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Abstract  

An optimal aircraft landing sequence is a 

sequence that results in the lowest Runway 

Engagement Time (RET). The approach 

presented in this paper uses a generic arrival 

fleet analyser, a cluster finding algorithm to 

isolate independent groups and a permutation 

enumeration algorithm to determine valid 

landing sequences. The optimal sequence of 

each cluster is determined and is used to 

develop a global optimal sequence for arriving 

aircraft. The model was validated by simulating 

24-hour arrival periods with varying arrival 

frequency distributions. The results show that by 

exploiting the clustering effect, computational 

time can be conserved, and RET can be reduced 

by several minutes over a 24-hour period. 

1  Introduction 

Due to increasing number of flights, en-route 

and airport traffic control has become central to 

improving the efficiency of aircraft operations 

[1]. Improvements have been made to en-route 

air traffic management and the primary limiting 

factor to air traffic capacity has shifted from 

airspace to airports (Figure 1). To improve 

airport air traffic management, specifically the 

Aircraft Landing Problem (ALP), the 

development and implementation of a dynamic 

landing sequencer is required to improve 

productivity. The cost of delaying an aircraft in 

the air is about twice as much as on the ground 

[2]. However, nearly all airports predominately 

use First Come First Served (FCFS) sequencing, 

where aircraft land as determined by their 

proximity and scheduled arrival. This 

sequencing is popular due to simplicity, 

reduction in 

controller workload 

and sense of 

fairness, but it can 

lead to reduced 

runway throughput 

[3].  
Efforts have 

been focused on 

automated computer aided scheduling, trying to 

minimise RET by examining possible landing 

sequences and determining the most favourable 

one. To create an optimal, but fair, landing 

sequence, aircraft preferences and cost incurred 

by each stakeholder, must be considered, as 

aircraft often resist sequence changes due to the 

perceived unfairness. Therefore, optimal models 

that rely on aircraft cooperation are difficult to 

implement and situations with fixed aircraft 

positions can occur. Allowable position shifts 

for each aircraft provide a raw data set that can 

be parsed into an algorithm for optimal 

sequencing. Adaptive sequencing requires a 

robust model that can accommodate unexpected 

perturbations. The aircraft landing problem is an 

NP-hard problem, thus the possibility of 

enumerating all possible sequences in 

polynomial time is currently infeasible. This 

means time sensitive decision making requires a 

fast algorithm for computing optimal sequences.  

Several strategies have been suggested to 

solve the ALP, that either involve position 

shifting managed independently by the arrival 

airport or a Collaborative Decision Making 

(CDM) process that controls departure times 

and arrival times. Changing the landing position 

outside the FCFS order will incur a cost if 

aircraft are consequently delayed. To determine 

the most optimal scheduling sequence, all 
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potential sequences must be examined [4]. 

Implementing Constrained Position Shifting 

(CPS) programs drastically reduces computation 

time by limiting the search to fewer sequences, 

by limiting allowable aircraft repositions to only 

a few places from their original sequence. There 

are limitations to this strategy related to 

compliance of aircraft positioning and 

unexpected disturbances. To account for this, a 

CPS model was created that incorporates 

aircraft precedence relationships, air traffic 

control over-taking procedure restrictions and 

specified time windows [5]. This model uses a 

tree search algorithm to determine the highest 

runway throughput. Applying the technique to 

existing schedule data, showing significant 

efficiency improvements as the allowable 

repositions increased and the constrained 

sequences were nearly identical to the optimal 

ordering. This research is most promising for 

standalone ALP solvers, however unexpected 

disturbances in scheduling and inadequate 

compliance reduces the effectiveness of the 

model. 

For CPS models, Dear used an algorithm that 

enumerates all possible sequences and 

determines the RET for each, which, as the 

number of aircraft increases became impractical 

[4]. It was improved by introducing allowable 

time windows, their algorithm was significantly 

faster through reducing the number of possible 

sequences due to their constraints [6]. CPS 

models still lack robustness in the event of 

disturbances and become slower as the number 

of aircraft increases. Pre-emptive node 

generation by limiting the number of sequences 

through tree pruning and constraint application, 

shows that CPS models can scale linearly [3]. 

For any strategy, the willingness of the 

airlines to agree to variations in their preferred 

scheduling is assumed, so fairness of the order 

in which aircraft land is an important factor. To 

uphold stakeholder satisfaction, CDM programs 

are suggested that involve airlines in the 

decision-making process and give them 

flexibility to satisfy their priorities [7]. CDM 

utilises variable take-off times to ensure 

improved runway throughput upon arrival [8,9].  

Another suggestion is using arrival timeslot 

auctions, giving flexibility to stakeholders [10]. 

Due to cost incursions, the landing sequence 

will naturally develop towards more efficient 

sequencing and airline satisfaction will remain 

high. The scheme requires a weighting and 

scoring system that accurately determines 

bidding prices. 

Terrab and Odoni focused on airport capacity 

as the primary limiter to cost effective 

sequencing, suggesting two models that 

prioritise ground holding before take-off [11]. 

One model idealises the problem by 

constraining aircraft to their predefined flight 

times and prioritises aircraft with the highest 

marginal cost of delay, while the other model 

presents a probabilistic dynamic approach to 

scheduling by using a stochastic model that 

improves in accuracy over time as the capacity 

for each airport becomes clearer. 

Applying ground holding requires dynamic 

programming for multiple airports, which 

increasing the data required to determine 

optimal schedule planning. Determining an 

optimal computing method depends on 

complexity and the desire for real time results. 

This model was applied to minimise overall cost 

of delay whilst attempting to alter original 

scheduling as little as possible [14]. They 

provided a heuristic based approach that 

computes results in real time although derives 

suboptimal paths due to this limitation. They 

applied their model to existing scheduled data, 

only constraining the airport capacity at a given 

time interval and the allowable number of 

delays before cancellation of the flight occurred. 

Ground holding and ‘fixes’ are a common 

occurrence in schedule recovery. Tactical Air 

Traffic Management is crucial for efficient and 

safe operations, but is not sufficient as 

schedules can change due to bad weather [18]. 

The model presented in this paper 

incorporates the common detriment to other 

strategies by utilising low compliance and the 

resulting clustering effect to compute optimal 

sequences in real time for a generic arriving 

fleet. This paper presents a mathematical 

representation of the proposed solution and an 

algorithm for enumerating optimal sequences, 

by adopting strategies exploiting Constrained 

Position Shifting (CPS), CDM, their fairness 

models and the computational techniques used.  
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2 Problem Modelling 

For a given set of aircraft, RET is the time from 

landing of the first aircraft to the time of landing 

of the last aircraft in a sequence. The default 

landing order of arriving aircraft can be 

determined by their scheduled arrival time. This 

information provides a control comparison for 

RET for different sequences. The scheduled 

sequence is prone to changes as FCFS landing 

sequences are typically determined by the actual 

order of arrival. 

For any given aircraft, the allowable 

positions indicate at what slots in the landing 

sequence it can be placed. The time of this 

arrival will vary slightly depending on the 

aircraft landing before it and it is assumed the 

aircraft can land as soon as it is required to. The 

allowable positions of an aircraft will default to 

its FCFS order and allowable position shifts are 

dependent on other aircraft inside the ARTCC 

boundary limits. In each time interval the 

number of position swaps will also depend on 

how many aircraft are within the boundary and 

the level of compliance of aircraft cooperating 

with landing sequence alterations. The approach 

presented in this paper represents allowable 

positions as a set of positions including the 

original position 𝑖, e.g. P(𝐴i) = {𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 
+ 1}, with each aircraft having its own set of 

allowable positions. No overtaking is allowed 

for aircraft on the same path with allowable 

speed variations having the most influence on 

the allowable position re-assignments [12]. 

ICAO outlines aircraft approach 

procedures, which influence the landing 

precedence constraints for arriving aircraft. The 

simplified version of the procedures utilises jet 

routes to determine aircraft precedence, while 

advanced versions also utilise altitude 

management and Vertical Guidance (APV). 

Civil aviation authorities enforce minimum 

wake separation between successive aircraft, 

dependent on the weight class of the two 

aircraft. For aircraft combinations between 

lower and higher or equal weight classes 

regulations use a distance requirement of 3 nm, 

except in the case of heavy trailing heavy 

scenarios, which use a minimum distance 

separation of 4 nm. To simplify this distance 

requirement, ICAO minimum separation time of 

120 seconds is used in lieu of these distances. 

In certain scenarios, there are instances 

where an aircraft must land before another 

aircraft or group of aircraft. The precedence 

relationships of arriving aircraft are assigned to 

each aircraft and only sequences that satisfy 

these precedence relationships are considered 

valid. Each aircraft has its own precedence 

relationships represented by a set of values 

denoting the other aircraft it must be land 

before, e.g. 𝑃R(𝐴i) = {𝐴j, 𝐴k}, where 𝑗 and 𝑘 

represent two different aircraft. In the event of 

no precedence relationships present, the set will 

be empty. 

In summary, the problem can be defined as 

follows: Given a set of 𝑛 aircraft, indexed by 

their scheduled or FCFS arrival order 1, 2, 3,.., 

𝑛, each aircraft 𝑖 containing their own 

information of allowed positions 𝑃(𝐴i), weight 

class and precedence relationships 𝑃R(𝐴i). Using 

the separation matrix, denoted as 𝐼s, determine 

an optimal sequence that minimises RET for the 

entire set. For simplicity, the aircraft are 

referred to as being in their indexed position 

relative to where appropriate in the original 

schedule or FCFS order. The value being 

minimised is RET or alternatively the arrival 

time of the final aircraft given a set of 𝑛 aircraft. 

Each successive two entity sequence of aircraft 

are denoted as 𝑠i, where 𝑖 represents a given 

aircraft index. Applying minimum time 

separation between all successive aircraft pairs 

in a sequence gives the total time function: 

 

𝑇(𝑠) = ∑𝑠𝑖

𝑛−1

𝑖=1

 

Using this time function, the total time for the 

default sequence, 1 → 𝑛, can be determined and 

used for comparison. Using the allowable 

position sets (𝐴i) of each aircraft, a table can be 

generated containing each aircraft and their 

allowed position assignments, as shown in 

Table 1. Using the allowable position sets, the 

problem can be expressed as a bipartite graph 

complete matching problem. This term relates to 

the mathematical problem of successfully 

assigning an edge connecting each vertex from 

(1) 
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one set of vertices to at least one vertex in a 

different set of vertices, where no edges share a 

vertex. 

Table 1. Allowable position assignments. 

Aircraft Allowable Position Assignments 

1 {1, 2} 

2 {1, 2, 3, 4} 

3 {2, 3, 4} 

... ... 

𝑛 - 1 {𝑛 − 3, 𝑛 − 2, 𝑛 − 1} 

𝑛 {𝑛 − 2, 𝑛 − 1, 𝑛} 

 

The complete matching problem becomes: 

Let 𝐺 = (𝑉 = 𝑉1 ∪ 𝑉2, 𝐸) be an undirected 

bipartite graph with vertex sets 𝑉1 and 𝑉2 and an 

edge set 𝐸 composed of edges 𝑉1× 𝑉2. A perfect 

matching 𝑀 is an edge set contained in 𝐺 such 

that no two edges share the same endpoints and 

all vertices of 𝐺 are connected to at least one 

other vertex not contained within its own vertex 

set. Let 𝑁 be the number of perfect matchings 

produced by 𝐺, enumerate all unique perfect 

matchings 𝑀. 

This problem is a research field in 

mathematics with current algorithms 

enumerating all perfect matchings in 

𝑂(√(|𝑉| ) ∗ |𝐸| + 𝑁 ∗ log |𝑉| )  time, where 𝑉, 

𝐸, and 𝑁 denote the number of vertices, edges, 

and perfect matchings respectively. This 

algorithm currently serves as the best lower 

bound estimate for complexity when 

determining perfect matchings [13]. 

2.1 Bipartite Graph and Bi-adjacency Matrix  

For any given set of aircraft, there is at 

least one complete matching, which is the 

default sequence of successive integers 1 → 𝑛. 

The number of perfect matchings increases 

exponentially as the number of possible position 

assignments increases. This implies that the 

problem of bipartite graph complete matching is 

NP-hard since it there is currently no known 

polynomial time solution. An example bipartite 

graph 𝐺 is presented in Figure 2. 

For any given bipartite graph, an edge 

between two vertices denotes an allowable 

assignment and a perfect matching 𝑀 for 𝑛 

number of aircraft would contain an edge set 

beginning from every vertex in 𝑉1 connecting to 

a distinct endpoint in vertex set 𝑉2. 

 

Fig. 2. Bipartite graph with four vertices, each edge 

denotes an allowable position assignment. 

Using the assignment information from the 

bipartite graph, a bi-adjacency matrix can be 

generated. Let 𝐵 be the matrix of size {n x n}, 

where every position denoted by 𝐵ij is equal to 1 

when an edge connects vertex 𝑖 from set 𝑉1 to 𝑗 
from set 𝑉2 and 0 otherwise.  

𝐵 = {

1 1 0 0
1 1 0 0
0
0

1
1

1
1

1
1

} 

Fig. 2. Bi-adjacency matrix. 

The permanent of a bi-adjacency matrix 

can be used to determine the number of 

permutations with restricted positions. In the 

case of bipartite graphs this is the number of 

perfect matchings. The permanent of matrix 𝐵 is 

the number of complete matchings in bipartite 

graph G, which is a stop point for perfect 

matchings enumeration and prevents 

unnecessary sequence finding as once the 

number of perfect matches enumerated equals 

𝑁, all matches have been found. Methods for 

exact permanent determination are dependent on 

the size and characteristics of the bi-adjacency 

matrix, but for a general (0,1) {𝑛 ×  𝑛} matrix, 

Ryser’s method is considered the best algorithm, 

operating in 𝑂(2𝑛−1 ∗ 𝑛) time when processing 

in Gray code order [19]. 

Clusters are independent groups of 

permutations that do not influence each other 

and can be identified by analysing a bi-

adjacency matrix and resolving smaller matrices 

within it. 

𝐵 =

{
 
 

 
 
1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1}

 
 

 
 

 

Fig. 3. Bi-adjacency matrix with resolvable lower 

dimensional bi-adjacency matrices. 

Aircraft 

Allowable Position Assignments 



 

5  

ADAPTIVE LANDING SEQUENCING USING BIPARTITE GRAPHS 

AND PERFECT MATCHING 

In Figure 3, lower dimensional bi-adjacency 

matrices can be observed in the top-left and 

bottom-right corners. Matrix 𝐵 can be resolved 

into clusters since there are no edges connecting 

vertices between these two matrices. This is 

visually observable where minor {𝑚 ×  𝑚} 
matrices are surrounded by zeros vertically and 

horizontally. The number of successful 

permutations for the major bi-adjacency matrix 

becomes the multiplication of the permanents of 

each minor matrix, considerably accelerates the 

algorithms designed to determine perfect 

matchings of an undirected bipartite graph. 

2.2 Pruning 

This stage reviews the active fleet data and 

searches for unachievable allowable positions 

due to restricting positions of other aircraft. For 

example, if aircraft 1 can only be allocated to 

landing position 1 and aircraft 2 can be 

allocated to both position 1 and 2, then, aircraft 

2 cannot land in position 1 and therefore 

requires position 1 removed from its allowable 

position set. An example fleet flowchart is 

presented in Figure 4. 

 

 

 

 
Fig. 4. Initial fleet flowchart (a), pruned fleet flowchart 

(b) and cluster search (c). 

In Figure 4(a) there are allowable positions 

that are not valid and need to be removed. 

Pruning a system before permutation 

enumeration is beneficial since the amount of 

possible permutations enumerated and tested for 

validity is reduced. The total number of possible 

permutations before pruning is the product of 

the allowable number of aircraft. For (a), the 

total number of permutations with duplicates is 

1 ∗ 3 ∗ 2 ∗ 3 ∗ 4 ∗ 1 = 72, which is not the 

number of perfect matchings since many of 

those permutations contain repeated aircraft 

entities. Pruning the system before enumerating 

the sequences will minimise the number of 

computations required. For example, by pruning 

the amount of possible permutations, even with 

repetition, is reduced to 1 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 1 = 

16. This number still does not represent the 

number of perfect matchings, but it has reduced 

the number of permutations required to test for. 

2.3 Clusters 

Clusters are isolated sections of a fleet that 

do not influence the possible sequences of each 

other. Clusters are a group of positions, e.g. {2 

→ 4} that contains several unique entities equal 

to the amount of positions contained with the 

group. Using Fig. 4 as an example, there are two 

clusters present, positions {1 → 3} and {4 → 

6}, each containing 3 landing positions and 3 

unique entities. Isolating these two clusters 

reduces the number of permutations that need to 

be examined for each cluster. The number of 

possible permutations is only 1 ∗ 2 ∗ 2 = 4 and 2 

∗ 2 ∗ 1 = 4, for each cluster respectively. Thus, 

the amount of permutations that need to be 

tested for validity is only 8 and the resulting 

number of successful permutations only needs 

to be multiplied by each other to generate the 

total number of perfect matches. Using the 

perfect matches of each cluster and sequencing 

the matches together to generate all 

permutations will produce a final set list of valid 

sequences. 

Using the example flowchart, the process 

of pruning the original fleet and separating the 

fleet into clusters shows a fast-logical process 

for generating all possible sequences with 

minimal examination of possible permutations. 

All clusters can be determined, thus reducing a 

large set of aircraft into several independent 

groups, significantly reducing the number of 

permutations needed to be examined for 

validity. Clustering is a highly effective process 

in reducing tested permutations as the number 

of permutations for each individual cluster is 

orders of magnitudes times smaller than the 

number of permutations for the entire set. All 

(a) 

(b) 
 

(c) 
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valid permutations are still enumerated but 

determining a global perfect matching requires 

significantly less computations. 

2.4 Permutation Enumeration 

The primary task of any global ALP 

solving algorithm is the enumeration of all valid 

sequences of aircraft. A valid sequence is a 

sequence of aircraft that contain only one of 

each aircraft and every aircraft in an arrival 

fleet. For example, the set of aircraft 𝐴 = 

{1,2,3}, the valid sequences will contain one of 

each aircraft and assign a landing position to 

each aircraft, e.g. {1 → 2 → 3}. A valid 

sequence must only assign positions to aircraft 

with the capacity to land in that position and 

adhere to the precedence relationships where 

appropriate. An example process of inputting a 

fleet or cluster and outputting a set list of valid 

sequences and the methodology involved is 

shown in Figure 5. 

 
Position 1 2 3 4 5 

Allowable 

Aircraft 

Assignment 

1 1 2 2 5 

2 2 3 3  

 3 4 4  

Fig. 5. Fleet flow chart for positions 1 to 5. 

There are no smaller clusters inside Figure 5 

and the fleet has been completely pruned. There 

is a total of 54 possible permutations to be 

tested for validity. Precedence constraints will 

also be considered where appropriate to satisfy 

all validity requirements. However, to simplify 

the example no precedence relationships will be 

considered here. The bi-adjacency matrix 𝐵 is 

created and the permanent of that matrix 

determined so that final number of perfect 

matchings is known. The bi-adjacency matrix is 

shown in Figure 6.  

𝐵 =

{
 
 

 
 1 1 0 0 0
1
0
0
0

1
1
0
0

1
1
1
0

0
1
1
0

0
0
0
1}
 
 

 
 

, 𝑝𝑒𝑟𝑚(𝐵) = 6 

Fig. 6. Bi-adjacency matrix and its permanent. 

The permanent value 6 indicates the number of 

perfect matchings, thus the number of valid 

sequences for the example data. This provides a 

stop point when enumerating sequences. The 

algorithm presented in this paper operates by 

assigning a vacant landing position to an aircraft 

and looping for all aircraft in a fleet. In the 

event of no vacant positions being available 

given an aircraft’s allowable positioning 

assignments, the latest position that hasn’t 

reached the final aircraft in its independent set 

of aircraft assignments is updated and all 

trailing positions reset to their first aircraft 

assignment. If all aircraft are assigned a 

position, the sequence is valid and the latest 

position that hasn’t reached the final aircraft in 

its independent set of aircraft assignments is 

updated to be assigned to the next aircraft in the 

set. The trailing positions are all reset to their 

first aircraft assignment and this process is 

repeated until the number of valid sequences 

enumerated is equal to the permanent of 𝐵 

determined prior to the enumeration process. 

2.5 Position Assignment  

The logic flowchart described previously to 

enumerate all sequences can be visualised as a 

dynamic assignment that changes as each valid 

and invalid sequence is tested. This can be 

understood by creating a sequence and altering 

the assigned aircraft of the latest position until 

the algorithm assigns a position to all aircrafts. 

Using a table that shows the active assignments 

and a comparison table showing how many 

aircrafts are available for assignment in a given 

position allows for quick manipulation of 

assigned aircraft. To update the active 

assignment, the latest position is compared to 

the total number of aircraft that can be assigned 

to position 𝑛 and the active aircraft assignment 

is increased by 1 and all trailing active aircraft 

assignments are set to 1. The resulting sequence 

is not valid, so the latest position is updated by 

increasing the active aircraft assignment by 1 

and all trailing positions reset their active 

assignment to the first aircraft in their 

independent set of allowable aircraft 

assignments. The resulting sequence is still not 

valid, so the active assignment increment 
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process is repeated until the number of valid 

sequences found is equal to the permanent 

found prior to the enumeration process. 

 

Fig. 7. Fleet flow chart and valid sequence (shaded). 

The efficiency of the permutation 

enumeration is determined by the number of 

sequences examined, so reducing the amount of 

unnecessary active aircraft assignments will 

decrease the required computation time. To 

limit unnecessary assignment, as the algorithm 

assigns an aircraft to positions 1 → 𝑛, if there 

are no available assignable aircraft to position 𝑗, 
the latest position before position 𝑗 that is not at 

its final aircraft assignment will be updated. 

Thus, skipping a significant number of 

unnecessary assignments and sequence tests 

since no valid permutation will exist past 

position 𝑗. There are several optimisation 

techniques to reduce the number of 

computational comparisons. These processes 

involved optimised function calls and 

minimising recursive calls of nested functions. 

When multiple clusters are present, the valid 

sequences of each cluster are determined and 

the permutations of each sequence when 

concatenated together generate the full list of 

valid sequences. The sequences that violate 

precedence relationships can be eliminated from 

the valid set list and all valid sequences are 

analysed individually for optimal path finding. 

For increasing number of aircraft, the 

probability of clustering increases and the 

computation time scales almost linearly. 

However, predictions of future allowable 

positions become less accurate. An adaptive 

procedure that generates an optimal sequence 

quickly from new information is paramount. 

Figure 7 is an example of a cluster present in a 

much larger set, however, the sequence 

illustrated will be valid regardless of the trailing 

aircraft to final node since there will be 

numerous permutations all beginning with the 

sequence above. 

3 Simulations 

The model simulation uses numerous 

randomly generated arrival fleets and 

determines statistics for each simulation. The 

randomly generated data is based off probability 

density functions and multimodal distributions 

to represent expected air traffic and aircraft 

variety. Each aircraft is given a time of arrival 

with respect to expected order of arrival. The 

aircraft are assigned a constrained earliest and 

latest time of arrival, weight class, precedence 

jet route relationship, and a randomly 

determined compliance factor. This information 

is converted into an unpruned set of allowable 

position assignments and the fleet is pruned to 

improve optimisation speed. The fleet is parsed 

into the optimal sequence enumerator and 

statistics for each simulation are recorded to 

determine averages for each set.  

Figure 8 shows the density distributions and 

the associated statistical data. The distributions 

are used to indicate the dense and sparse periods 

during a 24-hour period. Simulation blocks with 

standard and high compliance used a 

compliance factor 0.65 and 0.90 respectively. 

Each block consists of the same number of 

individual simulations, jet routes, and weight 

class distribution variables except for the low-

density block, which featured low and standard 

weight class distributions. 

Each distribution was separated into 

relevant blocks consisting of 1000 individual 

simulations each and 4 jet routes uniformly 

distributed. The compliance factors and weight 

class distributions were selected to demonstrate 

the effectiveness of the model with varying 

arrival conditions. 

From Table 2, the greatest influence of 

RET reduction comes from the number of 

aircraft, this is to be expected as more aircraft 

landing in a single period will increase the 

density and often the possible number of 

successful permutations. A higher compliance 

also results in further reduction. 
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Fig. 8. Distribution densities for a 24-hour period with 

probability of an aircraft landing at a given time. 

Table 2. Simulation output. 

Simulation 

Block 
#Aircraft 

#Clus

ters 

RET 

Reducti

on (sec) 

Comp. 

Time 

(sec) 

Single-peak 

standard 

compliance 

283.668  31.971 422.280 0.331 

Single-peak high 

compliance 
283.965 35.616 788.880 3.044 

Dual-peak 315.046 34.332 599.880 4.412 

High-density 408.006 44.500 986.640 3.815 

Low-density 

standard 

compliance 

171.905 15.048 131.280 0.109 

Low-density high 

compliance 
171.884 21.860 245.040 0.124 

Low-density low 

weight class and 

high compliance 

172.093 21.498 260.520 0.134 

This is expected as the number of 

successful permutations would exponentially 

increase with both variables. The computational 

time for all data sets is on average only a few 

seconds, showing that a real-time response rate 

can be achieved through this model. 

An adaptive sequencer relies on a generic 

model that, when given new information, can 

readily update the optimal solution. The number 

of clusters does not correlate to the 

computational time required, therefore utilising 

the clustering effect to dynamically determine 

optimal orders will minimise the effect of 

unfavourable events occurring. The primary 

detriment in using this simulation data is the 

assumed distributions. However, the model 

incorporates distribution variables, so with 

empirical data, accurate simulations can be 

readily executed to validate the success of the 

model. 

Table 3. Example of arrival aircraft fleet. 

ID 
Weight 

Class 

Arriv

al 

Time 

Earliest 

Arrival 

Time 

Latest 

Arrival 

Time 

Jet-

rou

te 

Com

plia

nt 

1 Light 00:00 23:54 00:06 4 Y 

2 Heavy 00:07 00:04 00:20 1 Y 

3 Light 00:20 00:14 00:28 4 Y 

4 Medium 00:22 00:09 00:36 1 Y 

5 Light 00:27 00:18 00:30 4 Y 

6 Super 00:36 00:22 00:39 4 Y 

7 Super 00:38 00:23 00:49 3 Y 

8 Heavy 00:45 00:30 00:57 2 Y 

 

Table 3 shows typical input data for an 

arriving fleet of aircraft. For simplicity, this 

example assumes complete compliance and no 

further variables alter during analysis. This 

sequence produces a RET of 17 minutes, after 

optimisation the time reduces to 15 minutes. 

 

Fig. 5. Flowchart and optimal path nodes (shaded) nodes 

in order {1 →2 →4 →3 →5 →6 →7 →8}. 

 A flowchart of the optimal path and the 

arrival fleet is Figure 9. Assuming this fleet is 

an isolated cluster the model has the capacity to 

optimise this cluster dynamically as information 

changes and allows for near instantaneous 

computation and output to ATC. 
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4 Conclusions 

This paper presents an approach for optimising 

aircraft landing sequencing by exploiting the 

resulting clustering effect created with fixed 

aircraft landing positions. The model isolates 

clusters by identifying time periods where there 

is no interaction of arrival behaviour between 

clusters. These clusters are examined and parsed 

into an optimal sequence enumerator that 

determines valid sequences and the total RET of 

each sequence. The clusters and the intervals 

between the successive clusters is analysed to 

determine the optimal sequence. As the number 

of clusters increases this methodology allows 

for a mostly linear scaling of computational 

time, with most of it taken up by the 

permutation enumeration process and the 

minimum RET determination algorithm. 

The model was validated by performing 

simulations using assumed distributions of 

weight class and arrival density. The 

compliance factor determines the percentage of 

aircraft that are willing to cooperate with ATC. 

To demonstrate the effects of different 

distributions and compliance factors, a variety 

of inputs were selected for further analysis. The 

daily arrival frequencies selected for analysis 

included single-peak, dual-peak, and low and 

high-density distributions. Moderate and high 

compliance factors of 0.65 and 0.90 were 

selected to demonstrate the effects of increased 

aircraft compliance. The model simulated a 24-

hour period of arriving aircraft and recorded the 

relevant statistics to measure the effectiveness 

of the optimisation process. These output 

statistics included number of aircraft, number of 

clusters, the RET reduction, and the 

computational time required to complete the 

optimisation. 

The greatest influence on RET reduction 

are the compliance factor and density of aircraft 

arrivals. This was expected as the number of 

successful permutations exponentially increases 

with these two variables. This effect can be 

observed when comparing the low-density and 

high-density data sets as well as the standard 

and high compliance data sets. The results 

indicate that, with 65% of arriving aircraft 

willing to adjust their landing position within 

their estimated time of arrival range, the RET 

can be reduced by several minutes over a 24-

hour period. The results also indicate the 

number of clusters will vary more significantly 

due to the number of aircraft. For low density 

data sets, as the compliance factor increases the 

number of clusters will increase regardless of 

the number of aircraft due to the method used 

by the cluster finding algorithm. This effect is 

not present for higher density data sets as 

observed in the differing compliance factor 

single-peak data sets. All simulation data sets 

show on average a computational time 

requirement less than 5 seconds. These results 

indicate that it is possible to optimise large 

fleets of arriving aircraft whilst ensuring real 

time response rates. The computational time still 

varies greatly for dense and complex clusters 

due to the magnitude of resulting successful 

permutations. These dense clusters formed 

when the random number generation produced 

long periods of consecutive positive compliance 

and large time of arrival windows, however 

these results are not likely to occur in a real 

environment and are considered outliers. 

Due to the frequency of aircraft non-

compliance, the proposed model takes 

advantage of this challenge to optimal 

sequencing by producing consistent real-time 

response results. In the worst case, the model 

will output the default order, which is a typical 

result of other strategies in real environments 

due to low aircraft compliance. The strength of 

this model derives from parsing any generic 

fleet into the presented algorithm and producing 

optimised results in real time. This requires no 

pre-processed network analysis or static cases of 

assumed allowed repositions. The model, with 

further development, will need to account for 

any typical airport with variable runways, and 

runway configurations, and incorporate dynamic 

arrival time windows to restrict allowable 

landing assignments more accurately. The data 

has been constrained to generate random 

parameters that emulate aircraft non-compliance 

and unfavourable conditions, thus, producing a 

resulting clustering effect. The computational 

time has been reduced by minimising recursive 

function calls and fast permutation elimination. 
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The results indicate that clustering is a 

common occurrence for large aircraft sets and 

the problem simplifies to optimisation of local 

clusters. This significantly reduces effort 

required to enumerate all permutations. The 

computational time required to optimise each 

cluster scales linearly with the number of 

clusters and the individual cluster time 

complexity exponentially increases with the 

number of successful permutations. Due to this 

exponential permutation growth, any further 

optimisation of the computational model would 

greatly accelerate the process and these dense 

clusters can be optimised in real time. 
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