

1

Abstract

An optimal aircraft landing sequence is a

sequence that results in the lowest Runway

Engagement Time (RET). The approach

presented in this paper uses a generic arrival

fleet analyser, a cluster finding algorithm to

isolate independent groups and a permutation

enumeration algorithm to determine valid

landing sequences. The optimal sequence of

each cluster is determined and is used to

develop a global optimal sequence for arriving

aircraft. The model was validated by simulating

24-hour arrival periods with varying arrival

frequency distributions. The results show that by

exploiting the clustering effect, computational

time can be conserved, and RET can be reduced

by several minutes over a 24-hour period.

1 Introduction

Due to increasing number of flights, en-route

and airport traffic control has become central to

improving the efficiency of aircraft operations

[1]. Improvements have been made to en-route

air traffic management and the primary limiting

factor to air traffic capacity has shifted from

airspace to airports (Figure 1). To improve

airport air traffic management, specifically the

Aircraft Landing Problem (ALP), the

development and implementation of a dynamic

landing sequencer is required to improve

productivity. The cost of delaying an aircraft in

the air is about twice as much as on the ground

[2]. However, nearly all airports predominately

use First Come First Served (FCFS) sequencing,

where aircraft land as determined by their

proximity and scheduled arrival. This

sequencing is popular due to simplicity,

reduction in

controller workload

and sense of

fairness, but it can

lead to reduced

runway throughput

[3].
Efforts have

been focused on

automated computer aided scheduling, trying to

minimise RET by examining possible landing

sequences and determining the most favourable

one. To create an optimal, but fair, landing

sequence, aircraft preferences and cost incurred

by each stakeholder, must be considered, as

aircraft often resist sequence changes due to the

perceived unfairness. Therefore, optimal models

that rely on aircraft cooperation are difficult to

implement and situations with fixed aircraft

positions can occur. Allowable position shifts

for each aircraft provide a raw data set that can

be parsed into an algorithm for optimal

sequencing. Adaptive sequencing requires a

robust model that can accommodate unexpected

perturbations. The aircraft landing problem is an

NP-hard problem, thus the possibility of

enumerating all possible sequences in

polynomial time is currently infeasible. This

means time sensitive decision making requires a

fast algorithm for computing optimal sequences.

Several strategies have been suggested to

solve the ALP, that either involve position

shifting managed independently by the arrival

airport or a Collaborative Decision Making

(CDM) process that controls departure times

and arrival times. Changing the landing position

outside the FCFS order will incur a cost if

aircraft are consequently delayed. To determine

the most optimal scheduling sequence, all

ADAPTIVE LANDING SEQUENCING USING BIPARTITE
GRAPHS AND PERFECT MATCHING

Matthew Hickson , Cees Bil

School of Engineering, RMIT University, Melbourne, Australia

Keywords: aircraft landing problem, bipartite graph, runway engagement time

Fig. 1. Aircraft lining up for

landing at Heathrow.

MATTHEW HICKSON, CEES BIL

2

potential sequences must be examined [4].

Implementing Constrained Position Shifting

(CPS) programs drastically reduces computation

time by limiting the search to fewer sequences,

by limiting allowable aircraft repositions to only

a few places from their original sequence. There

are limitations to this strategy related to

compliance of aircraft positioning and

unexpected disturbances. To account for this, a

CPS model was created that incorporates

aircraft precedence relationships, air traffic

control over-taking procedure restrictions and

specified time windows [5]. This model uses a

tree search algorithm to determine the highest

runway throughput. Applying the technique to

existing schedule data, showing significant

efficiency improvements as the allowable

repositions increased and the constrained

sequences were nearly identical to the optimal

ordering. This research is most promising for

standalone ALP solvers, however unexpected

disturbances in scheduling and inadequate

compliance reduces the effectiveness of the

model.

For CPS models, Dear used an algorithm that

enumerates all possible sequences and

determines the RET for each, which, as the

number of aircraft increases became impractical

[4]. It was improved by introducing allowable

time windows, their algorithm was significantly

faster through reducing the number of possible

sequences due to their constraints [6]. CPS

models still lack robustness in the event of

disturbances and become slower as the number

of aircraft increases. Pre-emptive node

generation by limiting the number of sequences

through tree pruning and constraint application,

shows that CPS models can scale linearly [3].

For any strategy, the willingness of the

airlines to agree to variations in their preferred

scheduling is assumed, so fairness of the order

in which aircraft land is an important factor. To

uphold stakeholder satisfaction, CDM programs

are suggested that involve airlines in the

decision-making process and give them

flexibility to satisfy their priorities [7]. CDM

utilises variable take-off times to ensure

improved runway throughput upon arrival [8,9].

Another suggestion is using arrival timeslot

auctions, giving flexibility to stakeholders [10].

Due to cost incursions, the landing sequence

will naturally develop towards more efficient

sequencing and airline satisfaction will remain

high. The scheme requires a weighting and

scoring system that accurately determines

bidding prices.

Terrab and Odoni focused on airport capacity

as the primary limiter to cost effective

sequencing, suggesting two models that

prioritise ground holding before take-off [11].

One model idealises the problem by

constraining aircraft to their predefined flight

times and prioritises aircraft with the highest

marginal cost of delay, while the other model

presents a probabilistic dynamic approach to

scheduling by using a stochastic model that

improves in accuracy over time as the capacity

for each airport becomes clearer.

Applying ground holding requires dynamic

programming for multiple airports, which

increasing the data required to determine

optimal schedule planning. Determining an

optimal computing method depends on

complexity and the desire for real time results.

This model was applied to minimise overall cost

of delay whilst attempting to alter original

scheduling as little as possible [14]. They

provided a heuristic based approach that

computes results in real time although derives

suboptimal paths due to this limitation. They

applied their model to existing scheduled data,

only constraining the airport capacity at a given

time interval and the allowable number of

delays before cancellation of the flight occurred.

Ground holding and ‘fixes’ are a common

occurrence in schedule recovery. Tactical Air

Traffic Management is crucial for efficient and

safe operations, but is not sufficient as

schedules can change due to bad weather [18].

The model presented in this paper

incorporates the common detriment to other

strategies by utilising low compliance and the

resulting clustering effect to compute optimal

sequences in real time for a generic arriving

fleet. This paper presents a mathematical

representation of the proposed solution and an

algorithm for enumerating optimal sequences,

by adopting strategies exploiting Constrained

Position Shifting (CPS), CDM, their fairness

models and the computational techniques used.

3

ADAPTIVE LANDING SEQUENCING USING BIPARTITE GRAPHS

AND PERFECT MATCHING

2 Problem Modelling

For a given set of aircraft, RET is the time from

landing of the first aircraft to the time of landing

of the last aircraft in a sequence. The default

landing order of arriving aircraft can be

determined by their scheduled arrival time. This

information provides a control comparison for

RET for different sequences. The scheduled

sequence is prone to changes as FCFS landing

sequences are typically determined by the actual

order of arrival.

For any given aircraft, the allowable

positions indicate at what slots in the landing

sequence it can be placed. The time of this

arrival will vary slightly depending on the

aircraft landing before it and it is assumed the

aircraft can land as soon as it is required to. The

allowable positions of an aircraft will default to

its FCFS order and allowable position shifts are

dependent on other aircraft inside the ARTCC

boundary limits. In each time interval the

number of position swaps will also depend on

how many aircraft are within the boundary and

the level of compliance of aircraft cooperating

with landing sequence alterations. The approach

presented in this paper represents allowable

positions as a set of positions including the

original position 𝑖, e.g. P(𝐴i) = {𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖
+ 1}, with each aircraft having its own set of

allowable positions. No overtaking is allowed

for aircraft on the same path with allowable

speed variations having the most influence on

the allowable position re-assignments [12].

ICAO outlines aircraft approach

procedures, which influence the landing

precedence constraints for arriving aircraft. The

simplified version of the procedures utilises jet

routes to determine aircraft precedence, while

advanced versions also utilise altitude

management and Vertical Guidance (APV).

Civil aviation authorities enforce minimum

wake separation between successive aircraft,

dependent on the weight class of the two

aircraft. For aircraft combinations between

lower and higher or equal weight classes

regulations use a distance requirement of 3 nm,

except in the case of heavy trailing heavy

scenarios, which use a minimum distance

separation of 4 nm. To simplify this distance

requirement, ICAO minimum separation time of

120 seconds is used in lieu of these distances.

In certain scenarios, there are instances

where an aircraft must land before another

aircraft or group of aircraft. The precedence

relationships of arriving aircraft are assigned to

each aircraft and only sequences that satisfy

these precedence relationships are considered

valid. Each aircraft has its own precedence

relationships represented by a set of values

denoting the other aircraft it must be land

before, e.g. 𝑃R(𝐴i) = {𝐴j, 𝐴k}, where 𝑗 and 𝑘

represent two different aircraft. In the event of

no precedence relationships present, the set will

be empty.

In summary, the problem can be defined as

follows: Given a set of 𝑛 aircraft, indexed by

their scheduled or FCFS arrival order 1, 2, 3,..,

𝑛, each aircraft 𝑖 containing their own

information of allowed positions 𝑃(𝐴i), weight

class and precedence relationships 𝑃R(𝐴i). Using

the separation matrix, denoted as 𝐼s, determine

an optimal sequence that minimises RET for the

entire set. For simplicity, the aircraft are

referred to as being in their indexed position

relative to where appropriate in the original

schedule or FCFS order. The value being

minimised is RET or alternatively the arrival

time of the final aircraft given a set of 𝑛 aircraft.

Each successive two entity sequence of aircraft

are denoted as 𝑠i, where 𝑖 represents a given

aircraft index. Applying minimum time

separation between all successive aircraft pairs

in a sequence gives the total time function:

𝑇(𝑠) = ∑𝑠𝑖

𝑛−1

𝑖=1

Using this time function, the total time for the

default sequence, 1 → 𝑛, can be determined and

used for comparison. Using the allowable

position sets (𝐴i) of each aircraft, a table can be

generated containing each aircraft and their

allowed position assignments, as shown in

Table 1. Using the allowable position sets, the

problem can be expressed as a bipartite graph

complete matching problem. This term relates to

the mathematical problem of successfully

assigning an edge connecting each vertex from

(1)

MATTHEW HICKSON, CEES BIL

4

one set of vertices to at least one vertex in a

different set of vertices, where no edges share a

vertex.

Table 1. Allowable position assignments.

Aircraft Allowable Position Assignments

1 {1, 2}

2 {1, 2, 3, 4}

3 {2, 3, 4}

... ...

𝑛 - 1 {𝑛 − 3, 𝑛 − 2, 𝑛 − 1}

𝑛 {𝑛 − 2, 𝑛 − 1, 𝑛}

The complete matching problem becomes:

Let 𝐺 = (𝑉 = 𝑉1 ∪ 𝑉2, 𝐸) be an undirected

bipartite graph with vertex sets 𝑉1 and 𝑉2 and an

edge set 𝐸 composed of edges 𝑉1× 𝑉2. A perfect

matching 𝑀 is an edge set contained in 𝐺 such

that no two edges share the same endpoints and

all vertices of 𝐺 are connected to at least one

other vertex not contained within its own vertex

set. Let 𝑁 be the number of perfect matchings

produced by 𝐺, enumerate all unique perfect

matchings 𝑀.

This problem is a research field in

mathematics with current algorithms

enumerating all perfect matchings in

𝑂(√(|𝑉|) ∗ |𝐸| + 𝑁 ∗ log |𝑉|) time, where 𝑉,

𝐸, and 𝑁 denote the number of vertices, edges,

and perfect matchings respectively. This

algorithm currently serves as the best lower

bound estimate for complexity when

determining perfect matchings [13].

2.1 Bipartite Graph and Bi-adjacency Matrix

For any given set of aircraft, there is at

least one complete matching, which is the

default sequence of successive integers 1 → 𝑛.

The number of perfect matchings increases

exponentially as the number of possible position

assignments increases. This implies that the

problem of bipartite graph complete matching is

NP-hard since it there is currently no known

polynomial time solution. An example bipartite

graph 𝐺 is presented in Figure 2.

For any given bipartite graph, an edge

between two vertices denotes an allowable

assignment and a perfect matching 𝑀 for 𝑛

number of aircraft would contain an edge set

beginning from every vertex in 𝑉1 connecting to

a distinct endpoint in vertex set 𝑉2.

Fig. 2. Bipartite graph with four vertices, each edge

denotes an allowable position assignment.

Using the assignment information from the

bipartite graph, a bi-adjacency matrix can be

generated. Let 𝐵 be the matrix of size {n x n},

where every position denoted by 𝐵ij is equal to 1

when an edge connects vertex 𝑖 from set 𝑉1 to 𝑗
from set 𝑉2 and 0 otherwise.

𝐵 = {

1 1 0 0
1 1 0 0
0
0

1
1

1
1

1
1

}

Fig. 2. Bi-adjacency matrix.

The permanent of a bi-adjacency matrix

can be used to determine the number of

permutations with restricted positions. In the

case of bipartite graphs this is the number of

perfect matchings. The permanent of matrix 𝐵 is

the number of complete matchings in bipartite

graph G, which is a stop point for perfect

matchings enumeration and prevents

unnecessary sequence finding as once the

number of perfect matches enumerated equals

𝑁, all matches have been found. Methods for

exact permanent determination are dependent on

the size and characteristics of the bi-adjacency

matrix, but for a general (0,1) {𝑛 × 𝑛} matrix,

Ryser’s method is considered the best algorithm,

operating in 𝑂(2𝑛−1 ∗ 𝑛) time when processing

in Gray code order [19].

Clusters are independent groups of

permutations that do not influence each other

and can be identified by analysing a bi-

adjacency matrix and resolving smaller matrices

within it.

𝐵 =

{

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1}

Fig. 3. Bi-adjacency matrix with resolvable lower

dimensional bi-adjacency matrices.

Aircraft

Allowable Position Assignments

5

ADAPTIVE LANDING SEQUENCING USING BIPARTITE GRAPHS

AND PERFECT MATCHING

In Figure 3, lower dimensional bi-adjacency

matrices can be observed in the top-left and

bottom-right corners. Matrix 𝐵 can be resolved

into clusters since there are no edges connecting

vertices between these two matrices. This is

visually observable where minor {𝑚 × 𝑚}
matrices are surrounded by zeros vertically and

horizontally. The number of successful

permutations for the major bi-adjacency matrix

becomes the multiplication of the permanents of

each minor matrix, considerably accelerates the

algorithms designed to determine perfect

matchings of an undirected bipartite graph.

2.2 Pruning

This stage reviews the active fleet data and

searches for unachievable allowable positions

due to restricting positions of other aircraft. For

example, if aircraft 1 can only be allocated to

landing position 1 and aircraft 2 can be

allocated to both position 1 and 2, then, aircraft

2 cannot land in position 1 and therefore

requires position 1 removed from its allowable

position set. An example fleet flowchart is

presented in Figure 4.

Fig. 4. Initial fleet flowchart (a), pruned fleet flowchart

(b) and cluster search (c).

In Figure 4(a) there are allowable positions

that are not valid and need to be removed.

Pruning a system before permutation

enumeration is beneficial since the amount of

possible permutations enumerated and tested for

validity is reduced. The total number of possible

permutations before pruning is the product of

the allowable number of aircraft. For (a), the

total number of permutations with duplicates is

1 ∗ 3 ∗ 2 ∗ 3 ∗ 4 ∗ 1 = 72, which is not the

number of perfect matchings since many of

those permutations contain repeated aircraft

entities. Pruning the system before enumerating

the sequences will minimise the number of

computations required. For example, by pruning

the amount of possible permutations, even with

repetition, is reduced to 1 ∗ 2 ∗ 2 ∗ 2 ∗ 2 ∗ 1 =

16. This number still does not represent the

number of perfect matchings, but it has reduced

the number of permutations required to test for.

2.3 Clusters

Clusters are isolated sections of a fleet that

do not influence the possible sequences of each

other. Clusters are a group of positions, e.g. {2

→ 4} that contains several unique entities equal

to the amount of positions contained with the

group. Using Fig. 4 as an example, there are two

clusters present, positions {1 → 3} and {4 →

6}, each containing 3 landing positions and 3

unique entities. Isolating these two clusters

reduces the number of permutations that need to

be examined for each cluster. The number of

possible permutations is only 1 ∗ 2 ∗ 2 = 4 and 2

∗ 2 ∗ 1 = 4, for each cluster respectively. Thus,

the amount of permutations that need to be

tested for validity is only 8 and the resulting

number of successful permutations only needs

to be multiplied by each other to generate the

total number of perfect matches. Using the

perfect matches of each cluster and sequencing

the matches together to generate all

permutations will produce a final set list of valid

sequences.

Using the example flowchart, the process

of pruning the original fleet and separating the

fleet into clusters shows a fast-logical process

for generating all possible sequences with

minimal examination of possible permutations.

All clusters can be determined, thus reducing a

large set of aircraft into several independent

groups, significantly reducing the number of

permutations needed to be examined for

validity. Clustering is a highly effective process

in reducing tested permutations as the number

of permutations for each individual cluster is

orders of magnitudes times smaller than the

number of permutations for the entire set. All

(a)

(b)

(c)

MATTHEW HICKSON, CEES BIL

6

valid permutations are still enumerated but

determining a global perfect matching requires

significantly less computations.

2.4 Permutation Enumeration

The primary task of any global ALP

solving algorithm is the enumeration of all valid

sequences of aircraft. A valid sequence is a

sequence of aircraft that contain only one of

each aircraft and every aircraft in an arrival

fleet. For example, the set of aircraft 𝐴 =

{1,2,3}, the valid sequences will contain one of

each aircraft and assign a landing position to

each aircraft, e.g. {1 → 2 → 3}. A valid

sequence must only assign positions to aircraft

with the capacity to land in that position and

adhere to the precedence relationships where

appropriate. An example process of inputting a

fleet or cluster and outputting a set list of valid

sequences and the methodology involved is

shown in Figure 5.

Position 1 2 3 4 5

Allowable

Aircraft

Assignment

1 1 2 2 5

2 2 3 3

 3 4 4

Fig. 5. Fleet flow chart for positions 1 to 5.

There are no smaller clusters inside Figure 5

and the fleet has been completely pruned. There

is a total of 54 possible permutations to be

tested for validity. Precedence constraints will

also be considered where appropriate to satisfy

all validity requirements. However, to simplify

the example no precedence relationships will be

considered here. The bi-adjacency matrix 𝐵 is

created and the permanent of that matrix

determined so that final number of perfect

matchings is known. The bi-adjacency matrix is

shown in Figure 6.

𝐵 =

{

 1 1 0 0 0
1
0
0
0

1
1
0
0

1
1
1
0

0
1
1
0

0
0
0
1}

, 𝑝𝑒𝑟𝑚(𝐵) = 6

Fig. 6. Bi-adjacency matrix and its permanent.

The permanent value 6 indicates the number of

perfect matchings, thus the number of valid

sequences for the example data. This provides a

stop point when enumerating sequences. The

algorithm presented in this paper operates by

assigning a vacant landing position to an aircraft

and looping for all aircraft in a fleet. In the

event of no vacant positions being available

given an aircraft’s allowable positioning

assignments, the latest position that hasn’t

reached the final aircraft in its independent set

of aircraft assignments is updated and all

trailing positions reset to their first aircraft

assignment. If all aircraft are assigned a

position, the sequence is valid and the latest

position that hasn’t reached the final aircraft in

its independent set of aircraft assignments is

updated to be assigned to the next aircraft in the

set. The trailing positions are all reset to their

first aircraft assignment and this process is

repeated until the number of valid sequences

enumerated is equal to the permanent of 𝐵

determined prior to the enumeration process.

2.5 Position Assignment

The logic flowchart described previously to

enumerate all sequences can be visualised as a

dynamic assignment that changes as each valid

and invalid sequence is tested. This can be

understood by creating a sequence and altering

the assigned aircraft of the latest position until

the algorithm assigns a position to all aircrafts.

Using a table that shows the active assignments

and a comparison table showing how many

aircrafts are available for assignment in a given

position allows for quick manipulation of

assigned aircraft. To update the active

assignment, the latest position is compared to

the total number of aircraft that can be assigned

to position 𝑛 and the active aircraft assignment

is increased by 1 and all trailing active aircraft

assignments are set to 1. The resulting sequence

is not valid, so the latest position is updated by

increasing the active aircraft assignment by 1

and all trailing positions reset their active

assignment to the first aircraft in their

independent set of allowable aircraft

assignments. The resulting sequence is still not

valid, so the active assignment increment

7

ADAPTIVE LANDING SEQUENCING USING BIPARTITE GRAPHS

AND PERFECT MATCHING

process is repeated until the number of valid

sequences found is equal to the permanent

found prior to the enumeration process.

Fig. 7. Fleet flow chart and valid sequence (shaded).

The efficiency of the permutation

enumeration is determined by the number of

sequences examined, so reducing the amount of

unnecessary active aircraft assignments will

decrease the required computation time. To

limit unnecessary assignment, as the algorithm

assigns an aircraft to positions 1 → 𝑛, if there

are no available assignable aircraft to position 𝑗,
the latest position before position 𝑗 that is not at

its final aircraft assignment will be updated.

Thus, skipping a significant number of

unnecessary assignments and sequence tests

since no valid permutation will exist past

position 𝑗. There are several optimisation

techniques to reduce the number of

computational comparisons. These processes

involved optimised function calls and

minimising recursive calls of nested functions.

When multiple clusters are present, the valid

sequences of each cluster are determined and

the permutations of each sequence when

concatenated together generate the full list of

valid sequences. The sequences that violate

precedence relationships can be eliminated from

the valid set list and all valid sequences are

analysed individually for optimal path finding.

For increasing number of aircraft, the

probability of clustering increases and the

computation time scales almost linearly.

However, predictions of future allowable

positions become less accurate. An adaptive

procedure that generates an optimal sequence

quickly from new information is paramount.

Figure 7 is an example of a cluster present in a

much larger set, however, the sequence

illustrated will be valid regardless of the trailing

aircraft to final node since there will be

numerous permutations all beginning with the

sequence above.

3 Simulations

The model simulation uses numerous

randomly generated arrival fleets and

determines statistics for each simulation. The

randomly generated data is based off probability

density functions and multimodal distributions

to represent expected air traffic and aircraft

variety. Each aircraft is given a time of arrival

with respect to expected order of arrival. The

aircraft are assigned a constrained earliest and

latest time of arrival, weight class, precedence

jet route relationship, and a randomly

determined compliance factor. This information

is converted into an unpruned set of allowable

position assignments and the fleet is pruned to

improve optimisation speed. The fleet is parsed

into the optimal sequence enumerator and

statistics for each simulation are recorded to

determine averages for each set.

Figure 8 shows the density distributions and

the associated statistical data. The distributions

are used to indicate the dense and sparse periods

during a 24-hour period. Simulation blocks with

standard and high compliance used a

compliance factor 0.65 and 0.90 respectively.

Each block consists of the same number of

individual simulations, jet routes, and weight

class distribution variables except for the low-

density block, which featured low and standard

weight class distributions.

Each distribution was separated into

relevant blocks consisting of 1000 individual

simulations each and 4 jet routes uniformly

distributed. The compliance factors and weight

class distributions were selected to demonstrate

the effectiveness of the model with varying

arrival conditions.

From Table 2, the greatest influence of

RET reduction comes from the number of

aircraft, this is to be expected as more aircraft

landing in a single period will increase the

density and often the possible number of

successful permutations. A higher compliance

also results in further reduction.

MATTHEW HICKSON, CEES BIL

8

Fig. 8. Distribution densities for a 24-hour period with

probability of an aircraft landing at a given time.

Table 2. Simulation output.

Simulation

Block
#Aircraft

#Clus

ters

RET

Reducti

on (sec)

Comp.

Time

(sec)

Single-peak

standard

compliance

283.668 31.971 422.280 0.331

Single-peak high

compliance
283.965 35.616 788.880 3.044

Dual-peak 315.046 34.332 599.880 4.412

High-density 408.006 44.500 986.640 3.815

Low-density

standard

compliance

171.905 15.048 131.280 0.109

Low-density high

compliance
171.884 21.860 245.040 0.124

Low-density low

weight class and

high compliance

172.093 21.498 260.520 0.134

This is expected as the number of

successful permutations would exponentially

increase with both variables. The computational

time for all data sets is on average only a few

seconds, showing that a real-time response rate

can be achieved through this model.

An adaptive sequencer relies on a generic

model that, when given new information, can

readily update the optimal solution. The number

of clusters does not correlate to the

computational time required, therefore utilising

the clustering effect to dynamically determine

optimal orders will minimise the effect of

unfavourable events occurring. The primary

detriment in using this simulation data is the

assumed distributions. However, the model

incorporates distribution variables, so with

empirical data, accurate simulations can be

readily executed to validate the success of the

model.

Table 3. Example of arrival aircraft fleet.

ID
Weight

Class

Arriv

al

Time

Earliest

Arrival

Time

Latest

Arrival

Time

Jet-

rou

te

Com

plia

nt

1 Light 00:00 23:54 00:06 4 Y

2 Heavy 00:07 00:04 00:20 1 Y

3 Light 00:20 00:14 00:28 4 Y

4 Medium 00:22 00:09 00:36 1 Y

5 Light 00:27 00:18 00:30 4 Y

6 Super 00:36 00:22 00:39 4 Y

7 Super 00:38 00:23 00:49 3 Y

8 Heavy 00:45 00:30 00:57 2 Y

Table 3 shows typical input data for an

arriving fleet of aircraft. For simplicity, this

example assumes complete compliance and no

further variables alter during analysis. This

sequence produces a RET of 17 minutes, after

optimisation the time reduces to 15 minutes.

Fig. 5. Flowchart and optimal path nodes (shaded) nodes

in order {1 →2 →4 →3 →5 →6 →7 →8}.

 A flowchart of the optimal path and the

arrival fleet is Figure 9. Assuming this fleet is

an isolated cluster the model has the capacity to

optimise this cluster dynamically as information

changes and allows for near instantaneous

computation and output to ATC.

Single-Peak

Dual-Peak

High-Density

Low-Density

0 6 12 18 24

hrs

9

ADAPTIVE LANDING SEQUENCING USING BIPARTITE GRAPHS

AND PERFECT MATCHING

4 Conclusions

This paper presents an approach for optimising

aircraft landing sequencing by exploiting the

resulting clustering effect created with fixed

aircraft landing positions. The model isolates

clusters by identifying time periods where there

is no interaction of arrival behaviour between

clusters. These clusters are examined and parsed

into an optimal sequence enumerator that

determines valid sequences and the total RET of

each sequence. The clusters and the intervals

between the successive clusters is analysed to

determine the optimal sequence. As the number

of clusters increases this methodology allows

for a mostly linear scaling of computational

time, with most of it taken up by the

permutation enumeration process and the

minimum RET determination algorithm.

The model was validated by performing

simulations using assumed distributions of

weight class and arrival density. The

compliance factor determines the percentage of

aircraft that are willing to cooperate with ATC.

To demonstrate the effects of different

distributions and compliance factors, a variety

of inputs were selected for further analysis. The

daily arrival frequencies selected for analysis

included single-peak, dual-peak, and low and

high-density distributions. Moderate and high

compliance factors of 0.65 and 0.90 were

selected to demonstrate the effects of increased

aircraft compliance. The model simulated a 24-

hour period of arriving aircraft and recorded the

relevant statistics to measure the effectiveness

of the optimisation process. These output

statistics included number of aircraft, number of

clusters, the RET reduction, and the

computational time required to complete the

optimisation.

The greatest influence on RET reduction

are the compliance factor and density of aircraft

arrivals. This was expected as the number of

successful permutations exponentially increases

with these two variables. This effect can be

observed when comparing the low-density and

high-density data sets as well as the standard

and high compliance data sets. The results

indicate that, with 65% of arriving aircraft

willing to adjust their landing position within

their estimated time of arrival range, the RET

can be reduced by several minutes over a 24-

hour period. The results also indicate the

number of clusters will vary more significantly

due to the number of aircraft. For low density

data sets, as the compliance factor increases the

number of clusters will increase regardless of

the number of aircraft due to the method used

by the cluster finding algorithm. This effect is

not present for higher density data sets as

observed in the differing compliance factor

single-peak data sets. All simulation data sets

show on average a computational time

requirement less than 5 seconds. These results

indicate that it is possible to optimise large

fleets of arriving aircraft whilst ensuring real

time response rates. The computational time still

varies greatly for dense and complex clusters

due to the magnitude of resulting successful

permutations. These dense clusters formed

when the random number generation produced

long periods of consecutive positive compliance

and large time of arrival windows, however

these results are not likely to occur in a real

environment and are considered outliers.

Due to the frequency of aircraft non-

compliance, the proposed model takes

advantage of this challenge to optimal

sequencing by producing consistent real-time

response results. In the worst case, the model

will output the default order, which is a typical

result of other strategies in real environments

due to low aircraft compliance. The strength of

this model derives from parsing any generic

fleet into the presented algorithm and producing

optimised results in real time. This requires no

pre-processed network analysis or static cases of

assumed allowed repositions. The model, with

further development, will need to account for

any typical airport with variable runways, and

runway configurations, and incorporate dynamic

arrival time windows to restrict allowable

landing assignments more accurately. The data

has been constrained to generate random

parameters that emulate aircraft non-compliance

and unfavourable conditions, thus, producing a

resulting clustering effect. The computational

time has been reduced by minimising recursive

function calls and fast permutation elimination.

MATTHEW HICKSON, CEES BIL

10

The results indicate that clustering is a

common occurrence for large aircraft sets and

the problem simplifies to optimisation of local

clusters. This significantly reduces effort

required to enumerate all permutations. The

computational time required to optimise each

cluster scales linearly with the number of

clusters and the individual cluster time

complexity exponentially increases with the

number of successful permutations. Due to this

exponential permutation growth, any further

optimisation of the computational model would

greatly accelerate the process and these dense

clusters can be optimised in real time.

References

[1] Soomer, M & Franx, GJ 2008, 'Scheduling aircraft

landings using airlines’ preferences', European

Journal of Operational Research, vol. 190, no. 1, pp.

277-91.

[2] Inniss, TR & Ball, MO 2004, 'Estimating one-

parameter airport arrival capacity distributions for air

traffic flow management', Air Traffic Control

Quarterly, vol. 12, no. 3, pp. 223-51.

[3] Chandran, B & Balakrishnan, H 2007, 'A dynamic

programming algorithm for robust runway

scheduling', paper presented to American Control

Conference, 2007. ACC'07.

[4] Dear, RG 1976, The dynamic scheduling of aircraft

in the near terminal area, Cambridge, Mass.: Flight

Transportation Laboratory, Massachusetts Institute of

Technology.

[5] Balakrishnan, H & Chandran, B 2006, 'Scheduling

aircraft landings under constrained position shifting',

paper presented to AIAA guidance, navigation, and

control conference and exhibit.

[6] Venkatakrishnan, C, Barnett, A & Odoni, AR 1993,

'Landings at Logan Airport: Describing and

increasing airport capacity', Transportation Science,

vol. 27, no. 3, pp. 211-27.

[7] Wambsganss, M 1996, 'Collaborative decision

making through dynamic information transfer', Air

Traffic Control Quarterly, vol. 4, no. 2, pp. 109-25.

[8] Gilbo, EP 1997, 'Optimizing airport capacity

utilization in air traffic flow management subject to

constraints at arrival and departure fixes', IEEE

Transactions on Control Systems Technology, vol. 5,

no. 5, pp. 490-503.

[9] Gilbo, E & Howard, KW 2000, 'Collaborative

optimization of airport arrival and departure traffic

flow management strategies for CDM', paper

presented to 3rd USA/Europe Air Traffic

Management R&D Seminar.

[10] Le, L, Kholfi, S, Donohue, G & Chen, C 2003,

'Proposal for demand management using auction-

based arrival slot allocation', paper presented to

Proceedings of the 5th USA/Europe Air Traffic

Management R&D Seminar, Budapest, Hungary.

[11] Terrab, M & Odoni, AR 1993, 'Strategic flow

management for air traffic control', Operations

research, vol. 41, no. 1, pp. 138-52.

[12] Neuman, F & Erzberger, H 1991, 'Analysis of delay

reducing and fuel saving sequencing and spacing

algorithms for arrival traffic'.

[13] Uno, T 2001, 'A fast algorithm for enumerating

bipartite perfect matchings', paper presented to

International Symposium on Algorithms and

Computation.

[14] Andreatta, G, Brunetta, L & Guastalla, G 1997,

'Multi-airport ground holding problem: a heuristic

approach based on priority rules', in Modelling and

Simulation in Air Traffic Management, Springer, pp.

71-89.

[15] Beasley, J, Krishnamoorthy, M, Sharaiha, Y &

Abramson, D 2004, 'Displacement problem and

dynamically scheduling aircraft landings', Journal of

the operational research society, vol. 55, no. 1, pp.

54-64.

[16] Bianco, L, Dell’Olmo, P & Giordani, S 1997,

'Scheduling models and algorithms for TMA traffic

management', in Modelling and simulation in air

traffic management, Springer, pp. 139-67.

[17] Faye, A 2015, 'Solving the aircraft landing problem

with time discretization approach', European Journal

of Operational Research, vol. 242, no. 3, pp. 1028-38.

[18] Filar, JA, Manyem, P & White, K 2001, 'How

airlines and airports recover from schedule

perturbations: a survey', Annals of operations

research, vol. 108, no. 1-4, pp. 315-33.

[19] Rempala, GA & Wesolowski, J 2008, 'Permanent

Designs and Related Topics', Symmetric Functionals

on Random Matrices and Random Matchings

Problems, pp. 121-48.

Contact Author Email Address

Mailto: bil@rmit.edu.au

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS proceedings

or as individual off-prints from the proceedings.

