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Abstract  

In general, standard multi-copters are classified 

as an underactuated system since their number of 

control inputs are insufficient to allow the 

control of position and orientation 

independently. In this context, this paper deals 

with the dynamical modeling of a tilted rotor 

multi-copter aerial vehicle and the project of a 

trajectory tracking controller using modern 

control techniques. The dynamic model is 

developed using Newton Euler Laws and it is 

assumed that each rotor is capable of two 

different movements (tilt laterally and 

longitudinally) introducing more control inputs 

to the system. Then, the equations of motion are 

linearized around the trimmed operating 

conditions (based on mission applications). 

Finally, linear modern MIMO (Multi-Input 

Multi-Output) control techniques are applied in 

order to allow the aircraft to follow a pre-defined 

trajectory. The control law is validated by a 

hardware-in-the-loop implementation using a 

real microcontroller integrated with a numerical 

real time simulation. 

1 Introduction 

Multi-rotors are included in the category of 

vertical take-off and landing (VTOL) vehicles 

having more than two propellers. The number of 

propellers or rotors defines the resulting thrust 

force and, consequently, the payload capacity of 

the aircraft. Over the past decades, the control 

capacity of these unmanned aerial vehicles 

(UAVs) has attracted the attention of researchers. 

This fact is due to their mechanical simplicity, 

simple dynamics and simple/low-cost 

maintenance; thus, they are considered as being 

ideal robotics platform for the development and 

testing control strategies [1]. 

 However, standard multi-rotors UAVs 

possess a limited mobility due to their inherent 

underactuactuation [2]. A quadrotor, for 

instance, has 4 independent control inputs (the 4 

propellers spinning velocities) and, on the other 

hand, 6 degrees of freedom (DOFs) which 

represents the system position/orientation in 

space. Thus, for quasi-hover conditions, a 

horizontal translation necessarily implies a 

change in the attitude, and the quadrotor can 

hover in place only when being in horizontal 

position with respect to the inertial coordinate 

frame. 

 Many authors have investigated different 

solutions for the underactuation problem [2], [3], 

[4]. Each work purposes a novel modification on 

the aircraft that increases the system’s number of 

DOFs and control inputs. [3] propose an 

actuation concept for a quadrotor UAV in which 

the propellers are allowed to tilt about the axes 

perpendicular to the arms. [2] and [5] developed 

a quadrotor UAV with eight control inputs that 

allow its independent position and attitude 

control by tilting the propellers around the axes 

connecting them to the main body frame. Lastly, 

some projects consider a different multi-rotor 

architecture where the propellers are tilted 

reorienting the whole vehicle before flight 

without the need of any additional hardware ([6] 

and [7]). 

Further, in general, the UAVs 

construction may be costly and time consuming 

and safety is a primary issue when conducting 

actual flight tests in such manner that the 

experimental team and the aircraft integrity must 

be preserved. Thus, the UAV hardware-in-the-

loop simulation is an effective way to detect and 
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prevent unnecessary malfunctions of the 

hardware, software and automatic control 

systems allowing the researchers to effectively 

evaluate the reliability of the overall UAV 

system. This method consists on a real-time 

simulation in which the UAV platform is reacting 

the same way as it in the real experiment while 

receiving input commands from an onboard 

hardware device. For instance, on [8] and [9] a 

real-time hardware-in-the-loop simulation 

framework was designed and implemented on a 

helicopter system UAV. The design was 

successfully exploited for several flight tests 

simulations including basic flight motions, full-

envelope flight and multiple UAV formation 

flight. 

 The focus of this paper is therefore: 

develop a generic dynamic model for a tilt rotor 

multi-rotor considering the aircraft with n rotors 

and two possible tilt directions, project a MIMO 

controller for trajectory tracking using modern 

control theories, evaluate the system response via 

hardware-in-the-loop simulations. 

2 Dynamical Modeling 

The concept of this section is to derive the 

dynamical model of a generic multi-copter with 

n  rotors such that each rotor is capable of tilting 

in two different directions (laterally and 

longitudinally with respect to the rotor’s arm) 

introducing more control inputs to the system. 

Some considerations must be taken before the 

model development such as: the aircraft structure 

and propellers are supposed to be rigid, all the 

rotors and propeller blades are the same.  

2.1 Kinematic Relations  

Three different reference frames will be 

used in order to model the aircraft dynamics 

coupled with the rotor tilting as illustrated on 

Figure 1. The first, an Earth fixed reference frame 

Inertial Coordinate System denoted by 

 : ; , ,
E E E E

ICS O x y z  used to represent the absolute 

position of the aircraft. Secondly, a body fixed 

coordinate frame represented by 

 : ; , ,
B B B b

BCS O x y z  attached to the aircraft. The 

origin of the body fixed reference frame 

coincides with the aircraft center of gravity ( CG

), and its translational velocity and angular 

velocity vectors are denoted by    Tv u v w= and 

  
T

P Q R= , respectively,  such that P , Q  and 

R  are the angular velocities around the 
B

x , 
B

y  

and 
B

z axis. 

 

Figure 1. Multi-copter ICS, BCS and MCS 

axes configuration. 

The aircraft attitude can be defined with respect 

to the BCS using the Euler angles, which are 

represented by       
T

   =  corresponding to the 

roll, pitch and yaw angles, respectively. The 

Euler angles angular velocities are expressed as 

the time rate change of the Euler angles 
˙

[       ]T   = . It must be remarked that     

since the   vector points in the rotation axis, 

while   only represents the time derivative of 

the attitude angles. However, these two vectors 

are correlated by a kinematic relation:  

 

  

 

1 0 sin

  0 cos cos cos

0 sin cos cos



   

  

 −
 

=  
 − 

  (1) 

 

Any vector, defined at the body-fixed frame 

(BCS), can be expressed at the ICS by using the 

following rotation matrix IR
B   [10],  

 

 
ICS I BCS

r R r
B

=    (2) 
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with, ( ) ( ) ( )IR R R Rz y xB
  =  and ( )Rz  , ( )Ry   and

( )Rx  are rotations around 
E

z ,
E

y  and 
E

x  axis, 

respectively.  

The motor reference axis

 : ; , ,
i i iMi m m mMCS O x y z , 1...i n=  is the frame 

associated to each of the th
i  propulsive group, 

with 
imx representing the laterally tilting 

actuation axis, 
imy the longitudinally tilting 

actuation axis and 
imz the propeller actuated 

spinning axis that is coincident with the thrust 

force direction [2]. The lateral and longitudinal 

tilt angles are denoted by 
i

  and 
i

 , 

respectively. Further, the 
th

i  propulsion system 

position w.r.t the BCS is denoted by 

/
cos sin

T

CGCG P i ir l l z  =   , where l  represents 

the multi-rotor arm length, 
i

   the angle between 

the rotor’s arm and the 
B

x  direction and 
CG

z  the 

distance of the rotor center of gravity to the 

/
B B

x y  plane. Also, any vector in the MCS 

reference frame can be written on the BCS by a 

rotational matrix, following the rotation 

sequence around 
Mz ,

M
y  and 

M
x , which can be 

represented by the matrices: 

 

 ( )

cos sin 0

  sin cos 0

0 0 1

B

M

i i

i i i
R

 

  

−

=

 
 
 
  

  (3) 

 

 ( )

cos 0 sin

  0 1 0

sin 0 cos

i i

i

i i

B

M
R

 



 

=

−

 
 
 
  

  (4) 

 

 ( )

1 0 0

  0 cos sin  

0 sin cos

B

M i i i

i i

R   

 

= −

 
 
 
  

  (5) 

 

Consequently, a vector on the MCS  can 

be written on the BCS using the rotational 

matrix B

MR  represented by the multiplication of  

(3), (4) and (5) matrices, respectively, as follows: 

 

 ( ) ( ). (    )..
B B

B M M i M M

B

i
q R R R q  =   (6) 

 

2.2 Equations of Motion 

The multi-rotor equations of motion are derived 

using the Newton-Euler formulation for a generic 

six degrees of freedom rigid body system. Thus, 

the equations for linear and angular body motion, 

written on the BCS, are: 

 

         

u Rv QwFx
F m v Pw Ruy

F w Qu Pvz

 
 
 
 
  

− +


= − +

 − +

 
 
 
  

  (7) 

 

 

( )

( )

( )

( )

2  ( ²) 

( )

    

I P QR I I I R PQxx zz yy yz

M I Q PR I I I

M x

xz

M z

P Qy yy xx zz

I R PQ I I I QR Pzz yy xx xy

 
 
 
 
 
 
 

+ − − +


+ − + +

 + − + +

=

 
 
 
 

  (8) 

 

where F F F Fx y z
 =
    and M M M Mx y z=  

   

are the external force and moment applied at the 

center of mass of the vehicle.  Ixx, Iyy, Izz, Ixy, Iyz  

and Ixz are the components of the rotational inertia 

matrix of the vehicle with respect to the body 

coordinate frame. 

Concerning the external forces, it is 

mainly composed of thrust, drag and 

gravitational components. Assuming the most 

commonly type of propulsion system used for 

UAVs (DC motors), the thrust force generated by 

the propeller can be considered as proportional to 

the propeller angular speed [11]: 

 

 

2
2

2
2

 Ω   Ω 
v prop

t

K K r
T k

K

 
= =

 
 
 
 

  (9) 

 

with K
t

a proportional constant relating the 

torque produced by the electric motor and its 

electrical current, 
v

K  relates the motor voltage 

and its angular velocity, K is relative to the 

motor torque and thrust, rprop  is the blade disc 

radius,   the density of the surrounding air and 

Ω the rotational velocity of the motor shaft.  
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Once the thrust T acts in the z direction of 

the MCS, the force generated by each rotor can 

be written on the BCS using the matrix 

transformation presented in Eq. (6). 

As presented in Marques (2017), a drag 

force due to the viscosity of the vehicle 

surrounding air is considered in the model which 

be simplified by expressing this force as 

proportional to the linear velocity of the aircraft 

and always acting in the opposite direction of the 

body movement. Hence, the drag force on the 

BCS is written as: 

 

    

d x

BCS

D d d y

d z

B

k u

F k v k v

k w

−

=− = −

−

 
 
 
  

  (10) 

 

where dk  is a friction constant which can be split 

in three directions of the BCS ( ,
B B

x y  and 
B

z ). 

Also, a constant gravitational force 

pointing always to the z-direction of the ICS acts 

on the aircraft center of gravity. The components 

of this force at the BCS is obtained from the 

rotation matrix (Eq. (2)), as follows: 

 

 ( )
sin

.       sin cos

cos cos

TI ICS

B grav

BCS
grav

mg

R F mg

mg

F



 

 

= = −

−

 
 
 
  

  (11) 

 

The moments acting in the BCS are 

mainly generated by propeller system actuation 

and how they are distributed on the UAV center 

of mass. Hence, the torque produced by the 

spinning propeller is obtained by the following 

relation: 

 

 /

BCS

T CG P Tr F =    (12) 

 

being 
BCS

T
F  the thrust force vector written on the 

BCS  and  
/ cos sin

i

T

CG P i i CGr l l z  =   the 

motor position vector with respect to the multi-

rotor center of gravity. 

Afterward, since the mass of the aircraft 

is generally small, the gyroscopic effect of the 

blades must be accounted in the dynamic model. 

This torque is an outcome of the propellers 

angular momentum direction change along the 

flight [13], and is calculated with respect to the 

multi-rotor center of gravity considering the two 

tilting directions ( i  and i ). First, the motor 

angular velocity with respect to the aircraft CG is 

written as: 

 

 cos( ) sin( )
prop

T
P Q Ri i i i      = + + − +    (13) 

 

where 
i

  and 
i

  are each rotor angular velocity 

rate of change. 

Assuming that the propeller blades have 

the same moment of inertia (
M

I ) and are spinning 

around the 
M

z  direction of the MCS, the 

gyroscopic effect is obtained from by the cross 

product between the motor angular velocity (Eq. 

(13))  and the angular momentum generated by 

the n  propellers (
1

0 0 Ω
n

i

T

Mi i
H J

=

=
 
  

 ): 

 

 ( )            
G B

ICS
BCS

dH
H H

dt
 = = + 

 
 
 

  (14) 

 

Considering that the propeller angular 

speed variation is negligible and the propeller 

moment of inertia is constant, then ( ) 0
BCS

dH dt =

. Further, the fan torque is also an external torque 

component due to the air aerodynamic drag on 

the propeller blades cross section that acts on the 

rotor spinning axis ( 
M

z ) and can be modeled as 

[14]: 

 

 2

1

0 0
MCS

T
n

i

i

F
b

=

= − 
 
  

   (15) 

 

where b  is a proportional constant relating the 

resulting drag torque with the propeller angular 

speed. Equation (15) can be written on the BCS  

using the relation on Eq. (6). 

Thus, the total forces and toques applied 

to the aircraft are: 

 

 

S

T G

BC

D

BCS

grav

F

BCS

T
F FF F

M   

= +

= +

+

+
  (16) 
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The mathematical model of a generic tilt 

multi-rotor with n rotors is obtained substituting 

Eq. (16)  in Eqs. (7) and (8) also considering the 

kinematic relations presented on Eq. (1) forming 

a nine degree of freedom dynamical system. The 

number of inputs depends on the number of 

motors and tilting actuators.  

In order to apply modern control 

techniques, such as the Linear Quadratic 

Regulator (LQR), the derived equations of 

motion must be linearized in order to form a LTI 

(Linear Time Invariant) system [12]. The 

procedure of linearization is based on the small 

perturbation theory similarly to the application of 

fixed wing aircraft models as developed in [13]. 

Once the equations were linearized, the first 

order differential equations can be written in the 

state space format: 

 

 
x Ax Bu

y Cx Du

= +

= +
  (17) 

 

with  x u v w P Q R   = being 

the state vector, y  the output measured signals, 

A the dynamic matrix and B the input matrix. 

Since the measured signals are considered to be 

exactly the state vector, then C is an identity 

matrix and D is a zero matrix.  

In most applications concerning 

trajectory tracking problems, the position of the 

aircraft with respect to the ICS is the desired 

control variable [10]. In order to include the 

vehicle position, the state vector is expanded and 

three new kinematic relations are added to the 

problem. They concern the linear velocities ( xV ,

yV  and zV ) written as a function of the temporal 

derivatives of ( Ex , Ey  and Ez ) [15]. 

3 Modern Control 

In terms of autonomous systems development, 

modern control theory has revealed to be a 

valuable control technique for multi-copter 

autonomous flight applications as presented in 

[1] and [12]. Once this system configuration is 

classified as MIMO (Multiple Input Multiple 

Output), as presented on the dynamical 

equations, the numbers of control states and 

inputs in the multi-copter dynamical model make 

classical control techniques as PID controllers a 

hard-working task since the controller is based on 

successively closed loops. Moreover, for multi-

variable or problems, modern control techniques 

can be more efficient since the control loop gains 

are calculated simultaneously while the stability 

condition are guaranteed. 

Therefore, on this work, the Linear 

Quadratic Regulator (LQR) with state feedback 

is applied to guarantee stability and good signal 

tracking capability. The LQR strategy control 

strategy consists in making zero order closed 

loop system that forces all the states to the 

equilibrium position. Mainly concerned with 

trajectory tracking characteristics, the tracking 

error ( ( )e t ) is defined as: 

 

 ( ) (t) x(t)e t r= −   (18) 

 

with (t)r  the tracking command vector 

containing the reference values for the states 

desired to be tracked which can be represented as 

a p order differential equation: 

 

 
( )

1

pp p i

i
i

r a r
−

=

=   (19) 

 

Furthermore, the LQR problem can be 

extended to the LQT (Linear Quadratic 

Tracking) problem increasing the system order 

following the internal model principle, where the 

error (Eq.(18)) is driven to zero. The problem can 

be treated as a servomechanism design which 

contains the reference model (Eq.(19)) written in 

the state space form as [16]: 

 

 
( )

1

pp p i

i
i

r a r
−

=

=   (20) 

 

where the vector    represents the plant input 

vector and z   is the expanded state vector 

containing the plant and p error derivatives (
( 1)

T
p

z e e e x
− 

 
 

=   )  Further, assuming that 

the control law is represented by: 
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 ( ) cu t K z=−   (21) 

 

The feedback gain matrix  

11 xc p pK K K K K−=     is obtained solving a 

cost-function minimization problem in a manner 

that the closed loop matrix system (
cA BK− ) is 

stable (Burns, 2001):  

 

 ( )
0

( ) ( )  
k k

T TJ z Q z R dt 


= +   (22) 

where 0k k

TQ Q=  , 0T

k kR R=   and ( )1/ 2, kA Q are 

detectable. 

Therefore, for a given state space LTI 

system, there is a gain matrix Kc which can 

minimize the cost function and bring all states 

(including the error) to zero simultaneously. The 

cost function minimization problem (Eq. (22)) 

can be solved using the Riccati equations [17]. 

4 Hardware-in-the-loop Simulation 

According to [8], the hardware-in-the-loop (HIL) 

technique is a real-time simulation method or 

framework, in which the UAV is reacting the 

same way as it would in the real experiment. This 

technique has been widely applied by researchers 

since it can be an effective way to detect and 

prevent unnecessary malfunctions of hardware, 

software and unexpected behavior of the aircraft 

when executing an experiment.  

For instance, in [18], a 

Matlab®/Simulink interface was developed in 

such manner that factors such as wind, sensor 

noise and actuator slew were included in the 

model to facilitate a more realistic simulation 

environment. In general, the benefits of the HIL 

is that it can reduce the experiment’s cost, 

increase its safety, and it can be less time 

consuming. Using such method, the reliability of 

the overall UAV system can be evaluated 

principally the performance of designed 

automatic flight control algorithms.  

In this sense, a HIL framework was established 

in order to join in the aircraft hardware to a 

Matlab® flight control module which executes 

the automatic control algorithms and integrates 

the aircraft equations of motion over time. This 

procedure enables the LQR/LQT control law to 

be tested using the real hardware preserving the 

MAV integrity. 

The HIL simulation framework is 

depicted in Fig. 2. Briefly, the integrated 

framework works as follows: the first step is a 

handshake connection between the 

microcontroller and the Matlab® so the task 

commands (reference signal), initial states and 

number of iterations are defined. The 

BeagleBone microcontroller receives the states 

from the algorithm and, using the compiled 

control law, calculates the motor/actuators input 

signal (PWM). Later, the PWM signal returns to 

the Matlab® algorithm and goes to the aircraft 

actuators/motors. The equations of motion are 

integrated in the software using a ODE45 

function being the defined time step as the 

simulation time interval. The output from the 

Matlab® function are the states which are 

transferred to the microcontroller so that the loop 

is completed. Simultaneously, the 

actuators/motors receive the PWM signal, while 

the aircraft is fixed, and the rotors speeds are 

monitored using a tachometer. 

The definition of the time step depends on 

the time communication between the Matlab® 

software and the BeagleBone microcontroller. 

The standard procedure is based on serial 

communication on which the controller connects 

directly to the software. However, for this 

purpose, the connection between the 

microcontroller and the software via TCP/IP has 

proved to be faster, reducing the time 

communication in approximately 20 times. Thus, 

the sample time for the HIL application could be 

set as 20 ms. 

Notwithstanding, the time for the 

Matlab® routine to execute the equations of 

motion integration function and calculate the 

states is variable. Differently from a real problem 

where they are obtained instantly.  Though, from 

simulations experiments was verified that the 

calculation time does not exceed 4 ms. Hence, 

setting the sample time to 20 ms, there is time 

enough for the software to execute the algorithm 

and the microcontroller to calculate the input 

signal. The time difference between the sample 

time and the software calculations is the stand-by 

time for the microcontroller to send the output 

signal back to the software. In conclusion, the 
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proposed HIL procedure is performed as close as 

a real-time simulation. 

 

 

Figure 2. Hardware-in-the-loop framework. 

5 Simulations and Results 

 

Once the multi-rotor dynamical model equipped 

with a tilting mechanism was derived and a 

control law based on the linear state-space model 

was proposed, numerical simulations using the 

hardware-in-the-loop framework presented in 

Section 4 are presented in this section in order to 

illustrate the autonomous flight application. 

As research object, a quadcopter 

configuration containing 4 longitudinal tilting 

mechanisms was chosen in order to exemplify 

the control application. In this case, the tilting 

mechanism are considered to actuate 

independently.  

Further, the reference input for the three 

space positions is a unitary step signal 

represented by the following differential 

equation: 

 0r =   (23) 

 

with 1p =  and 1 0a =  on Eq. (20). 

The position and attitude responses are 

presented on Figs. 3 and 4, respectively. From the 

figures, it can be inferred that the aircraft position 

converges to the reference value on the three 

directions simultaneously however the system 

has higher oscillations on 
Ex  direction. The 

oscillations are also observed on the attitude 

position illustrated on Fig. 4. Furthermore, 

regarding the yaw angle response ( ) on Fig. 4, 

it is observed that the system does not converge 

to the equilibrium position through the 

simulation. This phenomenon can be attributed to 

the system response efficiency due to the 

propeller drag [19]. 

 

 

Figure 3. Quadcopter position for a unit step 

reference input signal. 

 

 

Figure 4 Quadcopter Euler angles for a unit 

step reference input signal. 

 

 Figures 5 and 6 show the input signal 

from the microcontroller to the rotors    (

/rad s ) and tilt actuator   ( rad )  on the 

numerical simulator, respectively, where one can 

observe that the control inputs tends to a steady 

state value which is not the same as the initial 

condition. Thus, it can be inferred that the system 

is at a new equilibrium condition as soon as the 

tilting angles are not zero (Fig. 6). 
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Figure 5.  Quadcopter rotor angular velocities 

for a unit step reference input signal. 

 

 

Figure 6. Quadcopter longitudinal tilting 

angles for a unit step reference input signal. 

 

Once the hardware-in-the-loop 

simulation was performed, the performance of 

the system processing and communication was 

test to guarantee that the time elapsed between 

each numerical integration is enough to 

guarantee that the states and control inputs are 

updated at each time step. 

Considering the time sampling, Fig. 7 

shows the variation of the time calculation over 

the simulation. One can state that there are some 

peaks which exceed the required sampling time 

(0.02s) since it is a non-real time system however 

the mean value is guaranteed.  Hence, in real 

flight operations, the transmission conditions are 

improved assuming that the system does not have 

connection delay. 

 

 
 

The sampling time is mainly composed of three 

parts: plant calculation (Matlab® numerical 

integration, controller calculation and 

communication time. Ideally, the plant 

calculation and communication time should be 

very small compared to the controller calculation 

such that the simulated model can approximate 

the real system. The communication time was 

obtaining eliminating all the calculation and 

considering only the time expend for changing 

data, the value obtained was 5e-5s with a 

standard deviation of 5e-6 s, equivalent of 

approximately 0.5% of all the processing time as 

presented on Table 1.  

 

Table 1. Processing and communication time. 

Process Percentage of total time 
Plant Numerical 

Integration 
5% 

Communication 0.5% 
Controller Calculation 94.5% 

 

Also, considering the table, one can 

deduce that the communication time is negligible 

compared to the controller calculation time. 

Therefore, the hardware-in-the-loop procedure 

permits to evaluate the controller behavior on 

real flight conditions and to test its robustness 

and performance for a specific mission. 
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6 Conclusions 

 

In summary, the objective of this present work 

was to derive the dynamical model of a generic 

multi-rotor UAV equipped with a tilting rotor 

mechanism either on the longitudinal or lateral 

directions. The addition of the tilting mechanism 

to the system increases the number of signal 

inputs, hence the underactuation problem can be 

solved. 

The equations of motion were then 

derived using Newton-Euler formulation 

considering the system as a rigid body with six 

degrees of freedom (3 translations and 3 

rotations). The dynamic equations were lately 

linearized so that modern control techniques 

could be applied. An LQR controller using 

servomechanism approximation for trajectory 

tracking was designed in a manner that the closed 

loop system stability is held and the plant is able 

to follow a desired tracking command. 

The dynamical model and designed 

control were tested via hardware-in-the-loop 

simulations in order to evaluate the 

microcontroller performance. This analysis is a 

one step procedure for future experimental 

analysis and has given preliminary results for the 

controller behavior avoiding human and 

equipment risks. 

However, for future work, other effects 

could be investigated for the proposed problem 

such as: the weighting matrix for different 

scenarios, the introduction of parameter 

uncertainties and external perturbations to the 

model, other control techniques application, the 

controller can be tested for different reference 

signals and input trajectories and, finally, the real 

experimental tests can be done. 
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