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Abstract  

This paper presents a data-driven failure 

identification of flight control surfaces using 

neural networks. Experiments were performed 

in a motion-based flight simulator (SIVOR) that 

has been developed at Aeronautics Institute of 

Technology (ITA). We use a two-layer feed-

forward network and we analyze the influence 

of the input parameters and the number of 

neurons in the hidden layer on the performance 

of the failure identification task. The evaluation 

of the neural network’s performance is based on 

overall accuracy, training time, number of 

iterations, precision and recall. Best results 

were found for networks with 100 neurons in the 

hidden layer, presenting 97.2% of overall 

accuracy.  

1  Introduction  

A major current priority within the aircraft and 

aerospace community is flight safety [1,2]. 

Failure analysis and identification have been 

used to investigate events related to flight safety 

and aircraft accident and incident investigations 

throughout the years [1,3]. 

Actuators failures represent major threats 

to flight safety [4]. Physical redundancy for the 

actuators of the primary control surfaces is 

rarely available [5,6]. Furthermore, actuators 

failures can cause system performance 

deterioration or even fatal disasters if not 

effectively accommodated [7]. 

Typical Fight Control System (FCS) failure 

cases are runaway, jamming and oscillation of 

control surfaces [8], the latter is called 

Oscillatory Failure Case (OFC) and it will be 

addressed in this work. 

An OFC is an abnormal oscillation of a 

control surface due to component malfunction 

in control surface servo-loops, for example, 

electronic components in faulty mode 

generating spurious harmonic signals. This 

oscillatory signal, of unknown amplitude and 

frequency, is propagated through the servo loop 

control, leading to control surface oscillation, 

and it could excite the airplane structure 

producing structural loads [8]. These failures 

may lead to unacceptably high loads or 

vibrations, when coupled with the aircraft 

aeroelastic behavior [9]. 

The known fault detection and 

identification (FDI) approaches can be classified 

into two categories [10]: 1) model-based and 2) 

data-driven schemes. The second category is 

currently receiving considerably increasing 

attention both in application and in research 

domains. Different from model-based 

approaches, in which the system’s model is 

known a priori, the data-driven FDI methods are 

only dependent on the measured process 

variables [11]. 

Some solutions for the OFC are already 

available in the literature, mostly model-based 

schemes. A nonlinear actuator model is used to 

generate a residual on which the failure is 

detected by oscillation counting in [12]. The 

main difficulty of this approach consists in 

finding a systematic tuning for observation 

gains. Other methods are presented in [13-18]. 

This paper proposes a data-driven FDI 

approach for flight control surfaces failures 

using neural networks. We use a two-layer feed-

forward network and we analyze the influence 

of the input parameters and the number of 

neurons in the hidden layer on the performance 

of the failure identification task. Flight 
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experiments were performed on the SIVOR 

simulator under normal flight conditions 

(without failures) and under control surfaces 

failure conditions (elevator and aileron failures). 

Data recorded from experiments were used in 

the data-driven FDI. The main idea is to use 

data frequently recorded in flight data recorders 

(FDRs or Black-Boxes) to perform an offline 

data analysis and identify flight control surfaces 

failures. 

This paper is organized as follows: in 

Section 2 we present the experimental 

procedure. Section 3 describes the methodology 

used to perform failure identification. Results 

and discussion are presented in Section 4, 

followed by conclusions in Section 5. 

2  Experimental procedure 

This section presents the SIVOR Flight 

Simulator and the experiment design. 

2.1 SIVOR Flight Simulator  

SIVOR (SImulador de VOo de base Robótica, 

robotic flight simulator) is a project currently 

being developed at Aeronautics Institute of 

Technology (ITA) in partnership with Embraer. 

The goal of the project is to develop a flight 

simulator with a high fidelity environment and 

flexible so it can be reconfigured to several 

aircrafts of the same category. The simulation 

environment can be described by 4 main 

components: Aircraft Model, Washout Filter, 

Robotic Arm and Cockpit, and Pilot (Fig. 1).  

i. The Aircraft Model can be configured to 

different types of aircraft; 

ii. The Washout Filter is responsible to 

convert the aircraft dynamics into robot 

movements; 

iii. The Robotic Arm and Cockpit provides a 

realistic flight environment for the Pilot; 

iv. The Pilot closes the loop by using the 

inceptors (sidestick and throttle command) 

that provide inputs to the Aircraft Model. 

 

Fig. 1. Simulation Environment 

The prototype of the final version of the 

simulator is currently in operation and it is a 

robotic-based flight simulator with 6 degrees of 

freedom (Fig. 2). This prototype was used to 

perform the experiments described in the next 

section. The aircraft model used in the 

experiments is a public version of the Embraer 

Phenom 300 and the visual system is rendered 

by XPlane 10™. 

 

Fig. 2. Prototype of the SIVOR Simulator 

The final version of the simulator is currently 

under construction and it is illustrated in Fig. 3. 

By installing the robotic arm into a 10 m rail, 

this version of the simulator has 7 degrees of 

freedom. 

 

Fig. 3. SIVOR Simulator 
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2.2 Experiment design 

The experiment was designed based on the 

Design of Experiments (DOE) theory proposed 

by Montgomery [19]. The flight path consists of 

a take-off maneuvre with five steps and it is 

presented in Fig. 4. 

 

Fig. 4. Flight path 

The same procedure must be followed for 

all flights. The initial condition is the aircraft 

with 100% throttle and flap 2.  Then, the pilots 

were instructed to perform the following tasks: 

 

i. Step 1: Execute a lift-off at 120 knots; 

ii. Step 2: Maintain 140 knots until reach 

3000 ft; 

iii. Step 3: At 3000 ft completely retrieve 

flaps and landing gear, decrease the 

engine power to 60% and level the 

airplane at 3000 ft the fast as possible, 

executing the tasks simultaneously; 

iv. Step 4a: Keep the airplane stabilized with 

0° of roll; 

v. Step 4b: Keep the airplane stabilized with 

0° of roll with aileron failure; 

vi. When instructed raise the engine power to 

80% and track 15° of pitch; 

vii. Step 5a: Keep the airplane stabilized with 

15° of pitch; 

viii. Step 5a: Keep the airplane stabilized with 

15° of pitch with elevator failure. 

 

Both aileron and elevator failures were 

artificially produced through an oscillatory 

signal applied to the correspondent control 

surfaces with its characteristics described by 

Equation 1. 

 

                        
              

 

where N is the signal applied to the control 

surface, and t is time.  

The sinusoidal signal was previously 

adjusted according to a pilot’s opinion about its 

intensity and controllability. 

The experiment was performed by 7 pilots 

in two different simulation modes: with and 

without cabin motion. Each pilot executed 3 

flights in each mode, totalizing 42 flights. 

3 Methodology 

This section presents the methodology that was 

used to develop this work. 

3.1 Dataset  

The analysis is based on data recorded from 41 

flights. They were performed by 7 pilots, under 

2 simulation modes, with 3 replicas. This 

configuration results in 42 experiments, but one 

flight was excluded due to an error in the 

execution of the experiment. 

The recorded data was preprocessed in 

order to perform the data analysis considering 

the same start condition: the moment when the 

aircraft reaches 3000 ft. Furthermore, the dataset 

was normalized to have zero mean and unit 

variance (z-score normalization). 

It was recorded data from the pilot 

commands and the aircraft behavior. In order to 

analyze the influence of the set of parameters on 

the classification accuracy, the parameters were 

divided into 7 different groups: 

i. Group 1: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude; 

ii. Group 2: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 

roll, pitch, heading; 

iii. Group 3: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 
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(3) 

(2) 

(4) 

(5) 

roll, pitch, heading, linear velocities (Vx, 

Vy, Vz); 

iv. Group 4: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 

roll, pitch, heading, Vx, Vy, Vz, angular 

velocities (P, Q, R); 

v. Group 5: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 

roll, pitch, heading, Vx, Vy, Vz, P, Q, R, 

engine power, engine thrust; 

vi. Group 6: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 

roll, pitch, heading, Vx, Vy, Vz, P, Q, R, 

engine power, engine thrust, control 

surface positions (left aileron, right 

aileron, elevator, rudder); 

vii. Group 7: pilot commands (elevator, 

aileron, rudder, throttle), velocity, altitude, 

control surface positions (left aileron, 

right aileron, elevator, rudder). 

3.2 Exploratory Data Analysis  

Firstly we apply an initial exploratory data 

analysis (EDA) approach [20] to maximize 

insight into the dataset. We use boxplots to 

analyse if the classification task could be done 

using a simpler approach, like thresholds on 

specific parameters. 

3.3 Neural Networks 

In this work we use neural networks to solve a 

pattern recognition problem. The central idea of 

neural networks is to extract linear 

combinations of the inputs as derived features, 

and then model the target as a nonlinear 

function of these features. The result is a 

powerful learning method, with widespread 

applications in many fields [21]. 

We use a two-layer feed-forward network 

(Fig. 5), with sigmoid hidden and softmax 

output neurons, for a classification task with 3 

classes: normal condition, aileron failure, and 

elevator failure.  

The sigmoid function        presented in 

Equation 2, is used as activation function in the 

hidden layer, with the scale parameter 

  controlling the activation rate. The softmax 

function        presented in Equation 3, allows 

a final transformation of the vector of outputs T, 

considering a K-class classification problem. 

 

Fig. 5. Two-layer feed-forward network 
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The number of inputs varies according to 

the group of parameters (Section 3.1) and the 

number of outputs is 3, corresponding to: 

normal condition, aileron failure, and elevator 

failure. The number of neurons in the hidden 

layer is varied between 1, 10, 100, 500 and 

1000. 

The network is trained with scaled 

conjugate gradient backpropagation method 

[22] to update weight and bias values, 

respectively, W and b from Fig. 5. Training 

automatically stops when generalization stops 

improving, as indicated by an increase in the 

cross-entropy error of the validation samples. 

The dataset was divided into 3 parts: 

training set (50%), validation set (25%) and test 

set (25%) [21]. 

The evaluation of the neural network’s 

performance is based on overall accuracy, 

training time, number of iterations, precision 

and recall.  

The overall accuracy is the number of 

instances classified correctly divided by the 

total number of instances. Precision and recall 

are defined for each class, and they are 

calculated using the following equations [23]: 

          
  

     
 

 

       
  

     
 

 

where    is number of true positives,    is the 

number of false positives, and    is the number 

of false negatives. 
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Fig. 6. Exploratory data analysis results for normal condition, aileron failure and elevator failure classes, 

represented by 0, 1 and 2 in the x axis, respectively. 

 

4 Results and Discussion 

This section presents the results and discussion. 

4.1 Exploratory Data Analysis  

Results for the exploratory data analysis are 

shown in Fig. 6, where the normal condition, 

aileron failure and elevator failure are 

represented by 0, 1 and 2 in the x axis, 

respectively. It can be seen that is not possible 

to distinguish between the three classes using 

thresholds for these parameters.  

The most distinct values of median 

between classes are found for velocity, altitude 

and Vz. For altitude results, the median of the 

elevator failure class is higher than the other 

classes, mainly because of the maneuvre design, 

in which the elevator failure always occur in 

higher altitudes. However, there is still an 

overlap between normal and elevator failure 

classes. For velocity and Vz results, there is also 

an overlap between the classes. 

 

4.2 Neural Networks 

Results of the evaluation of neural network’s 

performance are presented and discussed below.  

Results of overall accuracy are presented in 

Figs. 7-9, training time in Figs. 10-12, number 

of iterations in Figs. 13-15, and finally, 

precision and recall in Fig. 16. 

 

4.2.1 Overall accuracy 

The overall accuracy increases with the increase 

of number of neurons in the hidden layer until it 

reaches 100 neurons, and then it starts to 

decrease, as shown in Fig. 7. This behavior was 

expected, since at some point the increase in the 

number of neurons will cause overfitting. The 

error on the training set is driven to a very small 

value, but when new data (test set) is presented 

to the network the error is large. The network 

has memorized the training samples, but it has 

not learned to generalize to new situations.  
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Fig. 7. Boxplot of overall accuracy, grouped by the 

number of neurons in the hidden layer  

 

 

Fig. 8. Boxplot of overall accuracy for each group of 

parameters 

The overall accuracy increases with the 

increase of number of parameters, as can be 

seen in Fig. 8. It is important to remind that 

from group 1 to group 6, the number of 

parameters increases, but the number of 

parameters of group 7 is smaller than group 6. 

This configuration was intentionally chosen to 

see not only the influence of the number of 

parameters (quantitative) but also the influence 

of the nature of the parameter itself (qualitative). 

It can be seen in Fig. 8 that the median of 

the overall accuracy decreases from group 6 to 

group 7, the difference is 0.2%. Nevertheless, 

the overall accuracy for group 7 is higher than 

for any of the other groups between 1 and 5, 

even having less parameters than most of them. 

Group 2 has only 1 parameter less than group 7, 

and the median of overall accuracy is 0.7% 

higher for group 7. While from group 2 to 6 it is 

added 12 parameters and it improved the 

median of overall accuracy in 0.9%, from group 

2 to 7 it is added only 1 parameter and it 

improved 0.7% the median of overall accuracy.  

These results show the qualitative 

influence on the choice of parameters. Since the 

failures are related to control surfaces (aileron 

and elevator), using the parameters related to 

control surface positions improve the overall 

accuracy of the classification task. 

The behavior of overall accuracy for 

different configurations of group of parameters 

and number of neurons in the hidden layer is 

presented in Fig. 9. It can be seen that the higher 

values for overall accuracy are found between 

the groups of parameters 5 and 7, and for the 

number of neurons in the hidden layer around 

100. This summarizes the results regarding 

overall accuracy. 

 

Fig. 9. Overall accuracy for different configurations 

of group of parameters and number of neurons in the 

hidden layer 

 

4.2.2 Training time 

The results for training time are shown in Figs. 

10-12. From Fig. 10 it can be seen that training 

time increases with the increase of number of 

neurons in the hidden layer. The number 0 

represents a training time of less than 1 second. 

The training time is not affected by the number 

of parameters, as shown in Fig. 11. These 

results are summarized in Fig. 12, which shows 

the training time for different configurations of 

group of parameters and number of neurons in 

the hidden layer. 
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Fig. 10. Boxplot of training time, grouped by the 

number of neurons in the hidden layer 

 

 

Fig. 11. Boxplot of training time for each group of 

parameters 

 

 

Fig. 12. Training time for different configurations of 

group of parameters and number of neurons in the 

hidden layer 

 

4.2.3 Number of iterations 

The results for the number of iterations are 

shown in Figs. 13-15. From Fig. 13, we noted 

that the highest number of iterations is found for 

the case with 1 neuron in the hidden layer, and 

for the other cases, the increase in the number of 

neurons has minimum effect on the number of 

iterations. 

 

Fig. 13. Boxplot of number of iterations, grouped by 

the number of neurons in the hidden layer 

The number of iterations does not seem to 

be affected by the group of parameters, as 

shown in Fig. 14. Figure 15 summarizes the 

results for number of iterations, showing its 

behavior for different configurations of group of 

parameters and number of neurons in the hidden 

layer. 

 

Fig. 14. Boxplot of the number of iterations for each 

group of parameters 

 

 

Fig. 15. Number of iterations for different 

configurations of group of parameters and number of 

neurons in the hidden layer 
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Fig. 16. Precision and recall results for each group of parameters 

 

4.2.4 Precision and recall 

Precision and recall results for each group of 

parameters are presented in Fig. 16. For the 

normal condition class, precision does not seem 

to be influenced by the group of parameters, 

while recall increases with the increase of 

number of parameters (from groups 1 to 6). 

Group 7 presents the best recall results for the 

normal class, even though it has less parameters. 

For the aileron and elevator failure classes, 

recall does not seem to be affected by the group 

of parameters, while precision increases with 

the increase of the number of parameters. Group 

7 presents the best precision results for the 

aileron failure class. The best precision results 

for elevator failure class are from groups 6 and 

7, with similar performances.  

Boxplots of precision and recall grouped 

by the number of neurons in the hidden layer 

were omitted because they present similar 

behavior with the overall accuracy results (Fig. 

7): they increase from 1 to 100 neurons and then 

they start to decrease. 

4.2.5 Summary of results 

The overall accuracy increases with the increase 

of number of neurons in the hidden layer until it 

reaches 100 neurons, and then it starts to 

decrease (Fig. 7). The overall accuracy increases 

with the increase of number of parameters (Fig. 

8). Moreover, results show the qualitative 

influence on the choice of parameters, since 

group 6 and 7 present similar values of overall 

accuracy, even though group 7 has less 

parameters than most groups. 

Training time increases with the increase 

of number of neurons in the hidden layer (Fig. 

10), and it is not affected by the group of 

parameters (Fig. 11). 

The highest number of iterations belongs 

from the case with 1 neuron in the hidden layer. 

For the other cases, the increase in the number 

of neurons (Fig. 13) and parameters (Fig. 14) 

does not have influence on the number of 

iterations. 

Precision increases with the increase of the 

number of parameters for the classes with 
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failure (aileron and elevator). Furthermore, 

recall increases with the increase of number of 

parameters for the normal condition class (Fig. 

16). 

The best results were found for 2 sets of 

parameters (groups 6 and 7), both cases with 

100 neurons in the network hidden layer, as 

shown in Table 1. Considering that both 

presented the same overall accuracy (97.2%), 

and that the group 7 has less than half of group 

6 number of parameters, with a smaller training 

time, with excellent results for recall and 

precision (similar with results from group 6), it 

can be said that the best result is achieved with 

group 7. 

Table 1. Best results 

Group of parameters 6 7 

Number of parameters 21 10 

Overall accuracy [%] 97.2 97.2 

Training time [s] 3 2 

Number of iterations 100 86 

Precision for normal class 

[%] 
96.9 97.1 

Precision for aileron failure 

class [%] 
97.0 96.6 

Precision for elevator failure 

class [%] 
98.1 98.0 

Recall for normal class [%] 97.7 97.5 

Recall for aileron failure 

class[%] 
96.1 95.7 

Recall for elevator failure 

class [%] 
97.2 98.0 

5 Conclusions 

This paper proposed a data-driven FDI approach 

for flight control surfaces failures using neural 

networks. Flight experiments were performed 

on the SIVOR Simulator under normal flight 

conditions (without failures) and under control 

surfaces failure conditions (elevator and aileron 

failures). We used a two-layer feed-forward 

network and we analyzed the influence of the 

input parameters and the number of neurons in 

the hidden layer on the performance of the 

failure identification task. The best result was 

achieved by a network with 100 neurons in the 

hidden layer and using 10 input parameters. The 

overall accuracy was 97.2%, with a training 

time of 2 seconds, precision greater than 96.6% 

and recall greater than 95.7%, for all classes. 

This work intends to contribute to 

automation of offline flight data analysis and 

improve flight safety. 
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