Elevator deflection
Longitudinal load factor (LF)
Lateral LF

Vertical LF times aircraft mass
Aircraft mass

Roll rate

Roll acceleration

Pitch rate

Pitch acceleration

Yaw rate

Dynamic pressure

77

!
2
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Table 1 Selected parameters to model HTP loads

It has been observed, that the most sensitive
parameters are angle of attack «, elevator deflec-
tion J,, horizontal stabiliser setting §;, dynamic
pressure ¢4y, and vertical load factor N;. The ver-
tical load factor N, is used in combination (multi-
plied) with the aircrafts mass W, giving a vertical
force (F; = N,-W). In contrast to [4], making use
of the dynamic pressure g, instead of the true
airspeed Vras leads to improved results.

The estimation for the sub-models of the
LMN is based on linear functions. The input pa-
rameters are chosen whenever possible in a way,
that they correlate highly linear with the target
load (see an example for N, wrt M, in the up-
per part of figure 5). However, some parame-
ters like the §; show no linear dependency and
(even worse) as the trimming of the horizontal
stabiliser is not continuously they have a partially



“discrete” character, shown in the lower part of
figure 5.
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Fig. 5 Correlation between vertical load factor in
contrast to horizontal stabiliser setting wrt bend-
ing moment

For LMNs, the clustering algorithm often
stops at such conditions, as subspaces do not con-
tain sufficient samples or the samples are not well
(equally) distributed.

5 Results

In this section, the result of the modelling using
the 2-step-approach for the selected target loads
is presented. For modelling, an in-house software
framework named SIGMA that implements the
modelling-, analysis and visualisation techniques
is used. The LMN approach provides only a few
parameters to adjust, explained in the following:

1. The splitting ratio defines how many splits
of the subspaces in each iteration step are
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evaluated. A ratio of 1:1 splits a sub-
space exactly in the middle resulting in two
equally sized new local models. A ratio of
1:2 results in actually 2 splits being evalu-
ated with 1/3 to 2/3 and 2/3 to 1/3 respec-
tively. Consequently, the split with mini-
mal error of the cost function is chosen. In
this study a ratio of 1:3 has been used.

2. The smoothness factor controls the over-
lapping effect of local models. In this study
a smoothness factor of 0.9 has been se-
lected.

3. The maximum number of models is the ter-
mination criteria to stop the training. In
this study it has been set to 15.

The splitting algorithm from the literature
[17] has been improved to cope with partial dis-
crete input signals as mentioned in the previous
chapter. In the case that the default splitting ra-
tio leads to subspaces without samples and would
stop, the borders of the subspace are temporar-
ily being moved towards the data samples to con-
tinue instead, as illustrated in figure 6..
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Fig. 6 Optimised splitting algorithm

In the upper part of the figure in the right
subspace, a split in the dimension of the first in-
put parameter is not possible (assuming a ratio
of 1:1). In that case the splitting algorithm will
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temporarily move the left border of the right sub-
model to allow the splitting algorithm to work.
The drawback of this heuristic is that the splitting
ratio is not equivalent across the input space.

For the assessment, the target values (loads)
are normalised to 100% limit load, a load of 1
denotes 100% limit load. To visualise the results
with respect to a 2D load envelope, the 2D cri-
teria from [4] is used to assess the models with
respect to the combined loads. It is based on
the radial coefficient where each correlated load
condition is determined by two load components
C1 and C2 provided by the respective load en-
velopes. Such load condition can be defined by
an angle @ and the absolute value of its distance
to the origin of the load envelope. The radial co-
efficient is the ratio of the load condition and the

limit load at this angle as

RC = —M . (7)
E(9)

The value of RC < 1 represents loads lower
than limit load and RC > 1 when limit load is ex-
ceeded. These values are plotted for the model
and reference in a correlation graph that visu-
alises the quality of the estimation with respect
to both load components.

For the pair of torsional moment My, and shear
force F;, LMNs have been developed — one LMN
for each load component. They generalise well
on the design data as shown in the upper part of
figure 7 that shows the result for the validation
data set based on data of the design calculations
for a certain modelling step.

The dotted lines mark a tolerance range of 10
and 20% estimation error. For high loads no ma-
jor outliers are observed, most values are within
the tolerance range of 10%. For lower loads there
are outliers in the red circle that are outside of the
20% tolerance range.

The data corresponds to a “smooth push-
over’” maneuver that is obviously under-
represented. Better results with new training data
gained from this type of maneuver are shown in
the lower part of figure 7. Here, for the same set
of validation data, the outliers are reduced.

The results presented so far are based on data
from design calculations. In the second step of
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Fig. 7 RC correlation plot for non- and optimised
set of training data wrt M, and F;

the 2-step-approach the models are applied to
flight test data and similar results are observed
as presented in [4]: The models “as-is” show the
right characteristic, but also some deficits. As
an example for such, a special HTP maneuver of
type “checked maneuver” is shown in the time
domain with respect to the torsional moment M.
During this maneuver the aircraft moves horizon-
tally and different amplitudes to the elevator are
commanded causing high torsional moments on
the HTP. As shown in the upper part of figure 8,
the simulation results have the right shape, but
they are also biased.

Although the error is quite low and within a
6% margin, such deficit is addressed. The bias is
a result of a LMN operating in an extrapolation
area. That means, that at least one input parame-
ter of the flight test data is outside the boundaries
of the LMN. In this case, it is the longitudinal
load factor N, which is 30% above the maximum
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Fig. 8 Maneuver simulation with flight test data
for interim and improved model

of the training data.

The extrapolation behaviour of LMNs is con-
trollable and defined through an “extrapolation
strategy”. For this study, the extrapolation strat-
egy to limit the input parameter to the border of
the respective sub-model is sub-optimal.

A good solution would be to extend the data
base using design calculation for larger Ny. Un-
fortunately, within this study this was not pos-
sible. Alternatively the extrapolation strategy
could be changed. Within this study, the train-
ing data base is extended by using flight test data
of that region, again similar to [4]. Then, the ex-
isting LMN is being re-trained using that data.
While in [4] the structure of the LMN has been
kept fixed, in this study an improved training al-
gorithm capable to extend the borders of an ex-
isting LMN upon new data was used. Thus, all
parameters of the local models are re-estimated
after extending the borders of the respective sub-
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models. The result for the updated model with
respect to the maneuver from above is shown in
the lower part of figure 8.

The bias and therefore, the error for this ma-
neuver is greatly reduced. However, this is only
valid for the selected, single maneuver. To com-
pare the overall performance the correlation be-
tween the LMN and the flight test data with re-
spect to combined loads of torsional and bending
moment My /Mx and based on the 2D criteria is
analysed.

By means of the RC correlation plot, figure
9 shows the results for the validation data based
on the complete flight test data before and after
the parameter- and structure update. Again, two
dotted lines mark an estimation error of 10 and
20% respectively.
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Fig. 9 RC correlation plot of original and up-
dated LMN wrt F/T data

In the upper plot, the area with major outliers
for the flight test data is depicted with a red cir-
cle. After the model update (in the lower plot) the
error margin is nearly 10% and well improved. It
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can also be seen, that flight test data is usually
well below 80% limit load. In the case of the
flight test data that was available for the HTP it
was even smaller, only slightly above 50% limit
load. Similar results were achieved for the com-
bination of torsional moment and shear force.

6 Summary

Monitoring of specific component loads of air-
craft structures is desired without the need for ad-
ditional sensors. Models to estimate loads based
on indirect methods known from the literature
use flight parameters that are available with the
standard-instrumentation of an aircraft and pro-
vide non-measurable target loads.

In [3] a new data-based approach based on lo-
cal model networks (LMNs) has been presented
to estimate flight loads targeting on-board aircraft
systems. This system identification method is
compared to neural networks (ANN) and shows
major advantages over existing ANN approaches
with respect to a more robust inter- and extrapo-
lation behaviour.

In [4] the same approach has been further
improved by introducing a so-called 2-step ap-
proach for the modelling. The models are ini-
tialised based on data from structural design cal-
culations and then refined and optimised based
on data from flight tests. The approach has been
successfully applied to model the structural loads
on a vertical tail plane (VTP) of an aircraft.

Within this study, the approach is now ap-
plied to model the structural loads on a horizon-
tal tail plane (HTP) of an aircraft. This compo-
nent shows a different characteristic compared to
the VTP. Similar to [4] the data base used for the
training and validation of the models is obtained
in an iterative process. Tools to gain insights into
weak spots of the model structure provide the ca-
pability to resolve model deficits by making use
of system- and a-priori knowledge.

The development of the flight load estimators
—the “virtual loads sensors” —for a load station at
the HTP are presented. The vital choice of sensi-
tive parameters to obtain the mapping function is
explained. A new optimised splitting algorithm

further improves the modelling in the case that
subspaces contain only few data samples.

The models developed to estimate loads like
bending and torsional moments and shear forces
generalise well on both: data from design calcu-
lations and flight test data. The models developed
exceed rarely an error margin of 10% limit load
but never exceed 20% in general. The models are
especially trimmed towards high loads where the
error margin is always below 10% limit load.

Further studies, like the application of this
concept to other structural parts of an aircraft,
namely fuselage and wing have been investigated
in [5]. Open topics are transition phases like
flight-ground transitions and the use of electronic
flight control systems and high-lift systems. The
method could also be combined with other, for
example observer based methods.
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