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Abstract
In a recent experiment study about planar mix-
ing layers generated from a thick splitter place,
two self-excited frequencies were found in the
frequency spectra. However, theoretical and nu-
merical studies of this problem revealed an ab-
solutely unstable region just downstream of the
splitter plate containing only a single pinching
point associated with the asymmetric mode. The
symmetric mode is always found absolutely sta-
ble. A local and inviscid linear stability analy-
sis is performed to further investigate this prob-
lem. Two separate base flows are constructed
to fit the experimental data, extracted from the
original experiment study using an image pro-
cessing code. All nine cases reported in the ex-
periment, with three different velocity ratios and
Reynolds number, were reproduced. The analy-
sis reveals two pinching points, one for the sym-
metric and another for the asymmetric mode, for
some cases. In general, there is a good agree-
ment with the experimental frequencies for all
nine cases. It appears that the additional pinch-
ing strongly depends on the momentum thickness
of both layers being different. In all previous
theoretical and numerical studies, however, these
thicknesses were assumed equal.
1 General Introduction
Hydrodynamic instabilities are present in many
problems related to fluid mechanics. In aerospace
engineering, the relevant applications are associ-
ated with air breathing propulsion engines such

as turbojets, ramjets and scramjets, working in
subsonic or supersonic state. In order to ob-
tain aerospace propulsion, internal energy can
be convert in kinetic energy inside a combus-
tion chamber, generating the necessary impulse.
The chemical reactions responsible for generat-
ing this internal energy are strongly dependent on
the mixing process [1]. Coaxial jet injection sys-
tems used in liquid rocket engines, also known as
LREs, are one of the most common and largely
utilized injectors. In this injector, an inner tube
usually carrying liquid oxygen as oxidizer is sur-
rounded by a higher speed stream of either liquid
or gaseous hydrogen, usually employed as pro-
pellent, which flows through a concentric outer
tube. Both fluids are separated by the inner jet
tube wall before they come into contact with each
other, mix, and combust. This type of injector re-
lies on the shear between these two jets to achieve
good mixing.

When two fluids are brought together at the
end of the inner jet tube in an incompressible
flow, the characteristics of the resulting mixing
layer depends strongly several parameters, such
as the inner and outer jet velocities, boundary
layer thicknesses of the inner and outer flows
still inside their respective tubes and the inner
tube wall thickness. If the latter is negligible, a
classical mixing layer is formed. On the other
hand, this wall thickness is not negligible in many
practical applications, creating a wake that inter-
acts with the mixing layer. This interaction has
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been widely studied in the literature [2-11]. Koch
[3] used hyperbolic tangent profiles to study this
problem. For symmetric blunt body wakes, a
pinching point separating convective and abso-
lute instability was found. Furthermore, an abso-
lute instability region was found just behind the
cylinder whereas downstream only convective in-
stability was found. For asymmetric wakes, there
was a limit to the asymmetry levels beyond which
no absolute instability appears possible. This
provides a link to their mixing layers counter-
parts, where only convective instability occurs.
Direct numerical simulation was also performed
by Hammoond and Redekopp [5], together as
a local instability analysis in a two-dimensional
mixing layer wake interaction behind a rectan-
gular body with different vorticity streams. Dis-
tributed suction or blowing was imposed at the
tip of the body with different velocity streams.
However, the momentum thickness employed in
the simulation was chosen to be constant to re-
duce computational cost. Overall, the effect of
suction was to reduce the potential for an abso-
lute instability region such that global instability
criteria are no longer satisfied and the wake be-
comes steady and stable to small disturbances. In
coaxial jets separated by a thick wall, Michalke
[9] and Talamelli and Gavarini [10] shown that
an additional wake mode can exist and only this
mode become absolute unstable when the wake
velocity reaches very low values.

However, in a recent experimental study of
Tian et al [1], two self-excited frequencies were
found in the frequency spectra. Nevertheless,
previous theoretical and numerical studies of the
same problem revealed an absolutely unstable re-
gion just downstream of the splitter plate contain-
ing only a single pinching point associated with
the asymmetric mode. The symmetric mode is al-
ways found absolutely stable. In order to further
investigate this problem, a local and inviscid lin-
ear stability analysis is performed. This is done
using both shooting method and matrix forming
approaches for cross validation. Two separate
base flows are constructed to fit the experimen-
tal data, extracted from the original experimental
study using an image processing code. The first

base flow profile is based on a linear interpola-
tion of this data, smoothed out using a diffusion
equation, whereas the second base flow profile
is based on matched similarity solutions of the
boundary layer equations. All nine cases reported
in the experimental study, with three different ve-
locity rations and three different Reynolds num-
bers, were reproduced. Their analysis reveals
two pinching points, one for the symmetric mode
and another for the asymmetric mode, for some
cases. In general, there is a good agreement with
the experimental frequencies for all nine cases.
It appears that the ability to capture the addi-
tional pinching point strongly depends on the mo-
mentum thickness of both layers being different.
In all previous theoretical and numerical studies,
however, these thicknesses were assumed equal.

2 Instability analysis
Linear stability theory (LST) relies on the decom-
position of any flow quantity into a steady base
flow part and an unsteady part

q(x, t) = q(x)+ εq̃(x, t), (1)

where x is the space coordinate vector, t is time
and ε « 1 is a small amplitude. Substituting this
equation into the Navier-Stokes equations, sub-
tracting the steady flow and dropping the terms
in ε2 yields the linearised perturbation equations,
referred to as the linearised Navier-Stokes equa-
tions (LNSE). Once a base flow has been pro-
vided, the LNSE may be solved as an initial-
boundary-value problem and are valid for any
small amplitude perturbation. In the present anal-
ysis, the base flow is considered homogeneous
along two spatial directions and the local flow as-
sumption is made. The perturbation becomes

q̃ = q̂(y)ei(αx−ωt), (2)

where q̂ = (û, v̂, p̂), ω is taken to be a real fre-
quency parameter, while the complex eigenvalue
α and the associated eigenvector are sought.

The local flow assumption neglects the base
flow velocity component transverse to the pertur-
bation motion and considers two base flow spatial
directions as homogeneous, such that ∂u

∂x = ∂u
∂z =

2
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0. This approximation is valid in the present work
since ∂u

∂y >> ∂u
∂x and only two-dimensional anal-

ysis is performed. Table 1 shows the magnitude
of the maximum absolute value for three differ-
ent Reynolds number analysed. As can be seen,
in the worse case (Re = 6196) the difference is up
to 0.43%. Eigenmode expansions in the direc-

Table 1 Difference in the magnitude of the max-
imum absolute value of the base flow derivatives
y and x.

Re Max(|∂u/∂y|) Max(|∂u/∂x|)
6196 6.737 0.029

15676 12.255 0.025
21020 14.717 0.036

tions x is introduced, such that ∂ũ
∂x = iαũ. The

linearised Navier-Stokes equations in this limit
take the form os the system of ordinary differ-
ential equations

iαû+ v̂y = 0
L1d û−uyv̂− iαp̂+ iωû = 0 (3)

L1d v̂− p̂y + iωv̂ = 0

where the subscripts x,y denote ∂/∂x,∂/∂y, re-
spectively and L1d takes the form of

L1d = (1/Re)[(∂2/∂y2)−α
2]− iαu (4)

System 3 can be rearranged and written in the
form of a single ordinary differential equation
of fourth order for the pressure disturbance,
known as the Orr-Sommerfeld equation. In the
limit Re → ∞, the viscous terms of the Orr-
Sommerfeld equation can be dropped, giving rise
to the Rayleigh equation

p̂
′′
+

2 α p̂
′
u
′

ω−αu
−α

2 p̂ = 0. (5)

In the present work, both the system 3 as the
equation 5 are solved.

3 Base Flow
One of the most important tasks in a linear stabil-
ity analysis is the correct choice of base flow. As
explained by [11], a steady-state solution of the
Navier-Stokes equation is the best choice for a
base flow, since anything else can introduce forc-
ing terms in the governing equations that might

alter the analysis . However, detailed experimen-
tal data about the boundary layer flow near the
end of the splitter is not provided for the prob-
lem being investigated here. Without this infor-
mation, it becomes difficult to numerically gener-
ate a steady-state. Hence, alternative base flows
are necessary. First, an image processing code
was created to extract the mean base flow from
the experimental PIV images. Second, two ap-
proaches were employed to fit the data obtained:
An uniform valid asymptotic solution (UVAs)
and a smoothed interpolation of the experimen-
tal data.
3.1 Experimental Data
The experiment were performed in the NOAH
water tunnel located at the Graduate Aerospace
Laboratories of the California Institute of Tech-
nology [1]. The experimental set up consisted
of an upstream splitter plate with a thickness of
t = 0.057m and a length of L = 3.5m. Particle
Image Velocimetry (PIV) was used to measure
the unsteady two-dimensional flow field, from
which power spectra was generated. All nine
flow configurations reported in their experiment
[1] are analysed here. Table 2 shows the con-
figurations. The Reynolds number reported was
calculated based on water properties at room tem-
perature and pressure, the average velocity of the
two streams and the splitter plate thickness. In

Table 2 Experimental flow configurations anal-
ysed here [1].

Re VR Re VR Re VR
6196 0.93 15185 0.98 21430 1.00
6031 0.46 15676 0.57 22120 0.55
6043 0.30 14810 0.32 21020 0.32

order to extract base flow profiles from the PIV
data and perform a linear stability analysis, an
in-house image processing code was built. It fol-
lows a series of steps to extract this data. More
details are available in [20]. After completing the
steps above, the experimental data for a given po-
sition in x is achieved. Figure 1 shows an ex-
ample of three different locations where the base
flow is extracted. It is important to notice that
it is easier for the code to read smoother transi-
tions in the colors rather than big ones. For in-
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stance, in the x position near the plate, the mo-
mentum thickness has a small value, meaning a
quick transition between the stream flow and the
wake. As a result, the code could not match
these points. However, as the x position moves
away from the plate, the momentum thickness in-
creases its value, tending to a smoother transition.
Therefore, the number of points that the code can
match with the scale rises.

Fig. 1 Example of three different profiles ex-
tracted from the PIV flow field experiment per-
formed by [1] with the in-house code.

3.2 Uniform Valid Asymptotic Solution
(UVAs)

The next step is to fit those data. As discussed,
the first approach is to use Navier-Stokes equa-
tions. A similar conservation equation for the in-
compressible laminar boundary layer problem is
given by:

2 f
′′′
+ f f

′′
= 0 (6)

with the boundary conditions: f (0) = 0
f ′(−∞) = 1 and f ′(∞) = V R. VR is the veloc-
ity ratio between layers. In order to simulate this
equation, a shooting method was chosen. It turns
a boundary value problem into an initial value
problem to best control the error. The resulting
system is integrated towards the already known
boundary condition. In order to fit the experimen-
tal data, the profile was breakdown in two profiles
in the x = 0 position. The left side and the right
side are calculated separately with equations 6
and the initial conditions to fit the experimental
data. After that the method of matched asymp-
totic expansions is used to combine the solutions.
In a few words, this method tells us to add both
solutions and subtract the common terms. The
reader is referred to the books by Dyke[12] and

Kevorkian and Cole [13] for more details. Al-
though such solutions are not unique, they are as
accurate as the asymptotic solutions used to form
them. Figure 2 shows the experimental data (tri-
angles) with the UVAs (continuous line) for the
three different x positions showed previously. As
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Fig. 2 Profiles extracted in the three different x
positions. The experimental data are showed in
triangles and the UVAs are showed in continuous
line.

can be seen, very good agreement is achieved in
two of the tree cases. When the base flow moves
away from the plate, the wake region decreases
until it disappears. As a result, their derivative
in the transition of the two streams tends to an
abrupt change, different from the behaviour in
the wake region. Therefore, the UVAs method
has difficulty to capture this change. However, it
is important to interpret the physics in the results.

3.3 Interpolation
The second method used to fit the data was a di-
rect interpolation through the experimental data
obtained from the code. A first order interpo-
lation was chosen. This approach has two im-
portant problems to consider. The fist one is due
to the fact that it doesn’t obey the Navier-Stokes
equation, introducing forcing terms in the equa-
tion. Teixeira and Alves [11] explained the im-
portance of an accurate base flow in a linear sta-
bility analysis. The second one is due to the high
frequencies that are present in the images from
the experimental data. Although nothing can be
done in the first one, the second problem can be
improved. Therefore, a diffusion equation is used
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in order to smooth the high frequencies present in
the experimental data. Equations 7 and 8 show a
diffusion equation which the appropriated initial
and boundary condition. IP represents the exper-
imental data interpolation and yL and yR repre-
sent the left and right position which bounds the
data. The diffusivity α is chosen to be a function
of y, because more diffusivity is needed where
higher oscillations are present and less where al-
most or none oscillations are present.

∂u
∂t

= α(y)
∂2u
∂y2 (7)

u(0,y) = IP(y)
u(t,yL) = IP(yL)
u(t,yR) = IP(yR)

(8)

Figure 3 shows the resulting profile after apply-
ing diffusivity. In these three examples, the re-
gions which higher oscillations were in the wake.
Hence, more diffusivity was employed. The
dashed lines represent the diffusivity function,
normalized in order to fit in the graphics range.
As a result from this methodology, it can be seen
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Fig. 3 Profiles extracted in the three different x
positions. The experimental data is showed in
triangles, the interpolation is showed in continu-
ous line and the diffusivity α is showed in dashed
lines.

that qualitatively the profiles look like the pro-
files obtained from the UVAs method. Two from
the three cases have very good agreement while
the same profile in the two methodologies have
the same problem when a beak is present in the
profile.

4 Numerical Methods
4.1 Matrix Forming
When using the matrix forming method, system
(3) is discretized using second, fourth, sixth and
eighth order finite differences on a non-uniform
grid, leading to a non-linear spatial eigenvalue
problem in the form of

A.q̂ =
2

∑
k=1

α
kBk.q̂ (9)

where A and B are block matrices. However, us-
ing the companion method [14], an auxiliary vec-
tor q̂∗= [û, v̂, p̂,αû,αv̂] is define and it is possible
to write a linear version of the same problem in
the form of

A.q̂∗ = α B.q̂∗ (10)

Once again, in this analysis, ω ∈ ℜ is a real
frequency parameter, while α ∈ C is the sought
eigenvalue, the real part of which is related
with the periodicity length along the homoge-
neous spatial direction x, through αr = 2π/Lx
and the imaginary part αi is the spatial amplifi-
cation/damping rate.

In order to solve the eigenvalue problem,
the Arnoldi algorithm [15] is employed, com-
bined with the Lapack library [17] to solve the
LU-Decomposition and back substituting. The
Arnoldi algorithm delivers a chosen number of
eigenvalues around a specific estimate value.
Such value is set around the most unstable eigen-
value. The computational cost employing the
Arnoldi algorithm is notoriously reduced in com-
parison with the classical QZ method. More de-
tail can be found in literature [16, 15].

4.2 Shooting Method
The other method programmed was a shooting
method to solve the Rayleigh equation 5. Since
the goal are spatially growing solutions, the pro-
cedure used to solve the pressure disturbance
equation was the same as [18]. The first step is
to obtain asymptotic solutions for the pressure in
the limits of y→−∞ and y→∞, since it is known
that the base flow derivative is zero in both these
limits.

−α
2 p̂[y]+ p̂

′′
[y] = 0 (11)

5
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Since the pressure disturbance must vanish both
when y→−∞ and y→ ∞, equation 11 yields in
these limits,

p̂[y] =C1eyα p̂[y] =C2e−yα (12)

It is important to notice that, in order to avoid
singularities at both limits, the numerical integra-
tion must be started at finite non-zero values of y,
where the base flow derivative is ≈ O−12. If the
order of accuracy is increased further, the size of
the domain increases and, although the accuracy
of the solution improves, it becomes very hard
to track the regular eigenmodes. Since an eigen-
value problem is solved, the solution for the pres-
sure disturbance in both limits can be normalised,
avoiding the need to find the constants C1 and C2,

pL[y] =
p̂[y]
C1

pR[y] =
p̂[y]
C2

(13)

This way, equation 5 is numerically integrated
from both sides of the far field (namely pL and
pR) towards the centre of the domain, where the
pressure disturbance and its derivative should be
continuous. The numerical procedure will iter-
ate α, on the complex plane, until the matching
conditions are satisfied for a given value of ω.
Therefore, a newton-type root finding can solve
the Wronskian

pL[0] p′R[0]− pR[0] p′L[0] = 0. (14)

If this hypothesis is not satisfied, a new value is
assigned to the wave-number in a process that
is repeated until the Wronskian is equal zero.
The problem then comes down to finding an ini-
tial estimate for the wave-number that approxi-
mately satisfies the so-called dispersion relation
f (α,ω) = 0. In order to do so, there are two
possibilities. The first one is to created a mesh
for the real and imaginary parts of α. A con-
tour plot of the interpolated zero real and imagi-
nary parts of the dispersion relation is made, for
a fixed frequency. The point of intersection be-
tween these two curves is the graphical estimate
for the complex wave-number. As the frequency
is increased, extrapolation is employed to gener-
ate new estimates for the next wave-number. The
second option is to use matrix-forming results to

estimate the initial guess of the complex wave-
number. Then, the same extrapolation is use to
estimate the next eigenvalues.
4.3 Novel Methodology
Obtaining the onset of absolute instability from
a differential dispersion relation may be difficult.
The to-date methods to locate the so-called sad-
dle points can either require expensive compu-
tational coast or only track saddle points con-
nected by continuity [19]. In the novel method-
ology provided by Alves and Hirata [19] the zero
group velocity condition is applied directly to the
differential dispersion relation. As a result, it is
possible to search for arbitrary saddle points and
also verify their causality. Taking the derivative
of equation 5 with respects to α leads to a new
dispersion relation

p̂′′α +
2ūαp̂′α
(ω−αū)

−α
2 p̂α = 2α p̂− 2ω p̂′ū

(ω−αū)2

(15)
where p̂α = d p̂/dα. Equation 15 is

solved with the same shooting method procedure
showed to solve equation 5, where the constants
disappear if it is solved to the normalized solu-
tion.

5 Results
5.1 Instability Analysis
Each nine cases proposed will be analysed sepa-
rately, in three major cases with the same velocity
ratio and varying the Reynolds number. Table 2
shows the cases. The case with velocity ratio VR
≈ 1 is called case 1, the case with VR ≈ 0.5 is
the case 2 and the case with VR ≈ 0.3 is the case
3. The case with lower Reynolds number is re-
ferred as case 1-1, 2-1, 3-1, the case with medium
Reynolds number as case 1-2, 2-2, 3-2 and the
case with high Reynolds number is referred as
case 1-3, 2-3, 3-3. Since the lowest Reynolds
number is still high enough to run a inviscid insta-
bility the only influence of the Reynolds number
in the following cases is in the momentum thick-
ness. In other words, the larger is the Reynolds
number, the smaller the momentum thickness. To
make the parameters non-dimensional, the plate
thickness (t = 57 mm) and the average velocity
between the two streams (Umean = [U1 + U2]/2)
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were used, as in accordance to the experiment
[1]. All units presented in x are in millimetres.
The scale in the direction x also follows the ex-
perimental paper, where the plate is located in
x = 110 and the flow develops in direction to x =
0. In all cases (1,2,3) the range of the graphic
is kept the same to facilitate comparison between
different Reynolds number.

The shooting method was implemented in the
software MATHEMATICA and the matrix form-
ing in FORTRAN 90.

5.1.1 Case 1
The first group of case analysed is when the ve-
locity ratio between the two streams is kept ap-
proximately the same (VR ≈ 1). The three dif-
ferent Reynolds number are varied.
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Fig. 4 Case 1: Imaginary part of ω0. The solid
line is referred to the UVA’s base flow and the
dashed line to the direct interpolation of the data.

Figure 4 present the imaginary part of ω0.
The solid lines represent the UVA’s base flow and
the dashed line the direct interpolation through
the experimental data. As it can be seen, the flow
leaves the plate already in an absolute regime in
both methods, since the imaginary part of the fre-
quency is positive. This is an expected behaviour
in a scenario where the stream velocities are kept
approximately the same.

5.1.2 Case 2
The second group of case analysed is when the
velocity ratio between the two streams is ap-
proximately 0.5 (VR ≈ 0.5). Figure 5 presents
the imaginary part of ω0. Following the same
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Fig. 5 Case 2: Imaginary part of ω0. The solid
line is referred to the UVA’s base flow and the
dashed line to the direct interpolation of the data.
The bold is related to mode 1 and the thin to the
mode 2.

label, the solid lines represent the UVA’s base
flow and the dashed line the direct interpolation
through the experimental data. However, now
the two modes were captured in the shooting
method. The bold is related to the first mode
(anti-symmetric) and the thin to the second mode
(symmetric). As it can be seen, since the veloc-
ity ratio is not the same, the flows not necessarily
leaves the plate in an absolute regime. Moreover,
and the most important result, the two modes
becomes absolute unstable in different positions
along x direction. Both the UVA’s base flow as
the interpolated present the same behaviour. It is
also important to notice that the temporal growth
rate is highly sensible to the base flow, and that
can be the reason of the variations in the imagi-
nary parts.

5.1.3 Case 3
The third and last group of cases analysed is
when the velocity ratio between the two streams
is approximately 0.3 (VR ≈ 0.3).

Figure 6 presents the real and imaginary part
of ω0. Unlike the previous cases, this time, the
second mode from the interpolated base flow has
smaller temporal growth rate as in comparison
with the UVA’s base flow. As a result, the UVA’s
base flow has two pinching points and, like the
case 2, they occur separately.
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Fig. 6 Case 3: Imaginary part of ω0. The solid
line is referred to the UVA’s base flow and the
dashed line to the direct interpolation of the data.
The bold is related to mode 1 and the thin to the
mode 2.

5.2 Collision Check
In order to prove that the saddle point in the on-
set of absolute instability presented in 4 - 6 is in-
deed a pinching point, a collision check was per-
formed. In this check, in order to have a pinch-
ing point, the mode that comes from the bottom
of the complex wave-number (branch α+) has to
pinch with the mode coming from above (branch
α−). For this analysis, only the UVA’s base
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Fig. 7 Matrix forming method with Im[ω] = 0
for the case 1-1. The positions x = 26 (upper
left), x = 27 (upper right) and x = 28 (bottom)
show the pinching point.
flow was checked. To do this, the matrix form-
ing method with the Arnoldi iteration was used.
Figure 7 shows the complex wave-number plane
with Im[ω] = 0. Three position were analysed:
before (x = 26), in the pinching (x =27) and after
(x = 28). The anti-symmetrical mode is the mode

that pinches with the branch α− and represents
the transition of convective to absolute instabil-
ity. In this case, the symmetrical mode remains
with a low spatial growth rate.

5.3 Comparison with Experiments
In order to compare the numerical results with
the experimental, a band of the onset of absolute
instability was plotted together with the experi-
mental spectra. Figure 8 presents the results.
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Fig. 8 Experimental frequency spectra (solid
line), frequency region of numerical absolute in-
stability (blue band→ UVAs, orange band→ In-
terpolation) with the maximum frequency in the
absolute regime (dashed line). Upper left: Case
1-1, Upper right: Case 2-1 and Bottom: Case 3-1.

The experimental frequency spectra from [1] cor-
respond to the solid black line. Together with this
frequency, a band containing the region where the
flow is absolute unstable (i.e. Im[ω0]> 0) is plot-
ted. This can be done by looking at the figures 4
- 6 and select the related frequencies. Together
with this band, the maximum value of the fre-
quency found in the absolute region is selected
and plotted as a dashed line. In figure 8 the blue
band and dashed line correspond to the UVAs
method whereas the orange band and dashed line
correspond to the interpolation. Unfortunately, in
the case 3-1 at the bottom of figure, the experi-
mental spectra doesn’t show what happens in the
range of frequencies lower than 1.5. However,
the instability analysis using the UVAs base flow
shows that both modes can be absolute unstable
and a second blue band is marked. Having this
results, the high frequency that appears can be
understood as a harmonic of the two other modes.
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In fact, if we subtract the higher experimental fre-
quency (≈ 2.7) from the other experimental fre-
quency (≈ 1.9) we get ≈ 0.9, represented as a
solid black line. As it can be seen, it matches in-
side the absolute region of the second mode, with
the peak almost coinciding.

In the last analysis of this case, a contour plot
of the cross-stream velocity v from the experi-
ment is plotted together with the imaginary fre-
quency calculated (Fig. 9). A perfect antisym-
metry is observed in the case 1-1, which was ex-
pected, since the velocity ratio is approximately
1. Moreover, the region of recirculation matches
with the region where absolute instability was
found. In the case 2-1 as well as in the case 3-
1, the antisymmetry is lost, specially in the wake
region.

Fig. 9 Cross-stream velocity v provided by to-
gether with the imaginary part of the frequency
numerically calculated for Case 1-1: upper right,
Case 2-1: upper left and Case 3-1: bottom.

6 Summary and Conclusion
The aim of this investigation was to re-evaluated
the stability analysis in a mixing layer/wake in-
teraction where experimental results indicated
the presence of two distinct fundamental frequen-
cies. It was presented that the origin and rea-
son for this phenomenon is due to multiple self-
excitation frequency found in the near field. To
the authors best knowledge, such results were
never presented for significant physical flows in
the literature.

The first step to perform a linear stability
analysis was the study of a accurate base flow.
Since experimental results were provided as a

mean flow and in PIV data, a code was build
to capture profiles along x direction. After that,
two approaches were followed: a similar solu-
tion of the Navier-Stokes equations and a direct
interpolation though these data. The second step
was the solution of the stability equations itself.
Two methods were used: Matrix Forming and
Shooting method. The shooting method was used
to solve the Rayleigh equation and the Matrix
Forming to solve the 1D linearised Navier-Stokes
equation.

Nine different cases were analysed, where
different velocity ratio and Reynolds number
were imposed. In all cases, the saddle points
found were proved to be indeed a pinching point.
When comparing the two base flow used, a qual-
itative behaviour could be noticed in the complex
frequency. For each velocity ratio, the temporal
growth rate was plotted together with the exper-
imental mean cross-stream velocity v. The anti-
symmetry seeing in the cases 1 (VR≈ 1) was ap-
parently demolish for the other cases. It was also
noticed that in the cases 1-1 the region of abso-
lute instability coincided with the wake region.

As a major goal of the presenter work, the
experimental fundamental frequencies were plot-
ted against the band of absolute region of the
modes. The numerical frequency with the most
amplified temporal growth rate were also plotted.
It was concluded that the presence of more than
one peak in the spectra can be related to two rea-
sons: a higher harmonic as a combination from
other frequencies and the existence of a transi-
tion from convective to absolute unstable in the
symmetrical mode (also called mode 2), provok-
ing a new band of absolute frequencies. Thereby,
the present of all frequency peaks in the experi-
mental spectra could be explained.
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