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Abstract

This paper considers a comparative assessment
based on time response performance between a
robust nonlinear control technique Universal In-
tegral Regulator (UIR) and the modern and well-
known linear technique Linear Quadratic Regu-
lator (LQR) for the velocity tracking control of
a nonlinear aircraft model. The UIR is based
on sliding mode control design but using a con-
ditional integrator in order to improve the tran-
sient response of the controller and to main-
tain the tracking error at zero. On the other
hand, the LQR have demonstrated to be a pow-
erful technique used to perform systematically
gain scheduling at various flight conditions in lin-
earized aircraft models. The control objective
is to determine the elevator deflection to asymp-
totically track desired reference for the velocity.
Results demonstrated a better performance using
UIR controller, providing smaller tracking error,
less control activity and more robustness.

1 Introduction

The development of aircraft controllers have been
the focus of many researchers in the past and
this area is continuously growing in order to at-
tend the civilian and military new projects. Con-
trollers help pilots in stabilizing the aircraft and
serve as a back up source of control in the case

of a flight surface failure. In military appli-
cations, the tracking of a target or simply the
proper control of the commonly unstable dy-
namic require robust and effective controllers.
Due to the abrupt maneuvers and huge flight en-
velope of this kind of aircraft, a linearized model
and gain scheduling technique will require a lots
of gain adjustments (computations) during the
whole flight, consuming time at expense of com-
putational cost. A robust controller can minimize
the computations and provide a set of controller
gains that could be valid at any point of the flight
envelope.

Many control methods have been used in
flight control, among them we have: Proportional
Integrative Derivative (PID) controller sucess-
fully implemented in [1] and [8] in which Ge-
netic Algorithm (GA) optimization was used to
tune the PID gains. Linear Quadratic Regulator
(LQR) also was considered to control maneuvers
in a flexible aircraft in [18], aircraft trajectory in
conjunction with Nonlinear Dynamic Inversion
(NDI) in [13], hypersonic flight in [11], flight
stability in the LSU-05 unmanned aerial vehicle
in [9] and is one of the most implemented tech-
niques in the aeronautical industry [4].

According to [11], the design of a robust con-
troller for a real world application using a non-
linear model is a challenging task. In the litera-
ture some methods have been proposed, the most
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commonly used, as mentioned above, require a
linearized model whose linear matrices need to
be updated at a given operating point in the flight
envelope. Then, the feedback linearization (FL)
technique helped to eliminate the need of gain
scheduling and some techniques based on FL be-
gins to be studied. One of these techniques is the
Sliding Mode Controller (SMC) which was suc-
cessfully applied in flight control in the works of
[19], [10] and [2].

The Universal Integral Regulator (UIR) is
based on the SMC technique, it was created by
Hassan Khalil in the work [5] and improved
by his co-workers in subsequent works as [6],
[12] and others. As mentioned before, UIR is a
SMC based technique which enhanced transient
response by means of a conditional integrator.
UIR can be easily implemented and its controller
parameters can be obtained analytically through
a mathematical and simple stability analysis (at
least in this paper).

In the present work the UIR and the LQR
techniques are applied to the velocity tracking of
a fighter aircraft modeled with the aerodynamic,
mass, and inertia properties of a Mirage III air-
craft. The control objective is to determine the el-
evator deflection to asymptotically track desired
reference for the velocity. Performance of both
controller are compared.

2 Aircraft Model

The aircraft dynamic considered in this work is
the longitudinal model of a Mirage III fighter air-
craft extracted from [15]. The three-degrees-of-
freedom mathematical model uses aerodynamic
data (stability and control derivatives) which can
be considered approximately constant (indepen-
dent of the equilibrium point). The model in a
combined wind and body axes is described as:

V̇ =
1
V
(uu̇+ vv̇+wẇ)

α̇ =

(
ẇ
u −

wu̇
u2

)
√

1+(w/u)2

q̇ = c5 pr− c6(p2− r2)+ c7M

Θ̇ = qcosΦ− rsenφ

(1)

Where, V is the total velocity of the aircraft,
α is the angle of attack, q the pitch rate, Θ

the attitude angle and the constants c5 = (Izz−
Ixx)/Iyy, c6 = Ixz/Iyy and c7 = 1/Iyy. In this
work, it is assumed that the longitudinal and
latero-directional dynamics are decoupled and
the latero-directional variables Φ, p and r are ap-
proximately zero. The equations of motion of the
velocity components u, v and w are represented
as follows:

u̇ = m−1(Fx +T cosα f )−gsenφ

+ rv−qw

v̇ = m−1Fy +gsenφcosθ

+ pw− ru

ẇ = m−1(Fz +T senα f )+gcosφcosθ

+qu− pv

(2)

Where m is the aircraft mass, g the acceler-
ation of gravity, T the maximum thrust and α f
the engine incidence angle considered null in this
work. The forces Fx, Fy, Fz and the pitch moment
M are written as:

Fx = q̄SCx Fy = q̄SCy

Fz = q̄SCz M = q̄Sc̄Cm
(3)

Where q̄ denotes the dynamic pressure and S
and c̄ the wing surface and mean aerodynamic
chord respectively. The aerodynamic coefficients
Cx, Cy, Cz and Cm are function of the Euler an-
gles and the aerodynamic coefficients CL, CD and
Cya which in turn depend on the stability deriva-
tives Cm0 , Cmα

, Cmq , control derivative Cmδp and
control input δp. Some physical properties and
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Table 1 aircraft properties
Property Value Property Value

m[kg] 7400 CLq 0
S[m2] 36 Cm0 0
c̄[m] 5.25 Cmα

-0.17
Iyy[kg ·m2] 5.4×104 Cmq -0.4

CL0 0 Cmδp -0.45
CLα

2.204 - -

aerodynamic data of the model are showed in Ta-
ble 1.

Expanding Equation 1 and using Equations 2
and 3 the system can be written in as:

V̇ = gsin(α−Θ)+
T
m

cosα

− q̄S
m

Cd (α,q)+
(

T
m

cosα

)
δπ

α̇ = q+
g
V

cos(α−Θ)− T
mV

sinα

+
q̄S
mV

CL (α,q)−
(

T
mV

sinα

)
δπ

q̇ =
q̄Sc̄
Iyy

[
Cm0 +Cmα

α+Cmq

(
c̄
V

)
q
]

+

(
q̄Sc̄
Iyy

Cmδp

)
δp

Θ̇ = q

(4)

3 Controller Design-Universal Integral Reg-
ulator

The UIR controller developed in this section is
based on the work of [12], the assumptions taken
into account will be mentioned throughout the
controller design.

3.1 Problem Formulation

Consider the system in Equation 4. This sys-
tem can be rewritten in the input affine-form
ẋ = f (x) + g(x)u with the state vector x ∈ Rn

(n= 4) as x= {V,α,q,Θ}T , the control input vec-
tor u ∈ Rm (m = 1) as u = {δp}, and the output
vector y ∈ Rp (p = m) as y = h(x) = V . With

the smooth functions f (x) = [ f1, f2, f3, f4]
T and

g(x) = [g1,g2,g3,g4]
T as showed in Equation 5.

f (x) =



gsin(α−Θ)+ T
m cosα

− q̄S
m Cd (α,q)+

(T
m cosα

)
δπ

q+ g
V cos(α−Θ)− T

mV sinα

+ q̄S
mV CL(α,q)

( T
mV sinα

)
δπ

q̄Sc̄
Iyy

[
Cm0 +Cmα

α+Cmq

( c̄
V

)
q
]

q



g(x) =


0
0

q̄Sc̄
Iyy

Cmδp

0



(5)

The control problem consists in designing the
elevator control input that makes the total veloc-
ity of the aircraft V to track a "ramp" type ref-
erence from one equilibrium velocity to another.
According to [12] the control problem can be
solved if the internal dynamic of the system is
input-to-state stable, in this work is assumed that
the internal dynamic attends this criterion. In or-
der to better formulate the control problem is as-
sumed that the system has uniform relative de-
gree and can be converted to normal form (as-
sumption 1 in [12]). Another assumption con-
sidered in this work in order to simplify the con-
trol problem, as mentioned before, is that all the
latero-directional state variables are null or con-
stant and only the longitudinal states are time
varying, therefore, the longitudinal and latero-
directional dynamics are decoupled.

3.2 Relative Degree, Normal Form Transfor-
mation and Tracking Problem

Using the first assumption and the Lie deriva-
tive of Equation 6 as proposed in [14] and [5],
we can compute the relative degree to the output
y = h(x) =V , then, for k = 0 we have (see Equa-
tion 7 :

Lg jL
k
f hi(x) = 0,

0≤ k ≤ ρi−2
0≤ i, j ≤ m (6)
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LgL0
f h(x) = Lgh(x) =

[
∂h
∂x1

∂h
∂x2

∂h
∂x3

∂h
∂x4

]
g1
g2
g3
g4


(7)

With Lgh(x) = 0 due to g1 = g2 = g4 = 0 and
h does not depend on x3, therefore, k = 0 does not
attend Equation 6. for k = 1, the Lie derivative
becomes:

LgL1
f h(x) =

∂ f1

∂x3
g3 (8)

Then, LgL f h(x) = 0, because f1 does not de-
pend on x3 = q. Using k = 2, we have:

LgL2
f h(x) =

∂Ā
∂x3

g3 (9)

with Ā = ∂ f1
∂x2

f2 +
∂ f1
∂x4

f4. Solving Equation 9
with x3 = q we obtain:

LgL2
f h(x) =−T

m
senα(1+δπ) 6= 0 (10)

Resulting in a relative degree ρ = k+ 1 = 3.
Due to ρ< n the transformation to normal form is
partial and we have internal and external dynam-
ics represented, respectively, by the new variables
η and ξ.

3.3 New Variables

The new internal and external variables are deter-
mined by mean of the Equations 11 and 12. The
new external variables are computed in Equation
13.

ξ
i
j = L j−1

f hi

{
1≤ j ≤ ρ

1≤ i≤ m
(11)

Lgη = 0 (12)

ξ1 = L0
f h(x) = h(x) =V

ξ2 = L f h(x) = f1 = gsin(α−Θ)+
T
m

cosα

− q̄S
m

Cd (α,q)+
(

T
m

cosα

)
δπ

ξ2 = L2
f h(x) = Ā

(13)

With f1, f2, f3 and f4 as defined in Equation
5. It is easy to check that the simplest choice η =
Θ satisfy the condition in Equation 12, this, by
the fact that g1 = g2 = g4 = 0 and the choice of η

does not depend on q (see Equation 14).

Lgη =
∂η

∂V
g1 +

∂η

∂α
g2 +

∂η

∂q
g3 +

∂η

∂Θ
g3 = 0 (14)

3.4 New Dynamic (Normal Form)

In accordance with [5] the new external and in-
ternal dynamics are constructed as in Equations
15 and 17 respectively, then, the normal form
transformation is completed, the computing of
the function b(x) was done with a software aid
and due to space limitations is not presented here.

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = b(x)+a(x)u

(15)

Where:

b(x) = L3
f h(x) =

[
∂Ā
∂x1

∂Ā
∂x2

∂Ā
∂x3

∂Ā
∂x4

]
f1
f2
f3
f4


a(x) = LgL2

f h(x) = A(x) =−T
m

senα(1+δπ)

(16)

L f η = f4 = Θ̇ = q (17)
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3.5 Tracking problem

Through assumption 2 in [12] it is possible to
define the error dynamics. Let z = η− η̄ be
the internal dynamic error with η̄ = Θeq and
ei = ξi − ξ̄i − v1 the external dynamic error
with ξ̄1 = [r1ss,0,0] = [Veq,0,0] and v1 = [r1−
r1ss,r

(1)
1 ,r(2)1 ] = [Vre f −Veq,V

(1)
re f ,V

(2)
re f ] where V (1)

re f

and V (2)
re f are respectively the first and the second

time derivative of the velocity reference. Finally,
the system error is as showed in Equation 18 and
the error dynamics can be written in the compact
matrix form as in Equation 19.

e = [eV
1 ,e

V
2 ,e

V
3 ] = [ξ1−Vre f ,ξ2−V (1)

re f ,ξ3−V (2)
re f ]
(18)


ėV

1
ėV

2
ėV

3

=

0 1 0
0 0 1
0 0 0


eV

1
eV

2
eV

3


+

0
0
1

{b(x)+a(x)u}

(19)

3.6 RIU Controller

The first step to be acomplished is to design the
sliding surface of a Continuous Sliding Mode
Controller (CSMC) (Equation 20) modified by
the introduction of a conditional integrator (see
Equation 22 whose variable is defined as σV .
Using the relative degree previously computed
ρ = 3, it is possible to obtain Equation 21.

sV = kV
0 σV +

ρ−1

∑
j=1

kV
j eV

j +eV
ρ 1≤ j≤ ρ−1 (20)

sV = kV
0 σV + kV

1 eV
1 + kV

2 eV
2 + eV

3 (21)

σ̇V =−kV
0 σV +µV sat (sV/µV ) (22)

Where eV
2 = ėV

1 and eV
3 = ėV

2 . The constants
kV

1 ,k
V
2 > 0 are chosen such that the polynomial

kV
1 + kV

2 λ1 +λ2 = 0 has only roots (λ) with neg-
ative real parts (Hurwitz). Deriving the sliding
surface we have:

ṡV = kV
0 σ̇V + kV

1 eV
2 + kV

2 eV
3 + ėV

3 (23)

Using the conditional integrator dynamics de-
fined in Equation 22 and using ėV

3 from Equation
19, we get:

ṡV = kV
0
{
−kV

0 σV +µV sat (sV/µV )
}
+ kV

1 eV
2

+ kV
2 eV

3 +b(x)+a(x)uV

(24)

Assuming that a(x) = A(x) is completely
known, we define the UIR controller as in [12]:

{
uV = a(x)−1 [−F̂V (·)+ vV

]
vV =−KV sat

(
sV
µV

) (25)

With FV (·) = kV
1 eV

2 + kV
2 eV

3 + b(x) and F̂V (·)
a nominal value of FV (·). Due to the flexibil-
ity of choosing F̂V (·) = 0 for SISO systems (see
[12] for more details), the controller will be of the
form:

uV =−a(x)−1KV sat
(

sV

µV

)
(26)

With KV = νV (·)+ qV and qV > 0 as stated
in assumption 6 of [12]. Substituting uV in ṡV
of Equation 24 and analyzing outside the bound-
ary layer (|sV | ≥ µV ), in this region sat (sV/µV ) =
sV/ |sV |, then:

ṡV = ∆V (·)−KV (sV/ |sV |) (27)

Where:

∆V (·) = kV
0
{
−kV

0 σV +µV sat (sV/µV )
}
+FV (·)

(28)
It is easy to demonstrate in a simple stability

analysis for sV that choosing the Candidate Lya-
punov Function (CLF) Vs =

1
2s2

V , its first deriva-
tive will be V̇s = sV ṡV which will be V̇s < 0 if we
define νV (·) as in Equation 29.

5
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νV (·)≥ max
∣∣∣∣∆V (·)

|sV |
sV

∣∣∣∣ (29)

Maximizing the last equation we have:

∆V (·) =
|sV |
sV

kV
0

{
−kV

0 σV +µV
sV

|sV |

}
+
|sV |
sV

FV (·)

=−
(
kV

0
)2

σV
|sV |
sV

+ kV
0 µV +

|sV |
sV

FV (·)

≤ kV
0 µV − sign(sV )kV

0 µV +
|sV |
sV

FV (·)

≤ 2kV
0 µV + |FV (·)|

(30)

We choose qV = 2.1kV
0 µV > 0 to cancel the

term 2kV
0 µV and νV (·) needs to be νV (·) ≥

|FV (·)| = kV
1

∣∣eV
2

∣∣+ kV
2

∣∣eV
3

∣∣+ |b(x)|. Finally we
determine the controller gain by means of KV =
νV (·)+ qV with kV

1 > 0 and kV
2 > 0 as stated in

the first part of the RIU controller, establishing
maximum tracking errors for eV

2 and eV
3 and com-

puting |b(x)| as in Equation 16.

4 Controller Design-Linear Quadratic Reg-
ulator (LQR)

In order to apply the LQR controller to the track-
ing problem of the aircraft velocity it is neces-
sary re-define the system states and outputs in or-
der to simplify the nomenclature. Based on the
theory presented in [17] for LQR controllers, the
aircraft dynamic needs to be linearized in several
operating points and then LQR gains are sched-
uled. In this work, the linearization is done us-
ing the small perturbation theory and once the
linear matrices are obtained we proceed to con-
struct the augmented dynamic as in [17], that is,
aircraft+actuator+compensator, whose total dy-
namic is written as:

ẋ = Ax+Bu+Gr
y =Cx+Fr
z = Hx

(31)

With z(t) as the performance output (different
from the measured output y(t)). Output is desired

to follow the reference r. F and G are matrices
chosen to introduce the desired structure of the
dynamic compensator ẇ which is defined as:{

ẇ = Fw+Ge
v = Dw+ Jce

(32)

Whose input is the tracking error e = r(t)−
z(t), and v(t) is the output, matrices D and Jc can
be assumed null [17]. The augmented matrices in
Equation 31 are written as function of the com-
pensator leading to:

A =

[
A 0
−GH F

]
B =

[
B
0

]
F =

[
0
Jc

]
C =

[
C 0

JcH 0

]
H =

[
H 0

]

(33)

Where the original matrices A, B and C, are
product of the linearization of the aircraft model
through small perturbation theory, see Appendix
7 which shows these matrices corresponding to
the aircraft equilibrium point v = 250m/s and
H = 5000m. Finally, the control input of the sys-
tem can be expressed as u = −Ky. Substituting
the measured output y(t) in the input we obtain
the closed-loop control:

u =−Ky =−KCx−KFr (34)

With K as the gain matrix (m× p) to be deter-
mined by mean of an optimization process. This
is done minimizing a performance index J, to
do this, it is necessary to define the matrices Ac
and Bc of a Lyapunov equation (defined bellow in
Equation 40). Substituting Equation 34 in Equa-
tion 31 we obtain:

ẋ = Ax+Bu+Gr
= (A−BKC)x+(G−BKF)r
= Acx+Bcr

(35)

6
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To solve the tracking problem of the total
velocity V through elevator deflection, we de-
fine the state and output vectors respectively as
x = [V,α,Θ,q,δp,ε]

T and y = [V,ε]T . The ε vari-
able represents the output of the integrator used
to cancel the stationary error [17]. To make the
simulations more realistic, an actuator for the el-
evator was modeled (δp). The actuator model im-
plemented in this design was modeled in the state
space as in Equation 36 as used in [16], the same
model will be used in the UIR simulations.

δ̇p =−20.2δp +20.2ua (36)

The actuator input ua can be seen as the input
voltage of the electro-hydraulic actuator and δp
as the elevator deflection. Then, the augmented
matrices can be written as shown in appendix 7.
Matrix C represents the measured outputs (veloc-
ity V and tracking error ε). null matrix F indi-
cates that the compensator output was not taken
into account and H is the performance output of
the problem. Finally, the control is written as
function of the gain matrix and the feedback of
total velocity V and tracking error ε, as showed
in Equation 37.

u =−Ky =−
[
KV Kε

][V
ε

]
(37)

With KV as the velocity feedback gain and Kε

the integral gain of the tracking error. Figure 1
shows the control loop to the tracking problem of
total velocity of the Mirage III aircraft.

Aircraft Dynamic

Actuator

Vref

LQR 

Gains

Reference

Fig. 1 LQR-control loop

The performance index for this problem is de-
fined by Equation 38

J =
1
2

∫
∞

0
(xT Qx+uT Ru)dt (38)

Matrices Q and R are chosen using the
Bryson rule (in which Q and R depend on
bounds imposed to the output to be controlled
and bounds of the control itself). Once the aug-
mented system and the matrices Q and R are de-
fined, we proceed to determine numerically the
initial gain matrix of the optimization process Ks,
the main idea is to calculate the gains such that
matrix Ac of Equation 35 is Hurwitz [7]. Then
the Ks gains are used as initial condition to min-
imize the performance index J of Equation 38.
It must be remembered that the dynamic opti-
mization problem of solving Equation 38 can be
transformed into an equivalent static one, easier
to solve, resulting in a new performance index of
the form (see book [17]):

J =
1
2

xT (0)Px(0) (39)

Where P is a matrix that needs to be solved
from the Lyapunov Equation 40 that depends on
the gain matrix K, for this reason a initial gain
matrix Ks is computed before.

AT
c P+PAc +CT KT RKC+Q = 0 (40)

Once P is determined, the performance in-
dex J is minimized using the fmincon function
of MATLAB R©. As previously mentioned, in or-
der to compare this controller (LQR) with the
UIR controller, the same reference velocity to
be tracked is defined in both controllers. It is
important to highlight that the optimization pro-
cess consists of iteratively change the gains K in
Equation 40 in order to the resulting P matrix be
able to minimize the performance index J.

5 Numerical Simulations

The equilibrium points used as initial conditions
for the simulations are listed in Table 2, this
points belong to the flight envelope of the Mirage
III aircraft. Point 1 is an intermediate point of the
envelope, the matrices in appendix 7 correspond
to this point. The reference velocity to be tracked
consists of increasing the initial velocity in 4%
for 20 seconds (between simulation time 10-30s)

7
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in a "ramp type" path as will be seen in the next
section.

Table 2 Equilibrium points.
Point Altitude [m] velocity [m/s]

1 5000 250
2 1524 134
3 1524 334
4 10668 208
5 10668 386

5.1 UIR controller

For the UIR controller, the relative degree ana-
lytically calculated was ρ = 3, matching with the
relative degree used in the work of [3]. The con-
troller parameters determined in section 3 are:
kV

0 = 9, KV
1 = 1, KV

2 = 2 and µV = 2, it is worth
to mention that according to [5] the µV value
does not have to be necessarily close to zero,
it should be small enough to guarantee that the
performance of the ideal SMC is achieved, sim-
ulations were accomplished using different µV
values, µV = 2 demonstrated a good relation-
ship between tracking error and non-production
of chattering (signal to measure how close we are
from ideal SMC behavior). Once µV is chosen,
the controller gain KV is calculated using KV =
νV (·)+qV with qV = 2.1kV

0 µV > 0, it must to be
remembered that νV (·) is the result of a maximiz-
ing function dependent on |b(x)| (see Equation
16). The initial idea was to determine the maxi-
mum value of νV (·) but it was not possible due to
the huge function found and the absence of max-
imum values of some parameters as pitch rates
(p,q,r) for exmaple. Finally, the controller gain
KV was found by a trial and error process and
the final UIR controller, theoretically defined in
Equation 26 will be as in Equation 41.

uUIR
V = δ

V
p =−0.002sat

(
9σV + eV

1 +2eV
2 + eV

3
2

)
(41)

In Figure 2 is shown the performance of the
controller of Equation 41, it is worth mention-
ing that this controller showed to be effective in

all the points of the flight envelope with the same
gain KV , dispensing the use of gain scheduling. It
easy to check that points where altitude is higher,
required more control amplitude (elevator deflec-
tion) to maintain a small tracking error, this can
be explained by the fact that dynamic pressure is
smaller, therefore, the control surface effective-
ness is poorer. It can be highlighted that control
deflections in Figure 2 are measure in relation to
their equilibrium deflection (initial elevator de-
flection).

5.2 LQR controller

In order to determine matrices Q and R, the
bounds imposed to the state to be controlled (Ve-
locity) is xmax

1 = 12m/s in relation to the equilib-
rium velocity, and the bound to the control (ele-
vator deflection) is umax

1 = [30◦− (−30◦)] = 60◦,
then the matrices Q and R are shown in Equa-
tion 42 and the final gains after the optimization
process for the points in Table 2 are presented in
Table 3.

Q =

[
1

122

]
; R =

[
1

(60/57.29)2

]
(42)

Table 3 LQR gains for all equilibrium points.
Point Gain KV Gain Kε

1 0.0272 -0.0269
2 0.0209 -0.0134
3 0.0450 -0.0310
4 0.0126 -0.0152
5 0.0229 -0.0360

8
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Fig. 2 Total velocity tracking (all points)- UIR

Then, the final LQR controller is composed
by the combination of the Equations 37 and 40
leading to 43 (for point 1). In Figure 3 is shown
the tracking performance of the LQR controller
for total velocity in point 1, it is possible to see
that the actual (or real) velocity track the ref-
erence with a small stationary error of approxi-
mately 0.5 m/s during the change of velocity and
close to zero once settled down in the velocity
of 260 m/s. Figure 4 illustrates the total velocity
tracking for points 2 to 5 of the aircraft flight en-
velope, with the LQR controller gains of Table 3
previously calculate, results demonstrated a good
performance of the controller.

uLQR
V = δ

V
p =−0.0272V +0.0269ε (43)

5.3 Comparison UIR and LQR

A comparison of the performance between both
controllers UIR and LQR is shown in Figure 5.
Both controllers tried to achieve the reference
output, it can be seen in Figure 6 that the tracking
error using the UIR controller was smaller than
the corresponding tracking error for the LQR

Fig. 3 Total velocity tracking (point 1)- LQR

controller during the velocity climb despite hav-
ing higher peaks. With respect to the control, the
UIR controller demanded less elevator amplitude
than LQR controller. The tracking error response
for both control techniques for points 2 to 5 have
been plotted and showed in Figure 7, it can be
noted that UIR provided a small error, especially
in points 2 and 3 where the tracking error stays
close to zero during velocity transition, despite in

9
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Fig. 4 Total velocity tracking (points 2 to 5)- LQR

points 4 and 5 the tracking error for LQR was
smaller, its behavior was more oscillatory, this
can be seen as more control activity.

Fig. 5 Total velocity tracking (point 1)- UIR and
LQR

6 Conclusions

An aircraft velocity hold autopilot was designed
and successfully implemented to a fighter aircraft
nonlinear model. Modern linear and nonlinear
control techniques, LQR and UIR respectively
were designed, both of them are error dependent.
The analytic process to obtain and define the con-
trol parameters was developed, specific details
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Fig. 6 Total tracking error (point 1)- UIR and LQR

were shown for the relatively new UIR technique.
The tracking problem was formulated and solved
using both techniques. Results demonstrated a
better performance for the UIR technique provid-
ing less control activity (smaller elevator deflec-
tion and less oscillations) and smaller tracking er-
rors during velocity transition (climb). It is worth
to mention that UIR technique, since its concep-
tion, has had a little application in flight con-
trol, and this work represents an incentive to be
implemented in more aircraft projects. Despite
the LQR is one of the most used control tech-
nique at industry and its gain being calculated af-
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Fig. 7 Tracking error (points 2 to 5)- UIR and LQR

ter the optimization of a performance index, the
UIR controller, even with a non-optimized gain
demonstrated a better performance. Another ad-
vantage of the UIR, as expected, is the use of only
one set of control parameters valid at the whole
flight envelope (or at least in the 5 points tested)
showing more robustness.

7 Appendix 1: Augmented matrices of LQR
controller

Equations 44 and 45 are based on the lineariza-
tion of the nonlinear model in equilibrium point
1 and then augmented with the LQR compensator
and aircraft actuator dynamic.

A=


−0.01 −7.41 −9.8 0 −5.43 0
−0.00 −0.99 0 1 −0.31 0

0 0 0 1 0 0
0 −13.69 0 −0.67 −36.24 0
0 0 0 0 −20.2 0
−1 0 0 0 0 0


(44)

B =
[
0 0 0 0 20.2 0

]T
C =

[
1 0 0 0 0 0
0 0 0 0 0 1

]
G =

[
0 0 0 0 0 1

]T
H =

[
1 0 0 0 0 0

]
F =

[
0
0

]
(45)
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