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Abstract

One of the challenges of modern engineering
design is the amount of data that designers
must keep track while performing system anal-
ysis and synthesis. This is particularly impor-
tant in the design process of complex systems
such as novel aerospace systems where Modeling
and Simulation play an essential role. The Ag-
ile Philosophy stems from the field of Software
Engineering and describes an approach to de-
velopment in which requirements and solutions
gradually develop through collaboration between
self-organizing cross-functional teams and end
users. Agile Model-Based System Engineering
(AMBSE) is the application of the Agile Philos-
ophy to Model-Based System Engineering. In
this paper, AMBSE is accomplished through the
application of the Object-Oriented System En-
gineering Method (OOSEM). OOSEM employs
a top-down scenario-driven process that adopts
System Modeling Language (SysML) and lever-
ages the object-oriented paradigm to support the
analysis, specification, design, and verification of
systems. AMBSE assisted by mathematical mod-
eling and safety assessment techniques, is ap-
plied to the first design iterations of the main air-
craft systems, allowing a comprehensive design
exploration. The flight control system was cho-
sen to illustrate the procedure in detail, empha-
sizing the synthesis of a six degrees-of-freedom
model augmented by dynamic inversion control
for a hypothetical supersonic transport aircraft
satisfying class II MIL-F-8785C handling qual-
ities. It is concluded that Agile Model-Based En-

gineering improves the early aircraft design pro-
cess, enabling a smoothly transition from con-
ceptual to preliminary design and system integra-
tion.

1 INTRODUCTION

Since the past century, the aerospace industry has
been developing and refining the conventional
"tube-and-wing" airplane configuration, which is
reaching the point of incremental, diminishing
returns. As a result, there is a renewed inter-
est in novel/unconventional aircraft systems that
must be designed in a cost effective and timely
manner, subjected to stringent regulations. Yet,
new aircraft systems must be designed to oper-
ate in a complex, evolving and broadly-defined
world [!], in which requirements and capabili-
ties often change during the aircraft life cycle. It
is widely recognized that over 70% of the design
features that drive life cycle cost are selected dur-
ing conceptual design [2]. Under these circum-
stances, it is generally difficult to define adequate
requirements that capture desired system perfor-
mance and functionality without constraining the
design into a sub-optimal design space. Sys-
tems Integration is widely accepted as the basis
for improving the overall design, the efficiency
and the performance of many engineering sys-
tems [3]. By adopting a unified mathematical
modelling framework that allows efficient perfor-
mance calculations throughout the system hierar-
chy, it is possible to bring typically preliminary
design activities to the conceptual phase, allow-
ing a much more comprehensive design explo-



ration. This shifts the philosophy of engineering
design enabling a systematic development from
an integrated system concept to an integrated sys-
tem product. Ideally, this method should be sup-
ported by an underling development philosophy
that provides complete coverage of system func-
tionality and requirements tracing. Also, an ac-
curate mathematical description of a system pro-
vides the design engineer with the flexibility to
perform trade studies quickly and accurately, im-
proving the early design process. Thus, con-
tinuous change-friendly holistic approaches sup-
ported by mathematical modelling are desirable
instead of specifying plain design requirements
in the pre-design phase, as usually practiced in
the 20 century.

The Agile Philosophy originates from the
field of Software Engineering and describes an
approach to development in which requirements
and solutions gradually develop through collab-
oration between self-organizing cross-functional
teams and end users. This philosophy prescribes
adaptive planning, early delivery, incremental
changes and continuous improvement, while en-
dorsing rapid and flexible response to change.
In a sense, it resembles the ethos of the Skunk
Works approach. The original form of the Ag-
ile philosophy is given in the Agile Manifesto, a
public declaration of intent released by the Ag-
ile Alliance [4]. The Agile approach is given by
sixteen guiding principles derived from four fun-
damental statements:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

The manifesto states an emphasis, not an exclu-
sion of required deliverables, i.e., the items on the
left are valued more than the items on the right.
It is different from other development philoso-
phies because of its emphasis on the concepts
of incremental work, dynamic planning, active
project risk reduction, constant validation, con-
tinuous integration and frequent verification. It
is interesting to note that the Agile mindset has
some parallels with the legendary Skunk works
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approach, as alluded above. In Johnson’s [5]
view the success of Skunk works was the con-
sistent program management approach and cul-
ture, which emphasizes the ability to make im-
mediate decisions and put them into rapid effect,
by delegating strong authority to the manager and
by employing a small team of strong generalists
with system-level thinking. In his book, Johnson
[5] gives the early definition of the Skunk works
approach:

The Skunk Works is a concentration of a
few good people solving problems far in ad-
vance - and at a fraction of the cost - of other
groups in the aircraft industry by apply-
ing the simplest, most straightforward meth-
ods possible to develop and produce new
projects. All it is really is the application
of common sense to some pretty tough prob-
lems.

Johnson developed revolutionary aircraft as the
P-80, F-104, U-2, C-130, and SR-71, using "14
Rules & Practices [0]" that defines the Skunk
Works approach, as described in his autobiogra-
phy [5]. This management approach fosters cre-
ativity and innovation, and has enabled prototyp-
ing and development of highly complex aircraft
in relatively short time spans and at relatively low
cost. The emphasis on Individuals and interac-
tions is denoted by points 2 and 3 of his rules,
addressing the need to "the use of strong, but
small project offices with 10% to 25% the size
of the so-called normal systems". Point 5 calls
for a minimum number of reports required and
points 8-9 calls for early and continuous verifica-
tion (working software' over comprehensive doc-
umentation). Points 7, 10, 12 state the necessity
of mutual trust, close cooperation and liaison on a
day-to-day basis between involved parties, which
parallels the emphasis on customer collaboration
by the Agile approach. While, points 1 to 4 and
14 refer to the adoption of a flat organization,
where lines of communication are short, making
the responsiveness to change rapidly. Point 11 al-
lude to practical earned value management and,

Unutatis mutandis, verifiable executable models, as ex-
plained in section 2.1
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lastly but not least, responding to change is al-
luded by point 6.

2 AGILE MODEL-BASED SYSTEMS EN-
GINEERING

The methodology used in this work relies on sev-
eral disciplines and concepts namely: the Ag-
ile Philosophy, Model-based system engineer-
ing (MBSE, the object-oriented system engineer-
ing method (OOSEM) and the System Modelling
Language (SysML). The method in MBSE is
what defines how the language (SysML) will be
used in the context of MBSE. In order to avoid
unnecessary confusion it is important to note that:

Agile is a development philosophy;
MBSE is a paradigm; OOSEM is a
method and SysML is a modelling
language.

2.1 Agile Systems Engineering

Systems Engineering is an interdisciplinary ac-
tivity that focuses more on system properties than
on specific technologies and has the overall goal
of producing optimized systems to meet poten-
tially complex needs. Although, there are many
ways in which to define systems engineering, the
following suffices. Systems Engineering is an in-
terdisciplinary activity that focuses more on sys-
tem properties than on specific technologies and
has the overall goal of producing optimized sys-
tems to meet potentially complex needs. Al-
though, there are many ways in which to define
systems engineering, the following suffices.

Systems engineering is an iterative process
of top-down synthesis, development, and
operation of a real-world system that sat-
isfies, in a near optimal manner, the full
range of requirements for the system. (Eis-
ner, 2008 [7]; INCOSE, 2015 [8])

Systems engineering has a broad, more holis-
tic view than what may be called "specialty
engineering[7]", that usually focus more on the
specific development of a particular component
or item or is involved with a specific discipline,
for instance, aerodynamics or structures. The

System engineering process is used when it is
necessary to define and allocate requirements to
specific engineering disciplines, and in general it
should specify the design or technologies only
at a high level. Hence, one of the responsi-
bilities of a system engineer is to define sys-
tems architecture by performing trade studies to
evaluate alternative system architecture, in which
system requirements are detailed from a black
box perspective. In the aeronautical context,
trade-studies should be quantified in terms of fig-
ures of merit (FoM) or measures of effectiveness
(MOEs).

Agile systems engineering has two main
goals. The first is to improve the process of de-
veloping specifications that can provide technical
orientation to specialty engineering in order to
develop systems that satisfies requirements and
meets customer’s needs. The second main goal
of an agile project is to enable follow-on sys-
tems development [9]. In agile methods, the sys-
tem is constructed incrementally and at the end
of each iteration, the developing system is ready
to be verified for some requirements [9]. Thus,
a validation and/or verification process is applied
at the end of each iteration to guarantee that the
evolving system meets the requirements. To sup-
port the statements of the manifesto, the Agile
Alliance give a set of 12 principles. In his book,
Douglass [Y] restates the 12 agile principles [4]
for systems engineering. Here only some princi-
ples are presented:

Principle 1 Our highest priority is to satisfy the cus-
tomer through early and continuous delivery of spec-
ifications and systems that demonstrably meet their
needs.

Principle 2 Welcome changing requirements even late
in development. Agile processes harness change for
the customer’s competitive advantage.

Principle 4 Business people and systems engineers
must work together daily throughout the project.
Principle 6 The most efficient and effective method
of conveying information to and within a development
team is face-to-face conversation or work products
that execute (or simulate).

Principle 11 The best architectures, requirements and
designs emerge from self-organizing teams.



Principle 12 At the regular intervals, the team reflects
on how to become more effective, then tunes and ad-
just its behavior accordingly.

The incremental, spiral life-cycle developed in
this work is shown in figure 1. The project initiates
by the capturing of stakeholder requirements and by
decomposing the expected functionality. Following
the functional analysis, a requirement analysis is re-
alized. Then, it is possible to define the logical ar-
chitecture which is done by establishing a hierarchy
within the system and by allocating requirements to
its corresponding functions. Based on the logical ar-
chitecture, initial architectures are proposed. These
are analyzed and new candidate architectures are syn-
thesized in order to fit the desired functionality and its
requirements. The proposed architecture is validated
accordingly and the overall system is verified. The
cycle proceeds in spiral meaning that each subsystem
and its components, if necessary, are developed in the
same incremental way. The process is iterative and
at each cycle requirements, functionality and system
elements are continuous updated to reflect the new
available information. This incremental development
is essentially the same that one typically follows when
designing by first principles.

Project Preliminary
initiation design phase

System
Verification

System

Stakeholder Validation

Requirements
Analysis

Architecture
Trade-off

Functional
Analysis

Architecture
Synthesis

Conceptual
design
phase

equirement
Analysis

Define
Logical
Architecture

Architecture
Analysis

ith Subsystem
Agile Cycle

( Program Management

( Safety Assessment Process Guidelines & Methods (ARP 4761) )
)

( Aircraft & System Development Processes (ARP 4754A /ED-79,

Fig. 1 Agile System Engineering process for air-
craft conceptual design
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2.2 Model-Based Systems Engineering (MBSE)

Blanchard [10] defines Model Based Systems En-
gineering (MBSE) as the formalized application of
graphical modelling to support system engineering ac-
tivities beginning in the conceptual design and con-
tinuing throughout the entire life cycle. MBSE sup-
ports and enhances the ability to conduct system engi-
neering tasks such as requirements capturing, design,
analysis, validation and verification. MBSE is often
contrasted with a traditional textual-based approach
to Systems Engineering. In MBSE, the primary arti-
fact of the system engineering process is the system
model. On the other hand, in a textual-based sys-
tem engineering approach, there is often considerable
information generated about the system contained in
textual documents. This information is often difficult
to maintain and to assess in terms of its quality. In a
MBSE approach, much of this information is captured
in a system model.

SysML diagrams]

Stakeholder requirements analysis
Functional Analysis
Requirement Analysis
Architectural Synthesis

Architectural Trade-off

Textual based

_

Model based

i

Fig. 2 Transition from SE to MBSE

Validation & Verification

OOSEM (method)

SysML (language)

2.3 Object oriented systems engineering method
(OOSEM)

The Object-oriented Systems Engineering Method
(OOSEM) is a MBSE approach that leverages object-
oriented concepts and adopts SysML to facilitate the
capture and analysis of requirements and design in-
formation to specify complex systems [1 1]. OOSEM
is usually applied recursively and interactively at each
level of the system hierarchy and it employs a top-
down approach to specifying, analyzing, verifying,
design and development. In agile methods, the sys-
tem is incrementally constructed at each iteration
and OOSEM provides the flexibility to accommodate
changing requirements and design evolution, making
it an ideal method for the purposes of this work, as
long as it is tailored for agile, as the INCOSE hand-
book [8] remarks.
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2.4 Systems Modelling Language (SysML)

The Systems Modelling Language (SysML) from the
Object Management Group (OMG) has emerged from
the Unified Modeling Language [12] (UML), the de
facto standard for modelling in software engineering.
Friedenthal [11] defines SysML as a general-purpose
modelling language for systems engineering applica-
tions that supports the specification, analysis, design,
validation and verification of systems and systems-of-
systems. SysML models systems aspects that may be
classified into three groups: the behavioral aspect, its
structure and its requirements.The reader is referred to
Friedenthal [1 1] and the SysML formal specifications
[13] for a comprehensive reference on SysML.

3 SYSTEMS DEVELOPMENT WITH AMBSE

The last section presents AMBSE in general terms,
not particularly focusing on its application in aircraft
design and development. This section shows that
not only AMBSE can enhance the conceptual design
process, but is also consistent with ARP-4754A and
ARP-4761 guidelines.

3.1 Overview of ARP-4754A

The document ARP4754A [14] provides guidelines
for the development cycle of aircraft systems, for the
planning of the development process and guidelines
for showing compliances with regulations. In general,
aircraft systems show a high degree of interaction be-
tween systems. Thus, they have many modes of fail-
ure that affect the safety of the aircraft. ARP 4754A
provides a methodology to mitigate development er-
rors and provide a guideline for the assigning the ad-
equate assurance level that errors in the development
cycle have been identified and corrected. This is re-
alized by assigning a Functional Development Assur-
ance Level (FDAL) to the top-level Function, based
on its most severe Top-Level Failure Condition Clas-
sification in accordance with Table 1.

Table 1 Top-Level Function FDAL assignment

Severity FDAL Assignment
Catastrophic A
Hazardous/Severe Major B
Major C
Minor D
No Safety E

AMBSE benefits from the use of ARP 4754A and
ARP 4761 practices, since these technical standards
imposes design discipline and development structure,
ensuring that both operational and safety requirements
are fully realized and substantiated. Also, AMBSE fa-
cilitates the use of these practices by providing a de-
sign environment where requirements and solutions
evolve by small verifiable increments through col-
laboration between self-organizing cross-functional
teams and end users.

4 APPLICATION OF AMBSE IN CONCEP-
TUAL DESIGN

This section presents the application of AMBSE to
the first design iterations during the conceptual design
phase. AMBSE is applied to both the aircraft, system,
and component level following the process described
in figure 1. The component level is used to illustrate
how AMBSE may support the so-called Post-Tier 1
[15] supply chain trend, which involves more vertical
integration and restructured responsibilities between
OEM and its suppliers. AMBSE supports an approach
in which the aircraft designer is aware of the inter-
actions and implications between systems and differ-
ent disciplines. This is especially important in con-
ceptual design, which is an intense exploratory phase
due to its iterative process structure, involving feed-
back loops and successive refinements. In addition,
the emphasis on the practice of first principles de-
sign within AMBSE results in rapid design-responses,
allowing requirements and solutions to gradually de-
velop through collaboration between cross-functional
teams and end users, as prescribed by the Agile Phi-
losophy.

4.1 Design Methods & Tools

The AMBSE process described in section 2.1 and
shown in figure 1 is represented as a SysML activity
diagram in figure 3. The activity box inside the dia-
gram describe the system engineering activities. Af-
ter the specific system/subsystem architecture, it is
compared with alternative proposals. Once a candi-
date architecture is considered ready, it is passed to
Integrated Product Development Teams (IPDTs) for
preliminary design. The standards ARP-4754A and
ARP-4761 are used to requirements generation during
the entire process.

AMBSE requires an integrated development en-
vironment (IDE). In this work, Eclipse [16] Papyrus
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[17] was chosen because it is open-source, offers
UML/SysML modelling capabilities and it contains
an extensible plug-in system for customizing the en-
vironment. In particular, Papyrus was augmented
with Massif [18] and Epsilon [19] plug-ins, allow-
ing to transfer SysML activity diagrams to subsys-
tem blocks in the Simulink environment. Engineering
analysis necessitate the creation of dynamic models.
The use of the object-oriented paradigm with bond
graph modelling facilitates the process of deriving the
necessary differential equations. The software 20-sim
[20] was used in this work to model systems with the
bond graph formalism and also to generate the re-
spective s-functions, which can promptly be used in
a Simulink model with great numerical computational
performance.

Microsoft© Excel " is used as a technical calcu-
lation and report creation tool, since it is nearly uni-
versally used across the world and because it nega-
tive aspects can be managed. All of the spreadsheets,
conforming to the same format and layout. The tra-
ditional design approach as in Roskam [21], Nicolai
[22], Datcom [23], Kuchemann [24], Dubbel [25] and
Hoerner [26, 27] was implemented in a spreadsheet
customized with XL-Viking[28] plug-in. Most of the
spreadsheets use the XL-Viking Add-in to display and
audit the calculations. The XL-Viking add-in con-
tains easy to use functions that show all the numbers
or variables in each Excel formula. This ensures ac-

curacy and traceability of the calculations, allowing
significant and valuable time is saved in checking and
auditing of calculations while keeping all of the calcu-
lations live and writing and updating reports is much
quicker and easier. This feature also facilitate the use
of conceptual development and design-related analyt-
ical tools (such as risk assessment matrix and sensitiv-
ity analysis), described in Goldberg et all [29]. This
spreadsheet approach allows Python scripting through
XL-Wings [30] plug-in to facilitate the data transfer-
ring to the Simulink environment and to generate in-
put to the SUAVE conceptual level aircraft design en-
vironment. The design environment SUAVE [31] was
used to both aerodynamic and performance analyses.
The plug-in gendoc [32] is used in the Eclipse envi-
ronment to generate word files containing the corre-
sponding diagrams. Recurrent engineering calcula-
tions were also inserted in the generated documents.

4.2 System Requirements Analysis

The AMBSE approach was applied in the design of
a hypothetical airplane designated as Kr-206 which is
intended to provide ways to test and develop advanced
design techniques and methodologies. In particular,
SST aircraft design demands special attention to the
flight control system, where many factors differ sig-
nificantly from subsonic aircraft. Most of the stake-
holder requirements were inferred from technical lit-
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erature [33, 34, 35], except the range requirements.
The regulation FAA Part 25 [36] does not establishes
flying qualities criteria. However, the document flight
control design best practices [37] recommends that the
MIL-F-8785C [38] be followed as a guide for flying
qualities criteria. The table 2 shows a partial list of the
requirements gathered from both Part 25 and MIL-F-
8785C.

4.3 Functional Analysis

The purpose of this activity in the systems engineer-
ing process is to iteratively identity the functions that
the system must perform. Functional analysis is es-
sential to the application of ARP-4754A/ARP-4761
standards, because of that in the methodology fol-
lowed in this work it is given a specific phase in the
process. This activity establishes basic aircraft level
performance, and operational requirements, which is
accomplished by arranging the functions into logi-
cal sequences, decomposing top-level functions into
lower-level functions, and allocating performance re-
quirements generated from the higher-level functions
in the hierarchy to the lower-level ones. The output of
this process is the functional architecture of the sys-
tem, that is, a description of the system, in terms of
its functionality. According to ARP-4754A [14], the
output of this activity is a list of aircraft level func-
tions and associated function requirements and inter-
faces for these functions.

4.4 Logical Architecture Definition

The logical architecture establishes the structure and
boundaries within which specific system design are
implemented to meet all of the established safety and
technical requirements. In practice, this the logical
architecture definition phase, requirement and analy-
sis functional and the allocation of requirements are
tightly-coupled iteratively processes. Since functional
and performance requirements originate at the highest
levels of the system hierarchy, these activities must
be continuously repeated to define the logical archi-
tecture at ever greater levels of detail. This process
generates many types of requirements which include:
independence, probabilistic, qualitative, availability,
integrity, monitoring, operational and maintenance re-
quirements and in latter iterations Function Develop-
ment Assurance Level (FDAL). At aircraft level the
safety requirements are generated from the aircraft
FHA based on top-level aircraft functions previously

defined. At system level, the safety requirements are
all those system level requirements generated from the
system FHA which are decompositions of the aircraft
level safety requirements. At the next level down the
requirements are all those aspects of the system which
allow the safety objectives associated with the sys-
tem FHA classifications to be satisfied. The output
of this process generates many elements which need
to be organized via SysML packages. In addition to
that, the preset work adopted the Joint Aircraft Sys-
tem/Component (JASC [39]) code tables. The JASC
numbering provides a consistent framework for the
aircraft technical documents. At the item (component
and subcomponent) level, S1000D [40] were used.

4.5 Architecture Synthesis and Analysis

The activity architecture synthesis and analysis com-
prises the allocation of functionality and correspond-
ing different kinds of requirements to high-level phys-
ical elements. Ideally, more than one candidate sys-
tem architecture should be considered in this activ-
ity. These candidate architectures are then iteratively
evaluated using functional and performance analysis.
In latter iterations, when the candidate architecture
contains sufficient detail, it is possible to to apply
preliminary phase ARP-4761 [41] Preliminary Air-
craft Safety Assessment (PASA)/Preliminary System
Safety Assessment (PSSA) processes to establish the
feasibility in meeting aircraft and functionality and
top level safety requirements assigned to the system.

Aircraft Level The hypothetical aircraft develop-
ment in this work features a double cranked-arrow
wing. A feature of this wing is that its aerodynamic
center shifts as the Mach number increases, moving
towards the tail cone of the aircraft [42]. A major
penalty of this type of wing is that the drag increases
due to the required deflection of the control surfaces
needed to compensate an aircraft, in transonic regime.
In supersonic regime, this penalty is even greater and
the stability of the phugoid mode is often reduced.
In such cases, it is desired to move the C.G during
flight, which can be accomplished by integrating the
fuel system with the flight control system. By trans-
ferring fuel, it is possible to maintain the static margin
during transonic and supersonic regime to only 3% of
the mean aerodynamic chord. This feature highlights
the benefit of early systems integration in conceptual
design that AMBSE makes possible and manageable.
The aircraft level AMBSE is discussed in section 4.2
to 4.4.
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Table 2 Partial list of longitudinal flying qualities requirements

Identification Name Type
R-ST-02 Longitudinal static
stability
R-FCS-FQ-04-02-01-B Short-period
damping
R-FQ-05-03 Pilot-induced
oscillations

System Level In the conceptual design, it was de-
cided that the aircraft shall not have a horizontal sta-
bilizer in order to improve its aerodynamic perfor-
mance, thus it requires a fly-by-wire system to aug-
ment its longitudinal stability characteristics. in fig-
ure 4, an initial flight control system architecture is
proposed, in which all primary flight control surfaces
are all electrically-controlled and hydraulic activated.
The FCS interfaces with hydraulic and electrical sys-
tems. The actuators are powered by the aircraft blue,
green and yellow hydraulic lines. The flight control
surfaces are powered by a combination of hydraulic
and electro-hydrostatic actuators. It is assumed that
the FCS possess by three primary computers and two
secondary computers that process pilots and autopi-
lots inputs according to normal, alternate or direct
flight control laws, as shown in figure 4. The nose
up and down movement are controlled by 4 elevons.

Flight Control

Flight Control
aaaaaaaa

Primary Computer #1

Flight Control

Flight Control
Primary Computer #2 d

eeeeeee

Flight Control
Primary Computer #3

) Pitch - Pitch |

| Roll

G|Y
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P
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ode
Direct Elect (?n g lode

Mechani ersion

BlY Y|B Y| G

n Engine 2)

Fig. 4 Proposed Initial FCS Architecture

From the simple candidate architecture schemat-
ics shown in figure 4, it is possible to consistently de-
rive its corresponding bond graph by substituting each
identified system by a word bond graph. A SysML
block definition diagram is draw to represent its struc-
ture and interfaces with associated functions and re-
quirements. Each element is the proposed architec-
ture is then modeled as a bond graph using the soft-

Specification

There shall be no tendency for airspeed to diverge
aperiodically when the airplane is disturbed from trim
with the cockpit controls fixed and with them free.
The equivalent short-period damping ratio, {gp, shall
be within the limits 0.30 < {sp < 2.0.

There shall be no tendency for sustained or uncon-
trollable oscillations resulting from the efforts of the
pilot to control the airplane.

ware 20-Sim [20]. This software is capable of ex-
porting the bond graph model and its sub-models as
s-functions, which can readily be integrated in the
Simulink model.

An initial candidate architecture were proposed
for the fuel system, see figure 5. It was designed to
provide data for the total fuel volume required, the
size, location and number of fuel tanks needed and
the number of fuel pumps, its location and the re-
quired capacity of fuel pumps and fuel lines. The
engine fuel flow was obtained in this stage by mul-
tiplying the maximum required thrust by the associ-
ated fuel consumption. Although it is reasonable to
assume that the number of tanks in order to keep the
cost to a minimum and reduce weight, in this work,
the size, location and number of tanks were driven
by stability requirements in terms of the desired loca-
tion of C.G for different loading scenarios. The sizing
of fuel lines and the determination of necessary fuel
pump pressures were calculates using [43]. The sim-
ple schematics in figure 5 along with first principle
calculations was sufficient to generate a bond graph
representation, which was included in the Simulink
model as a s-function.
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Component Level As shown in figure 4, the initial
FCS architecture employs Electro-Hydrostatic Actu-
ator (EHA) and Electro-backup-Hydraulic Actuator
(EBHA). The design of an EHA (see figure 6) re-
quires multi-domain modelling capability, since on it
mechanical, hydraulic, thermal and electrical domains
interact with each other. Therefore, bond graphs are
an ideal tool for modelling such components. Follow-
ing Langlois et all [44], the following EHA compo-
nents are modeled by the Bond Graph shown in figure
7: Electrical motor, hydraulic pump, accumulator, as-
sociated hydraulics (two valves and a bypass valve),
hydraulic cylinder, the mechanical actuation (four-bar
mechanism) and control surface. it is assumed that the
EHA is supplied with a constant DC voltage source.
In practice, the EHA is fed with a three-phase AC
power that supplies power drive electronics, which in
turn, drive a variable speed pump together with a con-
stant displacement hydraulic pump [45].

Electro-hydraulic Actuator

Fig. 6 EHA schematics

Table 3 presents a partial list of servo-actuator
specifications deduced from the AMBSE approach.
They were generated from the complete bond graph
model. It’s nominal parameters were calculated using
standard mechanical engineering methods that were
programmed into design spreadsheets. The complete
list has 30 requirements, including performance and
functional requirements and it is intended to comple-
ment and foster discussion with stakeholders and sup-
pliers.

4.6 Validation and Verification

Validation and Verification comprise independent pro-
cedures that are used together for checking that the
system meets its intended functions, its requirements
and specifications. In the present work, both pro-
cedures are realized in MATLAB/Simulink in a six-
degree-of-freedom flight dynamics model. A briefly
discussion of this model and control laws are con-

tained in the appendix. The following require-
ments (presented at table 2) were validated and ver-
ified: pilot-induced oscillations, short-period damp-
ing, short-Period frequency and acceleration sensi-
tivity, thus the system satisfies the short-period Re-
sponse. The longitudinal response to a elevon step
command for the non-augmented aircraft is shown in
figure and the longitudinal behavior of the aircraft us-
ing the dynamics inversion control law is shown in
figure 9.

The system was verified in low subsonic cruise
conditions (M = 0.70 and FL340) for two different
control laws for: Gain scheduling and dynamic inver-
sion. They were compared using the Control Antic-
ipation Parameters (CAP). The CAP associated with
Gain scheduling is 3.435, while dynamic inversion re-
sults in a CAP of 2.10. The aircraft conceptual de-
sign specification is shown in table 4. A side and a
top view of the hypothetical aircraft Kr-206 designed
with AMBSE are shown in figure 10.

S CONCLUSIONS

This paper demonstrated the use of the Agile Philos-
ophy in the aircraft conceptual design. The design
of the flight control system is selected to illustrate
the procedure in detail and it is concluded that Agile
Model-Based Engineering greatly improves the early
aircraft design process, allowing a smoothly transition
from conceptual to preliminary design. It is shown
that verifiable models are required for agile systems
engineering to enable design studies across all dis-
ciplines and constraints. OOSEM and SysML pro-
vide the flexibility to accommodate changing require-
ments and design evolution, making them good can-
didates for modelling within the Agile Philosophy.
This not only ensures that at the end of each itera-
tion, the maturing system design meets the require-
ments from early on, but guaranties later a smoothly
transition from conceptual to preliminary design. The
mathematical models necessary to develop the verifi-
able models in Simulink can be easily derived with the
Bond Graph approach. Moreover, bond graph mod-
els used in a objected-oriented way harmonizes with
the methodology described and can be used by en-
gineers to perform straightforward numerical analy-
sis in addition to gain qualitative insight, aiding the
designer especially in the early stages of design and
integration. The common spreadsheet approach en-
hanced with add-ins is capable of ensuring accuracy
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Fig. 7 Bond Graph representation of the EHA

Table 3 Partial list Servo-actuator Specifications
Specification

Identification Name Type

Req-EHA-F-01 Operating Pressure

Req-EHA-F-10 Maximum operating
pressure

Req-EHA-F-11 Maximum acting force

Req-EHA-F-15 Extended Actuator Length
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Fig. 8 Non-augmented longitudinal response
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Fig. 9 Augmented longitudinal response

and traceability of the initial parameters calculations.
The combination of mathematical modelling, Safety
Assessment and system design techniques provides
valuable insights in the conceptual design process, es-
pecially when applied to lower level aircraft systems.
Within the Agile Philosophy, the engineering experi-
ence and creativity still remains the essential keys to
the successful development of the system.

The required operating pressure, P;, is 26 MPa.

The actuator should be designed for a maximum oper-
ating pressure, P4y, , of 23.6 MPa.

The actuator should be designed for a max-

imum force, F;q4x,, of 14430 N.

The actuator should be designed for an ex-

tended length of 560 mm.

47.96

315—= =~ A
/maeoaaoe T ——
P o
T h— !

41.88 ———~

116.42

Fig. 10 Hypothetical SST designed using AMBSE

Table 4 Kr-206-A Partial list of specifications

Wing Area 127.18 m?

Aspect Ratio 1.58

Wing Loading 3112 N/m?

Number of Passengers 37

Maximum Take-off Weight  40361.5 kg

Fuel Maximum Weight 13935.3 kg (34% MTOW)

Empty Weight 21597.8 kg

Cruise Altitude 10058.4 m (33000 ft)
14325.6 m (47000 ft)

Cruise Mach M =093 and 1.4
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