
 

1 

 

 

Abstract  

In the real world, aeronautics engineering design 

problems the designer often seeks to optimize 

multiple and conflicting merit functions or 

objectives relating to the performance of the 

given design. Several techniques are available 

today for design through numerical optimization. 

The first aim of this paper was to perform a 

complete, comprehensive comparison between 

different stochastic multi-objective optimization 

methods like: the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II). A single and 

Multi Objective Simulated Annealing (MOSA). 

Multi-Objective Particle Swarm (MOPSO) and 

Multi Objective Genetic Algorithm (MOGA-II), 

by using the commercial Mode FRONTIER 

software to solve the aerodynamics wing design 

problem. The black-box objective function is a 

low-fidelity flow computation code solver, which 

was based on first order 3D panel method, for lift 

and induced drag coefficient calculation, and the 

boundary layer method for the friction drag 

coefficient calculation. The efficiency of each 

method was determined, taking in account three 

numerical performance metrics and one visual 

criterion for qualitative and quantitative 

comparison.  (1) The ratio between the number 

of resulting Pareto front members and the total 

number of fitness function calculations, (2) 

Spacing metric S which indicates the distribution 

of the Pareto front in the objective space, (3) the 

generational distance for the convergence and 

finally the graphical representation of the Pareto 

fronts for discussion. These metrics were chosen 

to represent the quality, as well as the speed of 

the algorithms by ensuring well distributed 

solution. 

1 Introduction. 

The mono and multi-objective optimization 

problems applied to the wing aerodynamic 

design involve a large number of variables. The 

influence of multi-objective optimization on 

aerodynamic design is a field of research to be 

investigated. It should be taken into account that 

such optimization methodologies involve 

different procedures to evaluate a set of 

aerodynamic design variables. In optimization 

problems, these procedures can be called "black 

box functions", and are often addressed in the 

literature as design methods, IE, low-fidelity 

methods such as the Prandtl-line method, half-

fidelity methods such as basic 3D or viscous 

panel methods and High-fidelity Computational 

Fluid Dynamics (CFD). 

The present study investigates the behavior 

of the different Multi-Objective Optimization 

Algorithms (MOOA) applied in the aerodynamic 

design. Generally, a method cannot be declared 

better than others without applying to a specific 

problem that needs to be confronted. The 

important features that need to be evaluated 

include: 1) generality of formulation versus 

problem dependence; 2) robustness, intended as 

the ability to avoid local optimum, versus the 

need for interaction and human knowledge; 3) 

multiple goal optimization capability versus 

single goal; and 4) computational efficiency 

versus the need for large computational 

resources. In order to determine the previous 

characteristics, the NSGA II, MOSA, MOPSO 

and MOGA II multi-objective optimization 

algorithms will be applied to the wing 

aerodynamic problem, a process integration 
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commercial software will be used to meet this 

objective. 

2 Aerodynamics Solver  
 

We are going to use a computational 

methodology code developed by [1]; it was based 

on first order 3D panel method (3DPM) for lift 

and induced drag coefficient calculation and 2D 

boundary layer method (2DBLM) for friction 

coefficient calculation and then the aerodynamic 

efficiency as in the solver scheme of the Figure 

1. 

 
Fig.1. Solver Scheme. 

2.1 The input and output data of the Solver 

The input and output Data includes in the 

algorithm like a text or data file, it´s in order to 

receive or send data in iterative form to the 

optimization process. The inlet data are listed in 

the Table 2, from this table will be selected the 

optimization problem variables or design 

variables. 

 
Table 2 - The Input and Output Data set by the user 

Input data Output data 

Root Chord C0 Lift  CL 

Tip Chord Ct Induced Drag   Cdi 

Wing Span b Friction Drag  Cf 

Airfoil NACA Digit XXXX Total Drag   CD 

Panels on airfoil IB CD/CL η 

Wing Span Division  JB1   

X Root Coordinate  XR   

X Tip Coordinate XT   

2.2 Preprocessing part or wing discretization  

Previously to the wing discretization, the airfoil 

is divided in IB panels using a MATLAB code 

based on Bezier curves to generate the airfoil 

shape and discretization as shown in Figure 3.   

 

 
Fig.2. Airfoil S1223 panels discretization 

 

Extending the airfoil discretization along the 

wingspan was obtained the wing panels 

discretization as shown in Figure 3. It was using 

the 3D Panel Method codified in FORTRAN. 

 

 
Fig.3. Wing discretization 

3 Multi-objective optimization algorithm´s 

Whilst most real world problems require the 

simultaneous optimization of multiple, often 

competing criteria (or objectives), the solution to 

such problems is usually computed by combining 

then into a single criterion to be optimized, 

according to some utility function. In many 

cases, however, the utility function is not well 

known prior to the optimization process the 

whole problem should then be treated as a multi-

objective problem with non-conflicting 

objectives. In this way, a number of solutions can 

be found which provide the decision maker (DM) 

with insight into the characteristics of the 

problem before a final solution is chosen.  

Multi-objective optimization (MOO) seeks 

to optimize the components of a vector value cost 

function. Unlike the single objective 

optimization, the solution to this problem is not a 

single point, but a family of points known as the 

Pareto optimal set. 
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COMPARISON AND APPLICATION OF DIFFERENT TECHNIQUES OF 

MULTI-OBJECTIVE OPTIMIZATION FOR AERODYNAMIC WING 

DESIGN.  

3.1 Non dominated Sorting Genetic Algorithm 

(NSGA II)  

The non-dominated sorting GA (NSGA) 

proposed by [2] has been applied to various 

problems. However, there have been a number of 

criticisms of the NSGA. The NSGA II, modified 

the first NSGA approach in order to alleviate all 

the difficulties. The NSGA-II is formed by the 

follow modules. 

 

3.1.1 A fast non-dominated sorting approach. 

In order to sort a population of size N according 

to the level of non-domination, each solution 

must be compared with every other solution in 

the population to find if it is dominated. 

 

 3.1.2 Density estimation. 

To get an estimate of the density of solutions 

surrounding a particular point in the population, 

we take the average distance of the two points on 

either side of this point along each of the 

objectives. This quantity serves as an estimate of 

the size of the largest cuboid enclosing the point 

/without including any other point in the 

population (crowding distance). See figure 3 

 

 
Fig.4. Crowding distance 

 

3.1.3 Crowded comparison operator 

The crowded comparison operator guides the 

selection process at the various stages of the 

algorithm towards a uniformly spread out Pareto 

optimal front. Let us assume that every 

individual I in the population has two attributes: 

Non-domination rank and local crowding 

distance. 

 

3.1.4 The main loop 

Initially, a random parent population P0 is 

created. The population is sorted based on the 

non-domination. Each solution is assigned a 

fitness equal to its non-domination level (1 is the 

best level). Thus, minimization of fitness is 

assumed. Binary tournament selection, 

recombination, and mutation operators are used 

to create a child population Q0 of size N. From 

the first generation onward, the procedure is 

different. 

3.2 Multi Objective Simulated Annealing 

(MOSA)  

The basic structure of the MOSA algorithm 

developed by [3] its novel features over that of 

traditional single objective optimization by 

Simulated Annealing are described as follows. 

A "composite" objective function G is 

formed between each of the single objectives and 

is defined as 

𝐺 = ∑ln𝑓𝑖

𝑀

𝑖=1

 

(1) 

where 𝑓1, … , 𝑓𝑀  are the objective functions 

to be minimized. At any given iteration, n, the 

objective function values are calculated from 

control variable values stored in Xn, and are 

substituted into Equation (2) to give G(Xn). 

Random perturbation is then applied to each 

variable, from which G (Xn+1) is computed, until 

an acceptance criterion is attained. The 

acceptance criterion with the following 

probability, p, is employed between successive 

iterations.    

  

𝑝 = 𝑒𝑥𝑝 (−
1

𝑇
[𝐺(𝑋𝑛+1) − 𝐺(𝑋𝑛)]) (2) 

where T, as before, is the system 

temperature. The expression in Eq. (2) Is such 

that any perturbation which decreases G enables 

Xn+1 as the current position from which to initiate 

a further search, while perturbations which 

increase G are accepted with a probability which 

falls as the temperature is lowered as the search 

progresses. Using Eq. (1), Eq. (2) can be written 

as: 

𝑝 = 𝑒𝑥𝑝 (−
1

𝑇
∑𝑙𝑛 [

𝑓𝑖(𝑋𝑛+1)

𝑓𝑖(𝑋𝑛)
]

𝑀

𝑖=1

) 

(3) 
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During the course of the search, an "archive" 

of non-dominated solutions 𝑓1, … , 𝑓𝑀  is also 

maintained. 

 

3.3 Multi-Objective Particle Swarm 

Optimization (MOPSO). 
 

The important part in multi-objective particle 

swarm optimization (MOPSO) is to determine 

the best global particle for each particle of the 

population. In the mono objective particle, 

swarm optimization method (PSO) the global 

best particle is easily determined by selecting the 

particle, which has the best position. Since in 

multi-objective optimization problems there are 

a set of Pareto optimal solutions as the optimum 

solutions, each particle of the population should 

select one of the Pareto-optima’s as its global 

best particle, which we call it the best local guide.  

PSO is the expansion of animal social 

behavior that follows a population-based meta-

heuristic strategy for optimization. It 

incorporates the acceleration by distance and 

velocity matching by nearest matching. In the 

mid- 1990s, it was originally introduced by [3], it 

was employed to balance the weights in neural 

networks [4].  

In his work, Kumar [5] present a glossary of 

common terminology and their definitions 

follows, for clarity:  

 

a). Swarm: Population size (number of 

particles).  

b). Particle: An individual member of the 

swarm, which is a potential solution to the 

problem.  

c). pbest (personal best): The personal best 

position achieved by a particle so far. 

d). lbest (local best): Position of the best 

particle member within the neighborhood. 

e). gbest (global best): Position of the best 

particle member from the entire swarm.  

f). Leader: A particle that guides the other 

particles of the swarm to the best regions in the 

search space. 

g). Velocity (vector): The direction in which 

a particle must move in order to improve its 

position.  

h). Inertia Weight: The impact of the 

previous velocity to the current velocity of the 

particle, denoted by 𝑤.  

i). Learning Factor: The attraction of a 

particle towards either its previous or its 

neighbors’ values. PSO adopts two learning 

factors, cognitive learning factor (𝑐1) and social 

learning factor (𝑐2). Cognitive leaning factor 

represents the attraction toward the particle’s 

own success, and social learning factor 

represents the attraction toward neighbors. Both 

factors are constants usually considered in the 

experiments.  

j). Neighborhood Topology: The set of 

particles involved to determine the lbest value of 

the given particles. 

 

The position and velocity of the particle at 

each iteration I can be calculated by the equations 

(4) and (5) 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (4) 

𝑉𝑖(𝑡 + 1) = 𝑉𝑎 + 𝑉𝑙 + 𝑉𝑔 (5) 

 

where, Va, Vl and Vg are the velocities for 

search the best personal, local and global 

positions: Va = Vi(t), the actual swarm velocity, 

Vl = c1ri,1(t)x (pbesti,t(t) − Xi(t)) , the local 

and Vg = c2ri,2(t)x (gbesti,t(t) − Xi(t)) the 

global. 

 

The algorithm and  pseudo code of MOPSO 

are detailed in [5]. 

 

3.4 Multi-Objective Genetic Algorithm 

(MOGA-II). 

 

This is an improved version of MOGA (Multi-

Objective Genetic Algorithm) by [6] and is 

should not be confused with MOGA by [7] with 

which it shares only the same acronym. MOGA 

II is a smart multi-search elitism for robustness 

and directional crossover, for fast convergence. 

Its efficiency in ruled by its operators (classical 

crossover, directional crossover, mutation and 

selection) and by the use of elitism.  
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Encoding in MOGA-II is done as in classical 

genetic algorithms and it uses four different 

operators for reproduction: classical crossover, 

directional crossover, mutation and selection. At 

each step of the reproduction process, one of the 

four operators is chosen (with regard to the 

predefined operator probabilities) and applied to 

the current individual. Directional crossover 

assumes that a direction of improvement can be 

detected comparing the fitness values of two 

reference individuals. In [8] a novel operator 

called evolutionary direction crossover was 

introduced and it was shown that even in the case 

of a complex multimodal function this operator 

outperforms classical crossover. The direction of 

improvement is evaluated by comparing the 

fitness of the individual Indi from generation t 

with the fitness of its parents belonging to 

generation t − 1. The new individual is, then 

created by moving in a randomly weighted 

direction that lies within the ones individuated by 

the given individual and his parents. A similar 

concept can be however applied The MOGA-II 

algorithm is shown at the reference [9].   

 

4 Multi-objective Aerodynamics wing 

optimization problem 
 

In this paper, two multi-objective aerodynamic 

optimization problems are characterized 

considered by the authors that involve a great 

number of the wing geometric variables and the 

more important aerodynamics coefficients.  

 

 4.1 Only geometric wing parameter variation 

(Problem 1). 

 

In order to have in the methodology a 

representative number of geometric variables 

that can define the shape of the wing, the 

following decision variables are selected:  

 Wingspan (b) 

 Wing root chord (C0) 

 Wing tip chord (Ct) 

 Sweep angle (φ) 

 Dihedral angle (ε) 

The airfoil wing coordinates remain 

invariables in this problem. Then the n-

dimensional vector that represents each 

individual will be: 

 

𝑋⃗5 = 𝑋(𝑏, 𝐶0, 𝐶𝑡 , 𝜑, 𝜀) 

 

(6) 

In this problem two objective functions will 

be analyzed: the inverse of lift coefficient (f1) and 

longitudinal moment coefficient (f2) 

 

𝑓1 =
1

𝐶𝐿
    𝑜   𝑓2 = 𝐶𝑚 

(7) 

 

The constrains equations Rn will be lateral 

constrains type: the first one is related to the wing 

aspect ratio (Λ): 

 

Λ𝑚𝑖𝑛 ≤
𝑏2

𝑆𝑤
≤ Λ𝑚𝑎𝑥 

(8) 

 

where Sw is the wing surface; 𝑆𝑤 =
𝑏

2
(𝐶0 + 𝐶𝑡) 

  

𝑅1:  Λ𝑚𝑖𝑛 ≤ 
2𝑏

(𝐶0 + 𝐶𝑡)
≤ Λ𝑚𝑎𝑥 

(9) 

 

The second constraint is the taper ratio λ, 

which must be less than unity, 

 

𝑅2 :   
𝐶𝑡

𝐶0
≤ 1 

(10) 

 

The third constraints are the sweep angle (φ), 

 
𝑅3:   𝜑𝑚𝑖𝑛 ≤ 𝜑 ≤ 𝜑𝑚𝑎𝑥 (11) 

The fourth and last constrain is in the 

dihedral angle. 

 
𝑅4:   𝜀𝑚𝑖𝑛 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥 (12) 

4.2 Only airfoil wing shape parameter 

variation (Problem 2). 

 

Diaz et al in [1], designed a code for airfoil shape 

adjustment, based on Bezier curve. The 

components of the ZPC vector represent the 

abscissas of the control points to generate the 

wing profile. 
 

 𝑍𝑃𝐶
⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑍8, 𝑍9, 𝑍10, 𝑍11, 𝑍12)

 
(13) 

 

In this problem the same objectives 

functions of the problem 1 are used. The lateral 
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constrains was taken in order to maintain the 

leading edge rounded and the max chamber to 

avoid the boundary layer separation [10]. 

5 Performance Metrics  

 

In Multi-Objective Optimization Processes 

(MOPs), there are two distinct and orthogonal 

goals as follows: (1) to discover solutions as 

close to the Pareto-optimal solutions as possible, 

and (2) to find solutions as diverse as possible in 

the non-dominated front obtained. Therefore, in 

order to compare two or more MOEAs, at least 

two performance metrics (one evaluating the 

progress towards the desired Pareto-optimal front 

and the other evaluating the spread of Pareto-

front obtained) need to be used and exact 

definitions of these performance metrics are 

important. 

 

5.1 Performance Metrics Classification for 

Multi-Objective Optimization (MOO). 
 

This section covers the current performance 

metrics in the literature of EMOO (Elitistic 

Multi-Objective Optimization). The main 

purpose of a performance indicator in EMOO is 

to quantify the performance from a specific point 

of view. The ultimate goal in EMOO is to find a 

very accurate approximation and large number of 

the true Pareto optimal solutions with uniform 

distribution among all objectives [11]. Therefore, 

classify the current performance measure scan 

into three main categories: capacity, coverage 

and convergence metrics. 

  

5.1.1 Capacity performance metrics: 

This group of metrics tally the number or ratio of 

non-dominated solutions in the objective 

function space that satisfies given predefined 

requirements. In addition, the number of Pareto 

optimal solutions obtained is also important [12], 

which provides decision making with more 

designs from which to choose. The capacity 

metric selected to use in this paper is: 

 

Perceptual Hit Rate Metric (HRM%): the 

number of resulting Pareto front point is given by 

|𝑃∗|, while the parameters FC denotes the total 

number of fitness calculation. The final hit rate 

HRM% is computed according to the equation 

(15) 

𝐻𝑅𝑀% =
|𝑃∗|

𝐹𝐶
100[%] 

(15) 

A higher HRM% indicates that fewer time-

consuming fitness computations were used to 

find the Pareto optimal solutions. The 

relationship between the size of the feasible 

design space and the ideal Pareto front should be 

considered in order to create a universal success 

quantifier. 

 

5.1.2 Coverage performance metrics: 

This class of metrics defines how well the 

solutions obtained “cover” the range of each of 

the objectives. The coverage metric selected to 

use in this work is: 

 

Spacing Metric (SM): This metric as used by 

[13], indicates how uniformly the points in the 

approximation set are distributed in the objective 

space as a variance: 

 

𝑆𝑀 = √
1

|𝑃∗|
∑(𝑑𝑖 − 𝑑̅)

2

|𝑃∗|

𝑖=1

 

 

(16) 

 

 

𝑑𝑖 = 𝑚𝑖𝑛 {∑|𝑓𝑚
𝑖 − 𝑓𝑚

𝑘|

𝑀

𝑚=1

}

𝑘∈|𝑃∗|^𝑘≠𝑖

 

 

(17) 

 

where 𝑑̅  is the average of all di, M is the 

number of objective functions. Zero value of this 

metric indicates all members of Pareto front are 

equidistantly spaced. 

 

𝑅1: 𝑍1𝐵 − 0,1|𝑍1𝐵| ≤ 𝑍1 ≤ 𝑍1𝐵 + 0,1|𝑍1𝐵| 
𝑅2: 𝑍2𝐵 − 0,5|𝑍2𝐵| ≤ 𝑍2 ≤ 𝑍2 + |𝑍2𝐵| 
𝑅3: 𝑍3𝐵 − 0,5|𝑍3𝐵| ≤ 𝑍3 ≤ 𝑍3𝐵 + |𝑍3𝐵| 
𝑅4: 𝑍4𝐵 − 0,5|𝑍4𝐵| ≤ 𝑍4 ≤ 𝑍4𝐵 + |𝑍4𝐵| 
𝑅5: 𝑍5𝐵 − 0,1|𝑍5𝐵| ≤ 𝑍5 ≤ 𝑍5𝐵 + 0,1|𝑍5𝐵| 
𝑅6: 𝑍8𝐵 − 0,1|𝑍8𝐵| ≤ 𝑍8 ≤ 𝑍8𝐵 + 0,1|𝑍8𝐵| 
𝑅7: 𝑍9𝐵 − 0,5|𝑍9𝐵| ≤ 𝑍9 ≤ 𝑍9𝐵 − 0,25|𝑍9𝐵| 
𝑅8: 𝑍10𝐵 − 0,5|𝑍10𝐵| ≤ 𝑍10 ≤ 𝑍10𝐵 − 0,25|𝑍10𝐵| 
𝑅9: 𝑍11𝐵 − 0,5|𝑍11𝐵| ≤ 𝑍11 ≤ 𝑍11𝐵 − 0,25|𝑍11𝐵| 
𝑅10: 𝑍12𝐵 − 0,1|𝑍12𝐵| ≤ 𝑍12 ≤ 𝑍12𝐵 + 0,1|𝑍12𝐵| 
 

 

 

(14) 
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5.1.3 Convergence performance metrics: 

This class of performance measures quantifies 

the closeness of the solutions obtained in the 

Pareto front, evaluate how far from the non-

dominated set points of each generation are in 

reference of the Pareto front in the final 

population.  

Many metrics for measuring the convergence of 

a set of non-dominated solutions towards the 

Pareto front, almost all of these metrics were 

constructed in order to directly compare two sets 

of non-dominated solutions. Based on these 

criteria, the convergence metric selected to use in 

this paper is: 

 

Generational distance (GD): This metric 

was proposed by [12]. GD calculates the distance 

of obtained Pareto optimal solutions from a 

selected reference set of the Pareto optimal front. 

Knowing that 𝐹(𝑡) is the Pareto front set, of the 

total process, f is the objective function value and 

M is the number of the objective function in the 

problem, the mathematical formulation is as 

follows: 

 

𝐺𝐷∗ =
∑ 𝑑𝑖

|𝐹(𝑡)|

𝑖=1

|𝐹(𝑡)|
 

(18) 

 

Where t is the counter generation, F (t) is the 

Pareto front set at each generation and di are 

calculated by the follow equation: 

 

𝑑𝑖 = 𝑚𝑖𝑛𝑗=1
|𝑃∗|

[
 
 
 
√∑ (

𝑓𝑘(𝑖) − 𝑓𝑘(𝑗)

𝑓𝑘
𝑚𝑎𝑥 − 𝑓𝑘

𝑚𝑖𝑛
)

2𝑀

𝑘=1
]
 
 
 

 

 

(19) 

 

where 𝑓𝑘
𝑚𝑎𝑥 and 𝑓𝑘

𝑚𝑖𝑛 are the maximum and 

minimum function values of the kth objective 

function in P*. In order to keep the convergence 

metric within [0,1], once GD* are calculated for 

all generations, these are normalized by the 

maximum value of them (GDmax) [14]. 

  

 

𝐺𝐷 =
𝐺𝐷∗

𝐺𝐷𝑚𝑎𝑥
 

(20) 

 

 

6 The optimization methodology 
 

The commercial code used in the multi-objective 

optimization process was mode FRONTIER. It is 

a multi-objective optimization software, which 

allows connecting several different CAD and/or 

FEA software together. Through the graphical 

interface is possible to set up a workflow 

consisting of nodes, which are connected with 

each other to constitute a logical scheme of an 

optimization process. 

 

The numbered corresponding nodes are: 

1. Input variables: defines design space. 

2. Design of experiment (DOE) and 

Scheduler: DOE and algorithms provide 

different values for the input variables.  

3.  Solver: CFD or low fidelity program.  

4.  Output variables: design output 

variables. 

5. Objective: minimizing or maximizing 

output variables. 

6. Support files. 

 

The figure 5 shows the input and solver Mode 

Frontier workflow aerodynamic problem one and 

the figure 6 represent the output workflow for 

both problems. 

 

 
 

Fig.5. Input-Process Workflow (Problem 1). 

 

In addition, the figure 7 represents the Mode 

Frontier input-solver workflow for aerodynamic 

problem 2. 

1 
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Fig.6. Output Workflow (Problem 1 and 2). 

 

 

 
 

Fig.7. Input-solver Workflow (Problem 2). 

 

6.1 Experiment Design. 
 

In order to maintain the same initials conditions 

for each optimization algorithm (MOSA, 

MOPSO, MOGA II and NSGA II), the initial 

population (DOE) was maintained constant. 

 

 Number of individuals in the initial 

population (Number of designs): 20. 

 Number of iterations or generations 

30. 

 

A low number of generations, was taken 

with the purposed of reduce the computational 

time in each run. The total quantity of individuals 

was 600. In this work, all the parameter were 

maintained constant with the default values from 

Mode Frontier, with the exception of the 

following listed, in order to control the 

population size in each running.  

 

 

MOSA: 

 Initial Temperature: 1.0 

 Fraction of “Hot” Iterations: 0.5 

MOPSO:  

 Turbulence: 0.2 

MOGA II: 

 Probability of directional Cross Over: 

0.5 

 Probability of Selection: 0.05 

 Probability of Mutation: 0.1 

NSGA II: 

 Cross Over Probability: 0.5 

 Mutation Probability: 0.1 

 Mutation Probability for Binary String: 

1.0 

 

7 Results 

 

7.1 Wing parameter variation (Problem 1)  

 

7.1.1 Historical evolution of the population on 

each method. 

 

In the figures, 8,9,10 and 11, are shown the 

historical evolution of the population for the 

algorithms: MOGAII, MOPSO, MOSA and 

NSGAII respectively. 

 

 
 

Fig.8. MOGAII Historical evolution (Problem 1). 
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Fig.9. MOPSO Historical evolution (Problem 1). 

 

 
Fig.10. MOSA Historical evolution (Problem 1). 

 

 
Fig.11. NSGAII Historical evolution (Problem 1). 

 

In the figure, 8 for MOGA II algorithm can be 

observed that the population at the beginning is 

disperse and during the evolution, was difficult 

for the algorithm to find the Pareto front. The 

algorithms MOPSO and MOSA compress the 

population quickly, but it has a few points in his 

Pareto’s fronts. In the figure 11 is shown that a 

big quantity of points in the Pareto front is 

obtained by a gradual and quick convergence 

process using the NSGA II algorithm. 

 

7.1.2 Pareto front comparison  

 

 

Fig.12. Pareto’s front comparison (Problem 1) 

 

In the figure 12 can be observe the Pareto’s fronts 

of all’s Pareto’s fronts, for problem 1, here can 

be observe the dominance of the NSGA II results. 

The figure 8-11, show that the final data are more 

disperse for MOGA II and NSGA II than MOSA 

and MOPSO, being the last, which best 

compressed the population. 

 

 7.2 Airfoil wing controls point variation 

(Problem 2)  

 

7.2.1 Historical evolution of the population on 

each method. 

 

In the figures, 13, 14, 15 and 16, are shown the 

historical evolution of the population for the 

algorithms: MOGAII, MOPSO, MOSA and 

NSGAII respectively. 
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Fig.13. MOGAII Historical evolution (Problem 2). 

 

 
Fig.14. MOPSO Historical evolution (Problem 2). 

 

 
Fig.15. MOSA Historical evolution (Problem 2). 

 

 
Fig.16. NSGAII Historical evolution (Problem 2). 

 

In the figure, 16 for NSGA II algorithm can be 

observed that the population at the beginning is 

disperse and during the evolution, was very easy 

for the algorithm to find the Pareto front. The 

algorithms MOPSO and MOSA compress the 

population quickly, attains a lot of points in his 

Pareto’s fronts. In the figure 15 is shown that an 

instable and quick convergence process using the 

MOGA II algorithm obtains a big quantity of 

points in the Pareto front. 

 

7.2.2 Pareto front comparison  

 

 
Fig.17. Pareto’s front comparison (Problem 2) 

 

In the figure 17 can be observed the Pareto’s 

fronts of all’s Pareto’s fronts, in the problem 2, it  

can observed the dominance of the MOGA II 

results. The figure 13-16, show that the final data 

0,23

0,25

0,27

0,29

0,31

0,33

0,35

0,7 0,9 1,1 1,3

O
b

je
ct

iv
e 

fu
n
ct

io
n
 (

f2
)

Objective function (f1)

Population

Pareto

0,23

0,25

0,27

0,29

0,31

0,33

0,35

0,8 0,9 1 1,1

O
b

je
ct

iv
e 

fu
n
ct

io
n
 2

 (
f2

)

Objective function 1 (f1)

Population

Pareto

0,25

0,26

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,34

0,8 0,9 1 1,1

O
b

je
ct

iv
e 

fu
n
ct

io
n
 2

 (
f2

)

Objective function 1 (f1)

Population

Pareto

0,25

0,26

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,8 0,9 1 1,1

O
b

je
ct

iv
e 

fu
n
ct

io
n
 2

(f
2

)

Objective function 1 (f1)

Population

Pareto

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,8 0,9 1 1,1

O
b

je
ct

iv
e 

fu
n
ct

io
n
  

2
 (

f2
)

Objective function 1 (f1)

MOGA II

MOPSO

MOSA

NSGA II



 

11  

COMPARISON AND APPLICATION OF DIFFERENT TECHNIQUES OF 

MULTI-OBJECTIVE OPTIMIZATION FOR AERODYNAMIC WING 

DESIGN.  

are being compressed in all method, but the best 

behavior is obtained with MOGAII and NSGA 

II. 

 

7.3 Performance metrics results. 

 

In order to calculate the Multi Objective 

Performance Metrics (MOPM), here was used a 

MATLAB script created, based on the theoretical 

methodology described in the section 5, to obtain 

the values for each method. 

 

7.3.1 HRM and SM Results 

The figure 18 and 19 show the values for HRM 

and SM for each multi objective optimization 

method applied to the aerodynamic problems 1 

and 2. 

 
Fig.18. Hit Rate Metrics (HRM). 

 

 
 

Fig.19. Spacing Metric (SM). 

The HRM values obtained, show that NSGA 

II has a good capacity to find a big number of 

points on the Pareto front, for both aerodynamics 

wing problems. The MOSA has the worst 

capacity for the problem 1 and MOPSO for the 

problem 2. 

The figure 17 show that the space between 

the Pareto points are uniformly distributed for 

both problems with NSGA II and the worst 

values for this parameter were calculated for 

MOPSO. 

 

7.3.2 GD Results 

 

The figure 20, 21, 22 and 23 show the graphics 

GD vs. Generations for each multi objective 

optimization method applied to the aerodynamic 

problems 1 and 2. 

 

The graphics for GD show that the best 

convergence for both aerodynamics wing 

problems is obtained using the NSGA II method. 

The convergence is not attain using MOPSO and 

MOGA II in the problem 1. MOGA II, reached 

the convergence for the problem 2 but not for the 

problem 1. MOSA has the longer and instable 

convergence in both problems. Is good to take in 

account that in this paper the number of 

generation fixed in each method was low in order 

to reduce the computational time. 

 

 

 
Fig.20. GD Vs Generation (MOGA II). 
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Fig.21. GD Vs Generation (MOPSO). 

 

 
Fig.22. GD Vs Generation (MOSA). 

 

 
Fig.23. GD Vs Generation (NSGA II). 

 

 

8 Conclusions. 

 

This paper does a comparison between different 

Multi Objective Optimization Algorithm 

(MOOA), using three performance metrics for 

measuring capacity (HRM), coverage (SM) and 

convergence (GD) of the MOOA, applied on two 

aerodynamics wing problems. In each problem, 

the objective functions are calculated through the 

black-box computational code based on first 

order 3D panel method, for lift, moment and 

induced drag coefficient calculation, and the 

boundary layer method for the calculation of the 

friction drag coefficient. The performance 

metrics were used to quantitatively evaluate and 

compare four popular stochastic multi objective 

optimization methods, NSGA-II, MOSA, 

MOPSO and MOGA-II, in order to analyze the 

behavior of each algorithm in the aerodynamics 

wing design application.  

In the direct application of each MOOA was 

constructed, the Pareto’s fronts of all’s Pareto’s 

fronts, in this case the best algorithm for the 

problem 1 that involve only wing parameters, 

was NSGA II with a contribution of 53,85% of 

the total points in the general Pareto. It means 

that the major quantity of points of NSGA II 

Pareto front, dominate to the Pareto points of 

others MOOA analyzed. The same analysis was 

did it for the problem 2, but in this case the best 

algorithm was MOGA II with a 70,18 %. This is 

shown in the figure 24. 

 

 
Fig.24. Best Pareto Values 
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The HRM values obtained, show that NSGA 

II has a good capacity to meet a big number of 

points on the Pareto front for both aerodynamics 

wing problems. It means that with NSGA II have 

obtained a big quantity of solutions in the Pareto 

front.  

With respect to the SM values it can be 

concluded that the quality of the NSGA II Pareto 

front for both problems was the best, due to this 

metric value is low, when the space between the 

Pareto points decrease. 

 GD graphics show that the best convergence 

for both aerodynamics wing problems is obtained 

using the NSGA II method. Now we have to take 

into account that in this paper the number of 

generation fixed in each method was low in order 

to reduce the computational time, these results 

may change if each algorithm is allowed to reach 

more generations, but in this case we can 

conclude that NSGA II has a quickly converge. 

In order to reduce the cost  computational due to 

use the CFD, in future works, will be introducing 

the metamodelagem techniques. 
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