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Abstract

This paper presents the numerical and experi-
mental validation of a variable stiffness box beam
model made by an arrangement of stiffened and
unstiffened panels. The derivation of the equiv-
alent properties of curvilinear stiffened plates is
briefly summarized. The validity of the equiv-
alent continuum plate model is assessed. The
governing equations of the variable stiffness box-
beam are presented. Once the model is estab-
lished, the stiffeners’ path to attain a desired
static performance is sought. The optimal config-
uration is determined by a topology optimization
problem where the design variables become the
orientation of the curved stiffeners at prescribed
points. Several analytical examples along with
one experiment are presented to show the valid-
ity of the model presented herein.

1 Introduction

Aircraft’s contribution to global CO2 emission
has come under scrutiny since the early 2000s. In
response to rising concentrations of green house
gas, the 36-State ICAO Council has adopted a
new aircraft CO2 emissions standard, which aims
to reduce the impact of aviation’s greenhouse
gas emissions on the global climate (Annex 16,
Volume III). Environmental Responsible Avia-
tion (ERA) of NASA’s Fundamental Aeronautic
Programme provides guidelines and emission tar-
gets for future generation aircraft. Gains in en-
ergy efficiency by modifying the wing through
structural weight reduction and to have higher as-

pect ratios (HAR). The resulting slender, lighter
and highly flexible structures are prone to ex-
hibit aeroelastic instabilities [1, 2, 3]. Addition-
ally anisotropic materials can play a crucial role
enhancing aircraft performance by maintaining
rigidity and allowing deformation coupling with
no additional penalties on weight. To this end,
aeroelastic tailoring is a fundamental tool, as re-
ported in the review paper of Jutte and Stanford
[4]. The first record of aeroelastic tailoring is
dated back in 1949 by Munk[5], where wooden
propeller blade were oriented to create desirable
deformation couplings when operated. In the late
1960s, there was a thrust in aeroelastic tailoring
research, which has continued steadily through
to today. In Weisshaar et al [0], it has been
shown that certain aeroelastic tailoring methods
can modify the wing’s primary stiffness direc-
tion, changing the wing’s bending and torsional
stifftness as well as the degree of coupling be-
tween the two. Those methods are known as
global (uniform) aeroelastic tailoring. On the
other end, when separate sections of the wing
are tailored differently from one another, aeroe-
lastic tailoring is applied in a more ”local” man-
ner over the wing. These methods are used es-
pecially when composite materials are concerned
[7,8,9, 10, 11].

Potential enabling technologies for passive
aeroelastic tailoring are: Functionally Graded
Materials (FGM) [12], Variable Angle Tow
(VAT) [13] and curvilinear stiffeners [14]. Previ-
ous research efforts have proposed models with
different level of computational complexity to
deal with aero-structural design of HAR wing.
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While overlooked in most research effort, the ide-
alized models have a prominent effect on the fi-
nal aircraft; outcomes they provide may influence
considerably the entire life-cycle costs [15, 16].
These models in fact, represent the physics of the
problem, using a minimum number of degrees of
freedom and design variables, rendering the mod-
els to have low fidelity that can qualitatively pre-
dict the aircraft’s behavior.

In this work, we present a numerical and
experimental validation of a unitized box beam
model subjected to different load conditions. The
box beam considered has a rectangular cross sec-
tion. The upper and lower panels are stiffened
by means of steering stiffeners; the shear webs
are C spars. The local orientation of the stift-
eners is presumed to vary linearly according to
equation proposed by Wu[ 7] and Wang [ 18, 19].
The stiffened panels are in the concentric or sym-
metric configuration. The present paper extend
the current body of research in that it introduces
curved stiffeners, previous investigations were
restricted to consider straight but oriented stiff-
eners [20, 21]. The aim of the paper is to identify
the stiffeners’ path that maximize the bending-
torsion coupling while ensuring a tip deflection
lower than a prescribed limit. Different load con-
figurations are considered.

The reminder of the paper is organized as fol-
low: section 2 summarizes the derivation of the
mathematical model adopted herein. Particularly,
section 2.1 presents the equivalent plate stiffness
of steering stiffened panels; the equivalent plate
model is validated via Finite Element Analysis
(FEA) comparing buckling loads and frequen-
cies of simply supported plates obtained with the
equivalent model against those obtained with a
detailed model. Section 2.2, provides the equa-
tions used to calculate the cross sectional stiff-
nesses of the beam. Section 3 summarizes the
main features of the optimization algorithm im-
plemented and presents the mathematical formu-
lation of the optimization problem. In section 4
the results obtained with the numerical procedure
are discussed; a comparison with an experiment
is also presented. Finally, in section 5, there are
concluding remarks.

Fig. 1 : Example of the box-beam cross section
considered in this work.

2 Mathematical model

The derivation of the governing equations of
the unitized beam starts with the derivation of
the equivalent continuum plate stiffnesses of the
stiffened panels. The latter are used to derive the
equivalent beam model by means of the Circum-
ferentially Asymmetric Stiffness (CAS) model.
For the interest of clarity, an example of the box
beam’s cross section is depicted in Fig. 1 where
all the relevant dimensions are indicated.

2.1 Derivation of the equivalent plate prop-
erties of unitized panel

The structural model is derived on the basis of
the Reissner-Mindlin plate theory. Consistently,
the stiffeners are modeled using the Timoshenko
beam theory. The kinematic equivalence is en-
forced within a small repetitive element hence-
forth referred to as sub-cell. The strain energy
density equivalence is applied to the repetitive
cell, i.e. to the area enclosed between two ad-
jacent stiffeners. In the interest of clarity, Fig. 2
shows and example of of the repetitive sub-cell
and cell, respectively.

The local orientation of the stiffeners is pre-
sumed to vary linearly as in Wu et al [17] for
tow-placed fibers and Wang et al [18, 19] for
curved stiffeners. The stiffeners’ orientation 9(x)
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Fig. 2 : Example of the basic cell Figure (a) (shaded gray area) and sub-cell (b) (shaded red area).

is given as

U — By
b

being b the panel length, as shown in Figure
2. The stiffeners are presumed being oriented
at an angle O(x) with respect to the x-axis of
the plate. The prismatic rectangular stiffeners
are in the symmetric (or concentric) configu-
ration and perfectly bonded to the skin panel.
The kinematic equivalence is established impos-
ing that the strains in any point of the equiva-
lent continuum layer are equal to the strains in
any point of the stiffeners. The variation of the
strain along the stiffeners width is neglected, con-
sistently with the plate’s theory assumption that
M, = 0 . Moreover, since the shear and twisting
deformations act only on one face of the stiffen-
ers while on both faces of the differential plate
element, the stiffeners are presumed contributing
only to half of the shear deformation.

In matrix form, the strains of the beam ele-
ment rewritten using the usual notation for plate
theory (see Reddy [27]) are given as

{en} = [El{er}. 2)

Equation 2 relates the generalized strains of
the Timoshenko beam model to those of the

ﬁ(x) =9+

X, (1)

Reissner-Mindlin plate model. The strain energy
for the Timoshenko beam can be written as in
Nemeth [23]. Being [Cp] the constitutive ma-
trix for the beam and denoting with L; the length
of the sub-cell, the strain energy for the beam is
given as

U= [ (e Clenlax )

Equivalently, recalling that SITJ =

(e 40 k@ 0 D AP A2y, the

strain energy for the beam written in the
equivalent plate-strains assumes the following
form

Up=5 [ e} (Crlferkax, @)

where [Cp] € R¥*3 is given as
) = [E) [Gy][E]. (5)

Equation 5 is written in the beam (stiffener) ref-
erence frame and must be rotated to align the
beam reference system XY Z to the global refer-
ence system xyz (plate system). It follows that

U= [, (el (Collep)

[Cp] = [T [CPIIT].

(6)

where
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The transformation 7 € R®3 matrix is given as

[Ze] (0] [O]
0] [Te] [0]], (7
o (0] [7]

Based on the assumption that the sub-cell is suf-
ficiently small, the strain energy can be approxi-
mated as follow

L .

Up = Ej{ep}T[Cp]{ep}, ()
the strain energy density per unit area is given by
~ U
U,=— 9)

p A]

where A; is the area of the sub-cell. From Fig-
ure 2 follows that A ; =~ L;d;cos 9. The strain en-
ergy density for the equivalent continuum layer is
given as

(10)

where ng is the number of stiffeners, ng. is the

number of sub-cells, and [Q] on the right-hand

side of the Eq. 10 is the reduced stiffness ma-

trix of the equivalent-continuum layer, consistent

with the derivation presented in [24]. Likewise,

in the limit for n..;; — o one notes the following
lim & — 9(x),

TNeel] >

(11)
lim 20 = / {e}T[0(x)]{e}dz.
Teell =0

Finally, taking the derivatives of the quadratic
forms given in the Equations 10 and 11 respec-
tively, yields the stiffness matrices of the equiva-
lent continuum layer. It is worth noticing that the
equivalent properties obtained using Eq. 11 are
those of a variable stiffness layer, in the follow-
ing denoted as EqV S while, Eq. 10, give rise to
an equivalent constant stiffness model, denoted
as EqH.

In order to assess the validity of the equiva-
lent continuum model derived herein are two ex-
amples with different topologies of the stiffen-
ers. Specifically, the buckling loads and natural

Table 1: Geometric features of the stiffened pan-
els under study.

Young’s modulus E 73 GPa
Poisson ratio v 03

Density p 2780 kg/m?
Stiffeners’ width by 3 mm
Stiffeners’ spacing d; 100 mm
Stiffeners’ height hy 20 mm

Number of stiffeners ng; 5
Plate’s skin thickness 4, 3 mm
Panel’s width a 500 mm
Panel’s length b 800 mm

frequencies of rectangular panels are considered.
The panels are simply supported along the edges
and, for the case of buckling loads, are subjected
to uni-axial compression N,. The results obtained
with the equivalent models are compared against
those obtained modeling the skin plate and the
stiffeners with shell elements (QUAD4), as de-
picted in Fig. 3. The results pertaining the two
cases analyzed are reported in Tab. 2 and Tab.
3. A good agreement is found among the equiv-
alent model and the detailed model. It can be
noted from Tables 2 and 3 that the EqV S model
is more accurate than the EgH in either cases.
On the basis of the results reported herein, it can
be stated that the stiffness variability introduced
by the curved stiffeners cannot be neglected. A
more extensive analysis and discussion, along
with several other examples, can be found in the
first author’s PhD dissertation [25].

2.2 Unitized box-beam model

In the following analysis only the flap-torsion
coupling is retained. This assumption derives
from the particular arrangement of the panels
chosen in this work, i.e. concentric panels with
same topology of the stiffeners for the upper and
lower panels. Moreover, the aft and fore panels

are unstiffened C-beams.
The circumferentially asymmetric stiffness
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Fig. 3 : Comparison of the buckling modes of a stiffened panel with 9; = —40° and ¥, = —14°. Fig.
(a) is the first buckling mode of the stiffened structure, while Fig. (b) and Fig. (c) are the first buckling
mode for the case of variable (EqV S) and constant (EgH) stiffness respectively.

Table 2: First buckling load [N/mm] of simply supported panels with curved stiffeners subjected to
uni-axial compression N,.

Topology
01 )

a —40° —14° 2932 300.0 23 33819 153
b 10° 34° 2927 293.2 0.2 313.5 7.1

Stiffened Eq. V.S. Errgq, Eq. H. Errgeg

Table 3: First frequencies [Hz] of a simply supported panels with curved stiffeners.

Topology
0 02

a —40° —14° 11425 115.01 0.7 118.65 3.8
b 10° 34°  103.91 108.78 47 11246 7.6

Stiffened Eq. V.S. Errgeq, Eq. H. Errgg

. . * * 2
coefficients are given as follows £l fyz ( A* A’{%) d [§ A% /Abeyds]
3= 117 4% *
Al FUAGS oy

dz\*

Retaining only the membrane contributions to

2 . . .
GJ— 49* 44 ?{ Dids (12a) the stlffnessF:s, the above f.:quatlons agree with
$1/A%ds those given in [26, 27], while, the expression as

AT JA% ) zd i i i 2
L 2956 (Ale/ 6*6)Z S o2 % Dl <dy> s (12b) reported in Eqns 12' are in agree'ment with ['_0]
$1/Ag ds where also the bending contributions to the stiff-
en— d 2 ar AL . [§A% /Agézds}z ness were considered. It is worth mentioning
2= ?{z 1Az §1/A;ds . that, despite the integral reported in the Eqns 12,
dy\ 2 (12¢) they are limited to the area enclosed by the mid-
+7§D11 ( ds ) ds line of the thin walled beam, also the contribu-
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tions of the spar’s flanges has been considered to
compute the overall beam stiffness.

In Figure 4 are reported the effective beam
properties GJ;, k, EI, with respect to the angles of
orientation of the stiffeners 9,%,. For the sake
of simplicity we neglected the variation of the
stiffness coefficients with respect to the beam ab-
scissa that is, the expression of the effective beam
properties are calculated using the homogenized
coefficients (see Eq. 10). It is seen that the max-
imum coupling k can be obtained with straight
stiffeners oriented at & = 27.5°. It is worth not-
ing that the maximum bending stiffness is given
for stiffeners oriented at zero while, orienting the
stiffeners at O = 45° ensures the maximum tor-
sional stiffness GJ;. Figure 5 illustrates the varia-
tion of the effective beam stiffnesses with respect
to the beam abscissa x when the upper and lower
panels have curved stiffeners with 4; = 0,9, =
25; all the others geometric parameters for the
unitized beam are listed in Table 4. The solid
lines are the variable stiffness properties while
the dashed lines are for the homogenized beam
stiffnesses. Figure 6 shows the attainable effec-
tive beam stiffnesses when ¥, varies within the
entire range of possible orientations while ¥ is
changed parametrically .

The governing equations for the flexural-
flexural-torsional, variable stiffness beam are
given as follow .

—(G))' ¢ —GIQ + KW' +knw" = g9,  (13a)

_k//(P/ _ 2k/(Pl/ o kq)/// + (EIZ)//W//+ (13b)
Z(EIZ)/W///+E12WIV — qw7

(EB)"V' +2(EL) V" +ERVY =¢q,.  (13c)

Note that the case of constant stiffness can be re-
covered from Eqns 13 neglecting the derivatives
of the stiffness’ coefficients; moreover, the case
of isotropic structure can be obtained by assum-
ing the coupling term k equals zero.

I'The curves reported in Figure 6 are the contour plots
of the envelopes shown in Figure 4

3 Problem formulation

The topology optimization problem is formulated
such that the design variables are the stiffeners’
orientations at prescribed control points. All the
other geometric parameters are fixed (see Table
4). The optimization problem for the static cases
can be formulated as follows

L[ e dc (14
"2 ) \GrEL—R (19

subject to: Ku=q
S
—45° <19; <45°

Drip > ®o
Wrip < Wo

where u is the vector of the generalized displace-
ment u = [p, py p;]7, K is the stiffness matrix,
U; is the angle of orientation of the stiffeners at
control point i, and q = [M; M 14y Myse)" is the
generalized force vector. The stiffness matrix is
given as follow

G, K O
K=|k EL O
0 O EB

In the case of planar deformation (i.e. p;, = 0),
the strain energy (compliance) is given as follow

L[ _man dx 15
50 GJIEL—k2 | (15)

The optimization is carried out by means of
the StudP GA, i.e. a population based algorithm
which implement the breeding farm paradigm to
enhance the algorithm exploration and exploita-
tion. A stress parameter 1 of 0.4 and a probability
of extinction of 0.8 have been selected; the reader
can refer to Danzi et al [28, 29] for further details.
A population of 20 chromosomes is used. Stan-
dard mutations has been implemented; the cross
over probability is set to 1. The allowable orien-
tations range from ¥ = —45° to 9 = 45° with a
set space of 2.5°.
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Fig. 4 : Effective beam properties with respect to the stiffeners’ orientations 91,%,. The envelopes are

obtained considering the homogenized properties.
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Fig. 5 : Effective beam stiffnesses with respect
to the beam abscissa x for the case of curvilinear
stiffeners 9; = 0°, 9, =25°. Solid lines represent
the variable stiffnesses while the dashed lines are
the homogenized stiffnesses.

4 Results

The wing box under study is made by Al 6060
Aluminum alloy (£ = 58000 MPa, v = 0.33 and
p = 2780 kg/m?). With reference to Fig. 1, all
the other geometrical parameters, i.e. aft and
fore panels thicknesses t,,, plate’s skin thickness
hp, stiffeners width by and height Ay, cross sec-
tional width b and height of the shear webs h,,
are fixed. For the sake of clarity, the corre-
sponding values are listed in Table 4 . Three
static cases are considered, namely: (a) tip con-
centrated load, (b) uniform distributed load and
(c) triangular load. For all the cases consid-
ered, only ¢, is applied. The load is applied
at the cross-sectional centroid. The following
pairs of tip displacements wp and rotations @
are given for the three problems in hand, namely:
concentrated load {14 mm, 0.287°}, uniformly
distributed load {4.6 mm, 0.08°} and triangular
load {1.1 mm, 0.03°}.

The first load case is the same used in Ces-
tino [20, 21] considered herein as benchmark to
validate the mathematical model derived. The
beam is clamped at one end and subjected to a
concentrated load F' = 41.37 kg applied with an
offset of 40 mm with respect to the beam tip.
Two transducers are placed at the beam’s tip in
order to measure the deflection and rotation re-
spectively, as shown in Figure 7. In Figure 8 is
reported the comparison between the stiffnesses
predicted with the present model and those ob-
tained as in [20]. A small deviation with respect



DANZL F. , CESTINO, E. , FRULLA, G. , GIBERT, J. M.

x10° x10°

, x10'°

55

—0,=0°
- - -9,=225°

—v—1,=45°

—v—1,=45°

15 15

30
9, [deg]

(a)

45

9, [deg]

(b)

30
9, [deg]

©

30 45 45

Fig. 6 : Effective beam properties with respect to the stiffeners’ orientation ¥, at fixed 9. Solid lines
are for ¥ = 0°, dashed lines are for ¥; = 22.5° and the marker are for 9 = 45°. The envelopes are

obtained considering the homogenized properties.

Table 4: Geometric features of the wing box un-
der study.

Stiffeners’ width by 3 mm
Stiffeners’ spacing d; 10 mm
Stiffeners’ height hy 4 mm
Number of stiffeners ny; 6

Plate’s skin thickness /, 2 mm
Beam’s length L 1100 mm
Spar caps length L, 20mm
Spar height hy,, 40 mm
Spar’s thickness ty 2 mm

to the stiffnesses computed as in [20] is appre-
ciable; the deviation is due to the model adopted
to calculate the bending stiffnesses. Indeed, Ces-
tino and Frulla considered the bending stiffness
of the stiffened plate being calculated as for solid
panels, that is [D] = [Q](h3. — h3). Danzi [25]
noted that this lead to a discrepancy with respect
to the stiffnesses attainable using Nemeth’s for-
mulation [23], especially for thicker stiffeners. In
this case, however, the stiffeners’ height is com-
parable with that of the skin plate therefore the
aforementioned discrepancy is small. Figure 9
reports the bending displacement and the rotation
of the beam measured at the beam’s tip. Differ-
ent models, namely: (a) solid FE mode, (b) the-
oretical derivation as in Cestino [20], (c) exper-
iment and (d) present derivation for the case of

straight stiffeners oriented at 25° are compared
against each other.

Fig. 7 : Experimental setup for the first load case
with straight stiffeners oriented at 25°.

The beam tip deflection and rotation for
the different load cases are listed in Table 5.
The last column of Table 5 exemplifies the
optimized topology for the stiffeners path. It is
worth noting that, differently to Cestino [20],
the optimum orientation of the stiffeners for the
case of concentrated load is at 27.5° rather than
27.5°. The results are in agreement with those
obtained in [21] where a topology optimization
was performed using the SIMP algorithm.
Examining the case of uniformly distributed
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Fig. 8 : Comparison of the stiffnesses obtained
with the presented model and the model adopted
in [20].
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Fig. 9 : Comparison of the mean tip displacement
and tip rotation obtained with different models
and experiments.

load, the optimization leads to curved stiffeners
with ¥ = 20° and ¥, = 22.5°. It is seen that
the problem is multi-modal, particularly, since
the homogenized model have been considered
herein, the solution ¥; = 20° and ¥, = 22.5°
is equivalent to the solution ¥; = 22.5° and
¥, = 20°. The same behavior has been observed
for the case of triangular distributed load, in this

case the optimum orientations are ¥ = 5° and
By = 12.5°.

5 Conclusions

In this work, a Strain-Energy-based equivalence
method has been adopted to derive the equivalent
continuum model of curvilinear stiffened plates.
It is shown that the derivation gives rise to two
equivalent plate models, i.e. equivalent constant
stiffness and equivalent variable stiffness. The
two models have been assessed comparing buck-
ling loads and frequencies of vibrations of sim-
ply supported, rectangular plate. The compari-
son were made by means of FEA with respect
to the buckling loads and frequencies obtained
considering the stiffened structure. It is shown
that the variable stiffness model gives better ac-
curacy with respect to the constant model and
thus should be preferred to the constant stiffness
one.

A unitized box-beam made by an arrange-
ment of stiffened and unstiffened panels has been
then considered. By means of CAS model, the ef-
fective beam cross-sectional properties have been
calculated. A parametric analysis has been per-
formed in order to investigate the effect of the
stiffeners orientations on to the apparent beam
stiffnesses. A comparison of the effective beam
stiffnesses with variable and constant stiffnesses
is presented for one case aiming to highlight the
differences between the two models. It has been
observed that for the cases analyzed herein the
difference between the stiffnesses attainable with
the two models is small.

The effect of the applied load to the stiffen-
ers’ path is investigated. Particularly solutions
which maximize the compliance (strain energy)
given a set of requirements in term of maxi-
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Table 5: Results of the topology optimization for the static cases.

Load O;[deg] wlmm]| Q[deg] Topology!
qw = S(L)F

O =275

| | o275 1389 -0.29 _— —~

qw = %

B 9r=20 4548 10.801 S~

| Dy =225 ' '

| .

__F

‘IWF r(1-7)
e V=5 N

o _1ns 10994 -0.0317 —

I The beams are drawn out of scale.

mum tip deflection and minimum tip rotation are
sought. The optimization has been performed us-
ing the Stud® GA. The optimization problem has
been written as topology optimization where the
design variables were the orientations of the stift-
eners at the root and tip of the beam respectively.
A good agreement between numerical and exper-
imental results is found. The results obtained are
in agreement with results in published literature.

In conclusion, the authors envision that the
low fidelity model presented here will be use-
ful in the preliminary design stages of an air-
craft. Indeed, it has been shown that despite us-
ing a limited set of degrees of freedom and a
minimum number of design variables, the model
and subsequent analysis can qualitatively predict
the behavior of complex structures. It is use-
ful in obtaining insights for the successive de-
sign stages. Moreover, it offers the advantage of
being computationally efficient, the opposite of
cumbersome Finite-Element-based optimization
using commercial software.
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