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Abstract

A high-accuracy global stability solver has been
developed to analysis the linear stability and re-
ceptivity problems of high-speed boundary lay-
ers. Based on the newly developed solver and
the bi-orthogonal eigenfunction system, we have
established a theoretical way to predict the am-
plitude of discrete mode excited by surface per-
turbations and the downstream behavior of the
modes.

1 Introduction

The local stability theory has been widely devel-
oped and used in both understanding the physical
mechanism of laminar-turbulent transition and
prediction of the transition points for practical
engineering, in the past century. Lots of mech-
anisms have been revealed and can be found in
great reviews by Reed [1, 2] and Saric [3, 4] . For
the fact of relative low free-stream Turbulence in-
tensity in high altitude, nature transition mecha-
nisms play a vital role for high-speed flight. Un-
der these conditions, perturbations from the en-
vironment enter into the boundary layer, through
the receptivity mechanism. These perturbations
excited the unstable modes in the boundary layer
and the modes get amplified with linear modal
instabilities. When the amplitude becomes large,
nonlinear effects become more important and fi-
nally lead to the transition. However, even after
such amount of understandings, the knowledge
on the fundamental transition is still far from
fully understood.

One major limitation for local stability anal-
ysis is that, it can only take the one dimensional
variation of mean flow (for boundary layer flow
usually the wall normal direction) into consider-
ation. However, in practical, most flows are typ-
ically two- or three-dimensional. These motivate
people to develop more complex tools to analy-
sis realistic flow field. And based on the linear
assumptions, it is very natural to extend the lo-
cal stability analysis to the global analysis. The
extensions from local to global are well docu-
mented by Theofilis [5, 6].

Moreover, not only the stability theory but the
theory of receptivity need to be extended as well.
The present work aims at developing a tool to
investigate the global stability analysis of com-
pressible flow and the extended theory for recep-
tivity analysis. The global stability theory are
proposed in section §2. The theoretical analysis
of receptivity problem is given in section §3. And
some results and discussion are given in section
§4. Also in section §4, we analyze some typical
receptivity problems, as examples.

2 Theory of global stability analysis

Under the consideration of linear stability theory,
all the dynamic behavior of small perturbations
are govern by linear Navier-Stokes equation. All
the quantities q(x,y,z, t) in the flow field could
be divided into mean part Q(x,y,z) and perturba-
tions Φ(x,y,z, t) as:

q(x,y,z, t) = Q(x,y,z)+ εΦ(x,y,z, t). (1)
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After substrating the governing equation for
mean flow and ignoring the nonlinear terms, we
can get the linear Navier-Stokes equation for per-
turbation φ = (ρ′,u′,v′,w′,T ′)T as the form be-
low:

Γ
∂Φ

∂t
+A

∂Φ

∂x
+B

∂Φ

∂y
+C

∂Φ

∂z
+DΦ = (2)

Hxx
∂2Φ

∂x2 +Hxy
∂2Φ

∂x∂y
+Hxz

∂2Φ

∂x∂z
+

Hyy
∂2Φ

∂y2 +Hyz
∂2Φ

∂y∂z
+Hzz

∂2Φ

∂z2 .

The coefficient matrix Γ, A, B, C, D, Hxx, Hxy,
Hxz, Hyy, Hyz, Hzz are functions of the base flow
and dimensionless parameters Re,M,Pr and can
be found in our previous works. The physi-
cal quantities are non-dimensionalized with their
free-stream values except pressure by ρ∗∞U∗∞

2.
Asterisk denotes dimensional physical quanti-
ties. The orthogonal coordinates (x,y,z) describ-
ing the non-dimensional distance in stream-wise,
wall-normal and span-wise directions are non-
dimensionalized with the length scale δ∗. As a re-
sult, the dimensionless parameters Re,M,Pr are

Re =
ρ∗∞U∗∞δ∗

µ∗∞
,M =

U∗∞√
γR∗T ∗∞

,Pr =
µ∗∞C∗p

κ∗∞
(3)

In the formulation, the fluid is assumed to be
calorically-perfect-gas. Therefore,

p∗ = ρ
∗R∗T ∗,γ = 1.4,

C∗p = const,R∗ = const,Pr = 0.72. (4)

The viscosity coefficient µ is given by Suther-
land’s law and the second coefficient follows
Stokes’s hypothesis.

As mentioned in previous, this set of equa-
tions control the complete behavior of small per-
turbations (excitation and evolution). In this arti-
cle, we analyze the perturbations that is only har-
monic in time and has limited growth rate down-
stream. Using the Fourier transformation with re-
spect to t and x, one could get:

φ(α,y,z,ω) =
∫

∞

−∞

∫
∞

−∞

Φ(x,y,z, t)eiωteiαxdxdt.

(5)

Based on the above assumption (5), the perturba-
tions could be expressed as:

Φ(x,y,z, t) = φ(y,z)ei(αx−ωt). (6)

And the system could be simplified as:

L0φ+αL1φ+α
2L2φ = 0, (7a)

L0 =−iωΓ+D+B
∂

∂y
+C

∂

∂z

−Hyy
∂2

∂y2 −Hyz
∂2

∂y∂z
−Hzz

∂2

∂z2 , (7b)

L1 =−i
(

Hxy
∂

∂y
+Hxz

∂

∂z
−A
)
, (7c)

L2 = Hxx. (7d)

The system (7a)-(7d) need to be completed
with proper boundary conditions. Two kinds of
problem are formed based on the type of bound-
ary conditions one choose and we will discuss
each case in detail.

2.1 Numerical approaches

For stability problem, homogeneous boundary
condition are added and the whole system
becomes a (linear or polynomial) generalized
eigenvalue problem. After solving the eigenvalue
problem, we could get the information of the con-
tinuous and discrete modes of boundary layer and
their long-time asymptotic behavior. We have
used spectral collocation methods [7] and 8th-
order finite difference methods [8] to form the
problem and more details about the formation of
the eigenvalue could be found in thesis of Pare-
des [9]. Here, we only talk about some aspects
of our own implementation. Typically, the size of
the issue (the dimensions of the matrix L0,L1,L2
) is of the order O(105 − 106). To solve such
large size problem, two methods, such as Stan-
dard QZ [10] and Krylov-Shur methods [11, 12]
based on PETSc (http://www.mcs.anl.
gov/petsc) and SLEPc (http://slepc.
upv.es) with various spectral transformation
techniques, have been used to recover all eigen-
values or a large window (1000 - 4000) of the
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eigenvalues we interested in. The standard QZ
method is the most effective one to reveal the
full spectra information when the size of a prob-
lem is not that large. Moreover, the Krylov-
Shur method, which is another kind of implic-
itly restarted Arnoldi algorithm, can achieve very
high precision with proper spectral transforma-
tions. Both solvers are used to achieve the infor-
mation about the spectra. As mentioned in previ-
ous, we have used a matrix based stability solver
by which we can reveal any portion of the spec-
tra only if the proper spectral transformations are
used. The sparse linear algebra packages such
as MUMPS (http://mumps.enseeiht.
fr) and SuperLU (http://crd-legacy.
lbl.gov/~xiaoye/SuperLU/) are used to
undertake the inverse of a matrix during the spec-
tral transformations.

3 Receptivity problem to surface perturba-
tions

For receptivity problem to surface perturba-
tions, non-homogeneous boundary conditions are
added over the wall surface. The whole system
(both local and bi-global problems) could be ex-
pressed as:

L0φ+αL1φ+α
2L2φ = 0, (8a)

φwall = Ωw. at wall surface (8b)

Here Ωw represent the quantities of surface
perturbations. These system form the gov-
erning equation for receptivity problem and
the surface perturbations could be gotten by
taylor expansion. One can easily find that
the homogeneous part of the receptivity prob-
lem is the same as the stability problem.
The relative bi-orthogonal eigenfunction system
{A(y,z,αd,ω),B(y,z,αa,ω)} for homogeneous
part could be expressed as (L0 +αdL1 +α2

dL2)A = 0
u′ = v′ = w′ = T ′ = 0,on surface Ω

y→ ∞, |A|< ∞

(9a)


(aL0 +αaaL1 +α2

aaL2)B = 0
u† = v† = w† = T † = 0,on surface Ω

y→ ∞, |B|< ∞

(9b)

A,B represents the eigenfunctions of the relative
direct and adjoint problem. Also, the eigenval-
ues αd and αa represents the eigenvalues for di-
rect and adjoint problem. The coefficient matrix
aL0,aL1,aL2 are drove based on the direct prob-
lem, according to the definition below:

〈a1,a2〉=
∫ ∫

a1 ·aT
2 dydz, inner product,

(10a)
〈L a1,a2〉= 〈a1,Laa2〉, adjoint operator.

(10b)
Based on the definition of bi-orthogonal eigen-
function, we could get a relationship for
{Am(y,z,αdm,ω),Bn(y,z,αan,ω)} as

〈(L0 +αdmL1 +αd
2
mL2)Am,Bn〉−

〈Am,(aL0 +αanaL1 +αa
2
naL2)Bn〉= 0, (11a)

(αdm−αan)〈(L1 +(αdm +αan)L2)Am,Bn〉= 0,
(11b)

and we further define that
If, αdm 6= αan :

〈Bn, [L1 +(αan +αdm)L2]Am〉= 0,
If, αdm = αan :

〈Bn, [L1 +(αan +αdm)L2]Am〉= Qn.
(12)

We can solve the receptivity problem by using
this bi-orthogonal relation. Considering a dot
product of adjoint eigenfunction Bn(y,z,αan,ω)
and (8a)-(8b), and integrate with respect to (y,z)
over the whole solving plane, we arrive at the fol-
lowing expressions:

〈Bn,φwall〉+ 〈Bn,
(
L0 +αL1 +α

2L2
)

φ〉= 0,
(13a)

〈Bn,φwall〉
+(α−αn)〈Bn, [L1 +(α+αn)L2]φ〉= 0.

(13b)

Considering a specific discrete mode l in the
phase space, the relative physical perturbations
could be expressed by inverse Fourier transfor-
mation:

Φ̂(x,y,z,ω) =
1

2π

∫
∞

−∞

φ(y,z : α,ω)eiαxdα

= ∑Clφ(y,z : αl,ω)eiαlx +∑CS.
(14)
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With the orthogonality relation (12), we can find
the relation below:

Cleiαlx =
1

Qn

〈
Bn, [L1 +2αlL2]Φ̂(x,y,z,ω)l

〉
.

(15)
Using the relation (15), (14) and (13b), one

can arrive that

Cneiαnx =
1

2πQn

∫
∞

−∞

〈Bn,φwall〉
αn−α

eiαxdα. (16)

With the help of residual theorem, one can close
the integration over the upper half-plane as the
residue value at pole α = αn,

Cn =
i

Qn
〈Bn,φwall〉. (17)

By using the amplitude information (17) and
the inverse Fourier transformation, we could
asymptotically predict the behavior of the excited
modes downstream. Considering the location x
which far from the excited point x0 downstream,
the physical perturbations could be expressed as:

Φ =
1

2π

∫
∞

−∞

Cnφn(x,y,z)ei(S−ωt)dω, (18a)

S =
∫ x

x0

αn(x,ω)dx. (18b)

Because x >> x0, we could use the steepest
method to expressed the results as:

Φ≈√
2
π

ℜ{KbCn(ωs)φ(y,z,ωs)exp [iS(ωs)− iωsts]}

(19a)

Kb =
√

S′′(ω)
∣∣∣∣
ω=ωs

,
∂Si

∂ω

∣∣∣∣∣
ω=ωs

= 0, (19b)

ts =
∂Sr

∂ω

∣∣∣∣∣
ω=ωs

. (19c)

The Sr and Si represent the real part and the image
part of S.

4 Results and discussion

In this part, we briefly talk about some results.
First, we check the reliability of our solver by
solving the Helmholtz eigenvalue problem. The
Helmholtz problem defined as:(

∂2

∂y2 +
∂2

∂z2

)
φ+λ

2
φ = 0. (20)

Such problem is useful for checking the accuracy,
because it has an analytical solution in the rect-
angular membrane domain Ω = {y ∈ [−1,1]}×
{z ∈ [−1,1]}. The solution is expressed as fol-
lowing:

λ
2
ny,nz =

π2

4
(
ny2 +nz2) ; nx,ny = 1,2,3, · · · .

(21)
Higher order eigenvalues/eigenfunctions(ny,nz>>
1) are of special interest due to the need of us-
ing a relatively high number of nodes for an
accurate description. We choose the eigenvalue
of ny2 + nz2 = 34 and both spectral method
(CGL) and high-order finite difference method
(FD) can reproduce this eigenvalue effectively.
−83.891288344160540 + 0.000000000006459i
is calculated by FD8 in ny× nz = 49× 49 grids.
−83.891636474038830 − 0.000000000000724i
is calculated by FD12 in ny×nz = 49×49 grids.
−83.891637409259790 + 0.000000000000003i
is calculated by CGL in ny×nz = 49×49 grids.
−83.891637409259540 is the exact solution.
And the relative eigenfunction is shown in Fig.
1.

Then, the linear stability of the incompress-
ible and subsonic swept attachment line flow is
addressed here to further check the reliability and
accuracy of the solver with the results present
in the previous literature [13, 14]. The depen-
dence of the scaled eigenvalues C = ω/β on β is
shown in Fig. 2 and these eigenvalues represents
the Görtler-Hämmerlin mode of the attachment-
line boundary layer. The boundary conditions
in the present simulation keep the same as in
references[13, 14].

Moreover, the solver is also compared with
the local stability solver on high-speed two di-
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Fig. 1 The eigenfunction of the selected eigen-
value for Helmholtz problem

mensional boundary layer cases. The spatial ver-
sion of this solver is used and compared with pre-
vious study. Balakumar [15] reported a eigen-
value α = 0.220− 0.003091i for a high-speed
boundary layer and the present bi-global solver
gets the α = 0.220199− 0.003096i. Also, for
high speed boundary layer, Tumin [16] reported
a eigenvalue α = 0.2534420− 0.0027738i, and
the present solve achieve the α = 0.253442−
0.002780i. These cases are shown and compared
in Table. 1. The matches shown in Table. 1 and
Fig. 2 make sure the reliability and numerical ac-
curacy of the newly developed solver.

As an example, we consider a receptivity
problem of a plate boundary layer with a point
blowing-suction through the wall. We choose the
two examples of flow past a flat plate analyzed
by Balakumar [15] and Tumin [16]. The basic
settings are kept the same as in reference.

Flat Plate, M = 2

Using the same normalization methods, we could
found the amplitude information of the discrete
modes. The results are shown in Table. 2 and
Table. 3.

0.1 0.15 0.2 0.25 0.3

­0.005

0

0.005
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0.015

0.02

Re = 1500

Re = 800

(a)

0.16 0.2 0.24 0.28 0.32 0.36
­0.002

0

0.002

0.004

0.006

0.008

M=0.5

M=0.02

(b)

Fig. 2 (a).Dependence of Ci on β for GH mode at
M = 0.9, (b).Dependence of Ci on β for GH mode
at Re = 800. The data obtained by asymptotic
analysis (solid line) and results of the present (cir-
cle).
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Balakumar (0.220,−0.003091)
Case1 Tumin (0.220,−0.003091)

Present (0.220199,−0.003098)
Malik[17] (0.2534048,−0.0024921)

Case2 Tumin (0.2534420,−0.0027738)
Present (0.253443,−0.002780)

Table 1 High speed boundary layer validation
cases. For case1, the parameters are as follows.
The free stream Mach number M = 4.5, the to-
tal temperature T0 = 311K, the Prandtl number
Pr = 0.72, the Reynolds number Re = 1000 and
the frequency ω = 0.2. For case2, the parame-
ters are as follows. The free stream Mach number
M = 4.5, the total temperature T0 = 611.11K, the
Prandtl number Pr = 0.70, the Reynolds number
Re = 1500 and the frequency ω = 0.23. In both
cases, only the two-dimensional perturbations are
taken into consideration.

Balakumar and Malik (0.03733,−0.0003696)
Receptivity Coefficient 0.022079

Tumin (0.03733,−0.0003696)
Receptivity Coefficient 0.022096

Present (0.036903,−0.0002866)
Receptivity Coefficient 0.019990

Table 2 Flate plate. M = 2,T0 = 311K,Pr =
0.72,Re = 1000,ω = 0.02,β = 0.

Balakumar and Malik (0.04077,−0.002384)
Receptivity Coefficient 0.2333

Tumin (0.04077,−0.002384)
Receptivity Coefficient 0.2335

Present (0.04077,−0.002386)
Receptivity Coefficient 0.2335

Table 3 Flate plate. M = 2,T0 = 311K,Pr =
0.72,Re = 1000,ω = 0.02,β = 0.08.

Balakumar and Malik (0.220,−0.003091)
Receptivity Coefficient 0.017537

Tumin (0.220,−0.003091)
Receptivity Coefficient 0.017537

Present (0.220,−0.003096)
Receptivity Coefficient 0.017570

Table 4 Flate plate. M = 4.5,T0 = 311K,Pr =
0.72,Re = 1000,ω = 0.2,β = 0.0.

Balakumar and Malik (0.2181,0.0002969)
Receptivity Coefficient 0.015405

Tumin (0.2181,0.0002974)
Receptivity Coefficient 0.015413

Present (0.2181,0.0002989)
Receptivity Coefficient 0.01546

Table 5 Flate plate. M = 4.5,T0 = 311K,Pr =
0.72,Re = 1000,ω = 0.2,β = 0.12.

Flat Plate, M = 4.5

And the calculated results for M = 4.5 are shown
in Table. 4 and Table. 5. The eigenfunction of
the three dimensional perturbations are shown in
Fig. 3.

The matched results presented here show that
the receptivity tools we made by using the global
stability tools are in consist with the local tool[15,
16] and can be used for more complex flow, in the
future. Also, there are still some unknown prob-
lem in understanding the relationship of continu-
ous spectrum of global stability. Unlike the local

Fig. 3 The eigenfunction of unstable three di-
mensional modes for M = 4.5 case.
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cases[18], the operator is a partial differential op-
erator and could not be directly expressed, theo-
retically. Also, the behavior of a partial differen-
tial operator strongly rely on the shape of domain.
These features lead some mathematical difficult
in understanding the behavior of the global oper-
ators.
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