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Abstract

The assumption of small deformations in the for-
mulation of the flight dynamics of flexible air-
craft can be very convenient as it allows the
use of a reduced number of modes of vibration
to represent the structural dynamics with little
loss of accuracy. However, depending on the
level of structural flexibility, deformations may
become large enough to violate this simplifying
assumption, making geometrically-nonlinear for-
mulations necessary. Delimiting the range of va-
lidity of small deformations is then indispensable
for the flight-mechanics engineer in state-of-the-
art aircraft design. In this paper, small- and large-
deformation formulations are compared in equi-
librium conditions and in time-marching simula-
tions for aircraft with different levels of structural
flexibility. The importance of geometrical non-
linearities and the range of validity of small de-
formations are assessed.

1 Introduction

A methodology to assess the validity of the as-
sumption of small deformations in geometrically-
linear structural-dynamic models was proposed
and applied to an idealized aircraft model by
Guimaraes Neto et al. [I]. The methodology
is simple and self-contained because it depends
only on the geometrically-linear model itself,
not requiring the availability of geometrically-
nonlinear models to compare with.

The methodology is based on the fact that

the linear rigid-body modes of the structural-
dynamic model are representative if, and only if,
small deformations occur. Hence, considering
the formulation proposed by Guimaraes Neto et
al. [1], if two different support locations are con-
sidered, one at a time, one near the center of mass
and the other in the region of maximum deforma-
tions with respect to a mean-axis system (in air-
craft structures, typically the wing tips), the con-
version of the elastic displacement vector from
one condition to the other using linear rigid-body
modes is possible with minimum error if, and
only if, small deformations occur.

In Ref. [1], this methodology was applied
without comparison of the geometrically-linear
with a -nonlinear formulation. The first part
of the additional work of comparison between
dissimilar formulations was done by Guimaraes
Neto et al. [2], including equilibrium conditions
and small disturbances around such conditions.

Formulations based on the simplifying as-
sumption of small deformations have long been
available and used in flight dynamics of flexible
aircraft. Quasi-static analysis techniques as pro-
posed by Rodden and Love [3] and implemented
in MSC Nastran [4] are among the main uses
of geometrically-linear aeroelastic finite-element
method (FEM) models.

The simplifying assumption can also be con-
sidered in dynamically-coupled formulations, in
which n elastic degrees of freedom (DOFs) are
included to model the structural dynamics, and
the number of flight-dynamic equations of mo-



ANTONIO B. GUIMARAES NETO , FLAVIO L. CARDOSO-RIBEIRO , FLAVIO J. SILVESTRE

tion (EOMs) increases from the classical six-
degree-of-freedom (6-DOF), rigid-body system
to a 6+n-DOF system. In this case, one of the
greatest advantages of the assumption of small
deformations is the possibility of using modal
superposition with a small quantity of normal
modes retained in the model [1, 5, 6, 7], lead-
ing to significantly lower computational cost of
numerical simulations than when compared with
geometrically-nonlinear models.

Slightly-flexible aircraft flight-dynamic mod-
els based on small deformations have also been
subjected to experimental validation. Silvestre
and Luckner [8] demonstrated the applicability
of a dynamically-coupled, linearized mean-axis
formulation [7] for flight control law and aircraft
design, based on favorable comparisons between
simulation and flight-test data obtained with a
prototype of the utility aircraft Stemme S15.

A relevant theoretical topic in the flight dy-
namics of flexible aircraft regards the set of con-
straints that define the body axes. The intro-
duction of n additional structural-dynamic DOFs
while keeping the classical six DOFs of the rigid
body implies that constraints must be included to
eliminate the rigid-body DOFs of the structural-
dynamic model. Such constraints are usually ex-
pressed by the choice of body axes. Milne [9]
delimited three particular choices of body axes:
attached, mean and principal axes. In Ref. [5],
Milne’s concept of attached axes was extended
to a more general form named dually-constrained
axes, in which the origin of the structural axes
(the support point, where elastic deformations are
assumed null) does not necessarily coincide with
the origin of the flight-dynamic body axes (with
respect to which the EOMs are written). In Ref.
[1], the generalization was extended with the sep-
aration between the body reference frame (BRF)
used for the EOMs and an aerodynamic reference
frame (ARF) used for calculating aerodynamic
loads, which made the methodology described in
the initial paragraphs possible.

All the aforementioned dynamically-coupled
formulations are adequate whenever large defor-
mations do not occur. This is not the case for very
flexible aircraft. An accident with NASA’s Helios

Prototype HP03-2 on June 26, 2003 served as an
unfortunate demonstration of the importance of
adequately modeling the nonlinear behavior of
very flexible aircraft [10]. Actually, theoretical
work in the field was already being carried out
at the time. Patil, Hodges and Cesnik [ 1] de-
veloped a nonlinear formulation for the aeroelas-
tic analysis of aircraft in subsonic flow, with a
geometrically-exact, nonlinear intrinsic formula-
tion for the beam dynamics in a moving frame
[12]. The same authors [ 3] extended the formu-
lation for the flight dynamics of HALE aircraft.

Cesnik and Brown [14] developed a strain-
based formulation for aeroelastically-tailored
flexible wings. In Ref. [I5], the authors re-
fined their formulation to consider six rigid-body
DOFs and fully-coupled three-dimensional bend-
ing, twisting, and extensional nonlinear defor-
mation in the beam model. Whereas in Refs.
[14, 15] the fuselage and the tail were modeled
as rigid, in Ref. [16] Cesnik and Su dealt with a
fully-flexible aircraft with slender bodies.

Shearer and Cesnik [17] coupled the 6-DOF
EOMs of a reference point on a very flexible
aircraft with the low-order constant strain-based
nonlinear structural model of Ref. [15]. The for-
mulation was implemented in the University of
Michigan’s nonlinear aeroelastic simulation tool-
box (NAST or UM/NAST).

The development of the remotely-piloted X-
HALE [18&] aircraft at the University of Michi-
gan deserves mention. As a low-cost platform
for nonlinear aeroelastic flight tests and nonlin-
ear control law studies, it aims at capturing inter-
actions not easily obtained or not even possible
in wind tunnel tests. The aircraft in its slightly-
flexible configuration (aspect ratio of twenty,
AR = 20) is currently in operation also at ITA in
Brazil, and a more flexible configuration (AR =
30) will enter into operation in the near future.

In the present paper, the methodology to as-
sess the assumption of small deformations pro-
posed in Ref. [1] is applied to the X-HALE in
its four-, six-, and eight-meter-span configura-
tions (AR = 20, AR = 30, and AR = 40, respec-
tively). Results obtained with a linear structural-
dynamic, nonlinear flight-dynamic model us-
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ing the described methodology are compared
with the results obtained with a fully nonlinear
model, comprising a geometrically-exact beam
formulation [14, , , 20], implemented in
the ITA/AeroFlex program [21, 22]. The aero-
dynamic model for the undeformed aircraft is
the same between both models, based on Hed-
man’s vortex-lattice method (VLM) [23], but
only in the geometrically-nonlinear case the aero-
dynamic mesh is updated to match the instanta-
neous bending deformation.

Previously obtained results [2] showed that
a geometrically-linear formulation can be used
with little loss of accuracy for the aircraft with
AR = 20, and that a geometrically-nonlinear for-
mulation must be used for AR = 40. However, the
transition between small and large deformations,
in the configuration with AR = 30, was not suffi-
ciently explored with only equilibrium conditions
and small-disturbance analyses. Rather, time-
marching simulations become indispensable for
the assessment of the validity of the assumption
of small deformations, as transient conditions
may attain geometrical nonlinearities in spite of
an initial condition of small deformations.

This paper then aims at extending these pre-
vious works [1, 2] with the inclusion of newly-
obtained results from time-marching simulations.
Qualitatively, the conclusions are analogous to
the ones previously drawn. However, quantitative
criteria for evaluating the assumption of small de-
formations are derived.

2 Theoretical Background

In this paper, a geometrically-linear (GL) formu-
lation for the flight dynamics of flexible aircraft
is compared with a geometrically-nonlinear (GN)
one. Both are derived from first principles but
independently from each other. The subsections
that follow describe the most relevant details of
the formulations.

2.1 Geometrically-Linear Formulation

The formulation for small deformations is based
on Ref. [1]. There, the EOMs for the flexible

aircraft were derived using Lagrange’s equations,
with the elected set of 6 4 n generalized coordi-
nates comprising: the components of the posi-
tion vector Rp , of the origin O of a body refer-
ence frame (BRF) expressed in the body axes, b;
the Euler angles providing the orientation of the
BRF with respect to the flat-Earth inertial refer-
ence frame (IRF): y, 0, and ¢; and n elastic DOFs
of the aircraft structure, constituting the displace-
ment vector ug = {u; up - un}T.

A structural-dynamic FEM model of the air-
craft with lumped properties of inertia is consid-
ered available. The transformation matrix Cp
from the inertial frame to the body frame is ob-
tained by a classical sequence (3-2-1) of Euler ro-
tations, ¥, 0 and ¢ [24]. Based on such consider-
ations, the kinetic, elastic strain and gravitational
potential energies can be calculated as shown in
Ref. [2]. Structural dissipation due to damping
forces of viscous nature is assumed [25], giving
rise to Rayleigh’s dissipation function.

The energy expressions and the dissipation
function are used in Lagrange’s equations for
generalized coordinates to obtain the left-hand
side of the EOMs. The right-hand side consists of
the generalized forces, comprising aerodynamic
and propulsive loads. The former are calculated
considering the use of the VLM [23], whereas
the latter are modeled as concentrated forces act-
ing on the thrust center of each of the engines
[2]. The EOMs for the flexible aircraft can be de-
rived with the assumption that no change in air-
craft mass occurs with time and are given by [2]:

mV ), +m®,V — mScG @, — m@,Sce »®p
+m@,Dcg puc + 2m0,Deg pliG (1)
+m@p®,Dcg puc +mDeg piic = mgy + Fp + AF),

Jo@, + @ J o0, +mscip, (Vs + 0, V))
+mDcg puc (Vs + 0, V)
+AY 0@ + @AY 0@, +AY 00, (2)
+Mecic +MggiiG + 0,Meclc

= mS/CE,/bgb +mDcg pucg, +Mo p +AMg p,



ANTONIO B. GUIMARAES NETO , FLAVIO L. CARDOSO-RIBEIRO , FLAVIO J. SILVESTRE

MggiiG + Bgeue + Kggug
+mDcgp" (Vb +@,Vp) +Mag' @

. 1 & 0AJ
2o — 5 ) en @ %0, ()
g=1 Ug
=mDce '’ g + Q.

In Egs. (1)-(3), @, = {p ¢ r} is the angu-
lar velocity vector of the BRF with respect to
the IRF; V;, = {u v W}T is the velocity vec-
tor of the BRF origin O with respect to the IRF;
the skew-symmetric operator, () or skew (o), de-
notes the matrix-form of the vector cross prod-
uct; m is the aircraft total mass; scg  refers to
the CG position vector in the undeformed (un-
strained) condition; d¢cg, = Dcg puc stands for
the change in scg ) due to structural deforma-
tion; Jo is the inertia matrix about O; AJ o is
the change in the inertia matrix due to structural
deformation; Mg, Bgg, and Kgi are the FEM
mass, damping and stiffness matrices, respec-
tively; F;, and My j, are the net force and moment
vectors, respectively, associated with the rigid
airframe; AF;, and AMg , are the net incremen-
tal force and moment vectors, respectively, due to
elastic motion; g, is the gravity vector expressed
in the BRF; Qg is the column matrix of general-
ized aerodynamic and propulsive forces; at last,
Mg is the inertia coupling matrix between the
rotational rigid-body and the elastic DOFs. The
total number of elastic DOFs is n. The notation
ey ; represents a column matrix equal to the ith
column of the identity matrix of order N, Iy. All
time derivatives are taken in the BRF.

2.1.1 Dually-Constrained Axes

The FEM stiffness matrix, K¢, refers to an un-
restrained 3D structure and hence it is a positive
semi-definite matrix, with a null space spanned
by six linearly-independent vectors [26]. In other
words, six linearly-independent rigid-body mo-
tions are allowed by this FEM formulation. This
rigid-body freedom of the FEM model is not de-
sired, since the coordinates of the origin O and
the Euler angles were already considered to be
the rigid-body DOFs of the flexible aircraft. This

means that six constraints are needed to eliminate
the rigid-body motion from the elastic DOFs.

In the present paper, the so-called dually-
constrained axes (DCA) [1] are used to constrain
the six redundant DOFs. In the DCA, the ori-
gin S of the structural axes (the support point,
with no elastic displacement) is a material point
(and structural node) that can be non-coincident
with the origin O of the body axes. Details of the
constraint equations of the DCA can be found in
Refs. [1, 2]. Any structural node can have its dis-
placements assumed null in the formulation, and
the origin O keeps its position constant with re-
spect to the undeformed aircraft (first constraint)
and the structural node § is the point where the
undeformed and the deformed airframes coincide
at any time instant (second constraint).

2.1.2  Aerodynamic Model

The aerodynamic loads acting on the flexible air-
craft are the superposition of loads that would be
obtained were the airframe rigid with incremental
loads due to structural deformation. In this paper,
the generalized aerodynamic loads are calculated
with the VLM [23], which provides the following
linear system of equations:

A'AC, =W, 4

where w € R is the vector of non-dimensional
normalwashes at the Np panel (box) control
points; ACp € R is the vector of panel pres-
sure coefficient differences; and A € RNP*NP ig
the AIC (aerodynamic influence coefficient) ma-
trix. The VLM AIC matrix depends on the geom-
etry and discretization of the aerodynamic lifting
surfaces in the model. Dependence on the Mach
number, M, is neglected in this paper.

The body frame of reference used to calcu-
late the aerodynamic loads is defined as an aero-
dynamic reference frame (ARF) [1]. Its inertial
angular rates are written in the ARF coordinate
system as p,, qq, and r,, and its inertial velocity
has the components u,, v,, and w, in the same
system [ |]. The rigid-body motion of the aircraft
then contributes to the generalized aerodynamic
forces (GAFs) in the elastic DOFs in terms of p,
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qas Yas Ua, Vas Wa, control surface deflections and
other possible rigid-body variables. The elastic
deformation of the structure with respect to the
AREF, given by ug 4, contributes to the incremen-
tal GAFs. The total GAFs are then given by [1]:

Q6 = GGG Sap (ACpu+ACpe),  (5)

where g is the dynamic pressure; Gag € RM*" is
the matrix that interpolates elastic displacements
from the structural nodes to the centroids of the
VLM boxes (aerodynamic grid points); Spp €
RNa*Np transforms panel pressure coefficient dif-
ferences to forces and moments at the aerody-
namic grid points, and is usually called an inte-
gration matrix; AC,, y is the vector of panel pres-
sure coefficient differences related to the rigid-
body state and control variables; and AC, ¢ is the
vector of panel incremental pressure coefficient
differences, due to the elastic DOFs, given by [1]:

ACpe = A (Dpa 0GacUG/a
+ (bw/Va) Dpa,1GaGUG/4) (0)

where Dps o, Dpa1 € RNP*Na gre the differenti-
ation matrices that allow the calculation of con-
trol point normalwashes at three quarters of the
boxes’ mean chords from the displacements at
the aerodynamic grid points, respectively; b,, is
the reference wing semi-chord; and N4y = 2Np
is the total number of aerodynamic degrees of
freedom (each panel has two DOFs, plunge and
pitch). The integration and differentiation matri-
ces in Egs. (5)-(6) can be found in Ref. [2].

In this paper, the ARF is modeled with at-
tached axes [1]. Hence, their origin A coincides
with or is rigidly connected to a material point C
that remains fixed when elastic deformation oc-
curs. References [ !, 2] present the equations for
the aerodynamic loads based on the ARF DOFs.
Induced drag effects due to both the rigid-body
motion and the elastic deformation are included,
calculated with the methodology of Ref. [27].

2.1.3  Geometrically-linear beam elements

The adopted geometrically-linear beam element
in three dimensions has two nodes and twelve

DOFs. The element shape functions are given by:

ow v
Ue (Xe, Ve, Ze) = Ao +arxe — geze — a—xeye, (7)
e e

3
Ve (xe;ymze) = Z bix,' — O, (xe7Ye;Ze)Ze; (8)
i=0

3
We (XesYerZe) = Y, Cixe' + Oc (Xe, Yer Ze) Yo, (9)
i=0

where u, (X,,Ye,Ze) 18 the axial displacement and
Ve (XesYesZe) and we (Xe,e,ze) are the edgewise
and flatwise displacements’ shape functions, re-
spectively. The set becomes complete with the
twist angle shape function:

O, (-x€7y€7ze) =do+dix.. (10)

The twelve DOFs of the beam element are,
at.xe:ye:ZeZO: ue:uel, VeZVel, We:

d B .
Wel, ®e:¢€17 %::_eel’ ﬁ:wel’ at xe:
Le;ye - Zea: 0: u, = Ueps Ve = Ve, We = We2,
_ We _ Ve
O = 0cp, 3:¢ = =02, and F€ = Yey, Where L,

is the element length. Strains are given by:

— ()
Xe

€y = —VEy, (12)

£, = —Ve,, (13)
v, OJu,

Yoy = — +—, (14)
Xe Ye
ow, du,

Yoz = +—, (15)
Xe Ze
ow, 0Jv,

Yyz = = (16)

where v is the material Poisson’s ratio. Us-
ing Voigt’s notation, the element strains may be
collected in a six-dimensional column matrix,
e={e & & Yy Y Y} ,whichis itself
a linear function of the twelve element DOFs.
Stresses can be calculated with consideration of
the isotropic linear elastic material stiffness ma-
trix, C, presented in Ref. [2], so that:

6 = Ce. (17)
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The element stiffness matrix K., is such that
the element strain energy satisfies:

1 1
Ue = 5 ///GTedV = EueTKeéueW (18)

element

with  uw, = {uel Vel Wel Ocp 0Oe1 Wey
Uy Ver Wez Oer 0o qlez}T. The final
equation for the stiffness matrix is presented in
Ref. [2] and is omitted here for brevity.

Although a consistent mass matrix can also
be obtained for the beam element, the flight-
dynamic formulation is not prepared to deal with
consistent masses, due to resulting inertial cou-
pling between the two element nodes. Rather, a
lumped mass matrix is generated by transferring
to each node half of the mass of the element, as
well as the first and second moments of inertia
and the products of inertia due to each half.

2.2 Strain-based  geometrically-nonlinear
beam formulation

In this paper, the strain-based geometrically-
nonlinear (GN) formulation is based on Refs.
[19, 20, 28, 29]. A toolbox named ITA/AeroFlex
was developed with this formulation, using
MATLAB® [22]. The formulation considers
the following fundamental kinematic relationship
that relates the displacements h(s,f) at a point
along the beam to the strains €(s,7):

g—}sl(s,t) = K(s,t)h(s,1), (19)
K(s,1) = (20)
0 1+efs,s) 0 0
10 0 K (s,1)  —K(s,1)
10 =K (s,1) 0 Ke(s,2) |’
0 x(s,1)  —Ke(s,1) 0

where €,(s,f) is the extensional strain, and
Ke(s,7), Ky(s,7) and x;(s,¢) are the curvatures at
point s and time ¢.

The flexible structure is split into elements
and the strains are assumed to be spatially-
constant but time-dependent along each element,

so that Eq. 19 has an analytical solution:
hs,1) = 0 ho 1), 1)

where h(t) is the displacement of a fixed node
at s = so. The matrix exponential eX(5=%) has a
closed-form expression as presented in Ref. [20].

In the ITA/AeroFlex computer program, flex-
ible elements with three nodes were imple-
mented, as well as rigid elements with time-
independent, null strain. Such rigid elements are
used to model rigid components and do not intro-
duce new states to the model.

Using Eq. 21, it is possible to compute the
displacement vector for each structural node as a
function of the strains:

h(t) = h(e(7)) . (22)

The time derivative of the displacement vec-
tor due to both the strain rates € and the rigid-
body motion B (linear and angular velocity com-
ponents) is given by:

h(t) = Jpeb(t) + JnpB(2) . (23)

where Jye(€(¢)) is a Jacobian that relates the ele-
ment strains to nodal displacements and J; is the
equivalent but for the rigid-body motion.

The kinetic energy is computed as:

1. .
T = EhTMh, (24)

where M is the structure mass matrix, computed
assuming a linear variation of the nodal speeds
between the nodes. The kinetic energy can be
rewritten as a function of the strain rates and
rigid-body velocities using Eq. 23:

r=zt ol bl e
where:
Mrpp = JlMJye, Mpp = Jl My,
Mpr = JL,MJje, Mg =J5L,MJy,. (26)
The elastic strain energy is given by:
U= 1STKs, (27)

2
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where K is a block-diagonal matrix, composed of
the stiffness matrices of each element, K¢:

kin kiz kiz ks
ka1 koo ko koa

K¢ = . 28
ka1 kap kzz ka4 (28)
ka1 kao kaz ks

From the Euler-Lagrange equations, the
equations of motion are computed as:

Mrpr Mrg| (€ Crr Crp| |€
[MBF MBB] {B} * [CBF CBB] [B] 29)
K RF
lofe= 5,

The matrices Crr, Cgr, Crp and Cgp in-
clude the gyroscopic terms (due to rotation of the
rigid body and of the structural elements) and the
structural damping term. In this paper, the struc-
tural damping matrix is assumed proportional to
the stiffness matrix: Crr = oK.

Rr and Rp are the generalized forces that
are applied to the airplane. They are obtained

from the aerodynamic, gravitational and propul-
sive forces applied to each node of the structure:

T T
ARV ALEaY LAY
JI
+ { ﬁ

BFFdlSI + Jgg BFMdlSt + Jéjﬁ N—’
JT J 8
pb pb

b

The Jacobian matrices J,e and Jge represent the
relationship between structural strains (€) and
nodal displacements and rotations. J,; and Jgp
represent the relationship between rigid-body
DOFs and nodal displacements and rotations.
The Jacobian matrices are nonlinear functions of
the strain vector €. Closed-form expressions for
the Jacobians are presented in [20].

3 Numerical Models

The X-HALE aircraft in its four- (‘XH4’), six-
(‘XH6’) and eight-meter-span (‘XH8’) configu-
rations is analyzed. The XH4 configuration con-
tains four wing sections with span of 1.0 m and
chord of 0.2 m each, as well as three pods at the

connections between wing sections. The aircraft
engines, landing gears, electronics and sensors
are installed at the pods. Booms are connected
to the pods and, at the tip of each boom, a hor-
izontal tail is mounted. The two side tails are
all-moving control surfaces that can be used for
both longitudinal and lateral-directional control,
and are then termed elevons. The central tail has
a flipping-up capability that alters the aircraft fly-
ing qualities as desired in operation. For ground
clearance during take-off, the central tail has ap-
proximately 33% less span in its right (bottom)
part than in the left (top) part. Anyway, all con-
figurations analyzed in this paper have the central
tail in the horizontal position. The wing-tip sec-
tions have a dihedral angle of 10°. The wing is
built with an incidence of 5°.

The XH6 configuration has two more wing
sections, pods, booms and tails than the XH4.
The XHS8 configuration has only two wing sec-
tions added with respect to the XH6 configura-
tion, without additional pods, booms or tails.

The numerical models consider exactly the
same stiffness properties previously adopted in
Ref. [2], and these properties are employed in
both the GL and the GN formulations. All air-
craft components except the wing are assumed
rigid. The distributed mass properties of the air-
craft components are also identical to those pre-
sented in Table 1 of Ref. [2]. The concentrated
inertias match those listed in Table 7 of Ref. [18].

3.1 Verification of the models

The focus of this paper is on time-marching sim-
ulations using both the GL and the GN formula-
tions. Because all structural DOFs are kept in
the EOMs for both formulations, the resulting
dynamical systems have hundreds of states and
the differential equations are stiff. Having this in
mind, the criterion used to create the structural-
dynamic models in this paper is different from
the one used previously in Ref. [2], where the au-
thors were concerned almost only with accuracy
of the models in static conditions, with model
size having less computational impact because
differential equations were not to be solved. Con-
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vergence analyses led to 10 elements per wing
section in the GN formulation and of 20 in the
GL one in Ref. [2]. With such choices, the wing
had the same quantity of nodes in both models.

However, numerical tests demonstrated that
simulations using such refinement would be un-
feasible using the current routines implemented
in the ITA/AeroFlex program. Because the differ-
ential equations are stiff, common solvers do not
work for the GL or the GN simulations. Rather,
it was found that the generalized-o algorithm
[30, 31, 20] was able to solve the equations. Cur-
rently, the nonlinear balance equation of this im-
plicit algorithm is solved at each time step with
the trust-region dogleg algorithm implemented in
the MATLAB®) ‘fsolve’ function. A reduction in
the number of structural DOFs was then manda-
tory to make the simulations less costly and the
present work feasible.

It was found that using 4 elements per wing
section in the GN model and 8 elements in the
GL yields no more than 3.5% difference between
them in modal frequencies less than 20 Hz for the
XH6 configuration. This refinement can be con-
sidered enough for the purpose of the present pa-
per, which is to identify when nonlinearities start
to play an important physical role in the flight dy-
namics of flexible aircraft, in phenomena that are
much likely to occur at lower frequencies. More-
over, a time step of 10 milliseconds is used in
the generalized-o0 method, rendering differences
in higher-frequency modes progressively less im-
portant the farther they are from 20 Hz.

The VLM mesh is the same for both formula-
tions and, for the same reasons as the aforemen-
tioned ones, is coarser than the one adopted in
Ref. [2]. For simplicity, it was built to match the
spanwise divisions of the wing sections in the GN
structural-dynamic model, that is, it comprises 4
uniformly distributed boxes spanwise per wing
section. Chordwise, 4 boxes are used in the wing,
also uniformly distributed. The tails are divided
into 2 boxes chordwise and 2 boxes spanwise. No
vertical surface representing each pod is included
in the aerodynamic model, also for simplicity.

The wing incidence of 5° and the wing re-
flexed EMXO07 airfoil [18] camber are approxi-

mately represented by invariant normalwash vec-
tors, given by the local effective camber line in-
clination at 75% of each box chord.

In the GN formulation, the VLM mesh is up-
dated with structural deformation, such that the
wing and tails’ boxes’ side edges are displaced
both laterally and vertically by exactly the same
amount as the structural node with which they co-
incide spanwise. Hence, the mesh update makes
the aerodynamic forces consistently behave as
follower forces in the GN formulation.

The displacements and displacement rates of
the beam elements’ central nodes in the GN for-
mulation are directly used to calculate the nor-
malwashes. No camber deformation is consid-
ered, and hence the displacement transferal from
the structural nodes to the boxes’ control points is
straightforward, assuming rigid arms. The aero-
dynamic loading is considered as distributed, and
appropriate matrices transfer the distributed loads
to nodal loads at each element, as in Eq. (30).

In the GL formulation, to preserve linearity,
the VLM mesh is never updated. Linear spline
interpolation matrices, as derived in Ref. [4],
are calculated and used. Guimardes Neto et al.
[2] did already validate the aerodynamic model
implementations. The GL structural-dynamic
model and the VLM mesh are plotted in Figs. 1-
2 for the XH6 configuration, with the XH4 and
XH8 models being analogous.

4 Numerical Results

Three different support locations are used in the
GL formulation. One is at a central location
at the wing structural node in the wing sym-
metry plane, and is denoted ‘C’. The two oth-
ers are at the structural nodes at the wing tips,
named ‘L’ for the left one and ‘R’ for the right
one. Therefore, the plots presented hereinafter
will contain three data sets for the GL formula-
tion: GLC, GLL, and GLR. These shall be com-
pared with the single data set obtained with the
geometrically-nonlinear implementation: GN.
Stiffness-proportional structural damping is
considered, with a constant of proportionality
such that the first free-free mode of vibration has
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o GRIDs
CBARNSs
= CONM2 CGs
CONM?2 Offsets
RBARs
V  SUPORTs

Fig. 1
in ITA/AeroFlex. GRIDs: structural nodes;
CBARNSs: beam elements; RBARs: rigid bar el-
ements; CONM?2 CGs: CG locations of lumped-
mass elements; CONM?2 Offsets: offsets between
such CG locations and the structural node to
which the lumped-mass element is attached; and
SUPORT: support location.

XH6 GL structural-dynamic model

Fig. 2 XH6 configuration VLM model in
ITA/AeroFlex. Control surfaces in orange.

2% damping ratio.

The obtained results for equilibrium condi-
tions with the coarser structural-dynamic and
aerodynamic models are similar to the results
previously obtained with the more refined ones
in Ref. [2]. However, it was now possible to cal-
culate trimmed conditions in a longitudinal ma-
neuver with vertical load factor of 2. Table 1 and

Figs. 3-5 show the results in terms of structural
deformations. The deformations for the GL for-
mulation are with respect to a common ARF.

Wing Displacements [m]
Tip XH4 XH6 XHS8
0.192 0.578 2.015
Left
GLL (=2.5%) (—8.0%) (—21.8%)
Richt 0.196 0.599 2.275
5 (—=1.5%) (—54%) (—11.8%)

GLC Left 0.197 0.628 2.577
Right  0.199 0.633 2.580

0.194 0.594 2.273

GLR Left (=1.5%) (=54%) (—11.8%)
Right 0.194 0.583 2.017
(=2.5%) (=7.9%) (—21.8%)
Left 0.221 1.018 2.345
GN (+12.2%) (+62.1%) (—9.0%)
. 0.223 1.029 2.356
Right

(+12.1%) (+62.6%) (—8.7%)

Table 1 Wing tip vertical displacements (posi-
tive upwards) for the X-HALE configurations in
trimmed longitudinal flight with a vertical load
factor of 2 at 20 m/s. (Percentages with respect
to GLC left and right wing tip displacements.)

Undeformed
GLC
—— GLL
— GLR
—GN

Fig. 3 XH4 configuration in trimmed longitudi-
nal flight with a vertical load factor of 2 at 20 m/s.

Two factors shall be considered when analyz-
ing Table | and Figs. 3-5: first, the differences in
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Undeformed
GLC
— GLL
GLR
—GN

Fig. 4 XH6 configuration in trimmed longitudi-
nal flight with a vertical load factor of 2 at 20 m/s.

Undeformed
GLC
—— GLL
GLR
—GN

Fig. 5 XHS8 configuration in trimmed longitudi-
nal flight with a vertical load factor of 2 at 20 m/s.

structural deformations for different support lo-
cations in the GL formulation; second, the fact
that the aerodynamic mesh is updated only in
the GN formulation. Hence, for the XH4 con-
figuration, one sees that the difference between
different support locations is practically negli-
gible; however, the GN result shows a slightly
greater deformation, possibly due to the follower-
force effect enabled by the mesh update. For
the XH6 configuration, differences of up to 8.0%
in wing tip displacements are already observed
in the GL formulation between the central and
wing tip support locations, suggesting the pres-

ence of geometrical nonlinearity. This is con-
firmed by the GN result, which predicts signif-
icantly greater structural deformations. It is in-
teresting to observe that the GL formulation pre-
dicts wing tip deformation of up to 21.1% of the
nominal wing semi-span in this case. The XHS8
is clearly highly flexible, with significant differ-
ences between the support locations in the GL
formulation and strong nonlinearities in the de-
formed U shape seen in Fig. 5.

Time-marching simulations were performed
with commanded elevon doublets. The elevon
doublet can be either symmetrical, lasting 0.6
second and applied to all the elevons, or anti-
symmetrical, lasting 1.4 second and applied only
to the outboard elevons. The doublets have 5.0°
amplitude and are C1-continuous with cubic tran-
sitions lasting 0.1, 0.2 and 0.1 second, respec-
tively. The commands begin at t = 0.2 s, with
the aircraft initially in a trimmed level-flight con-
dition. The first pulse is positive for the right
elevon(s), and the second is negative.

Figure 6 shows that the pitch rate response of
the XH4 configuration to the symmetrical elevon
doublet is practically the same for all formula-
tions considered, and the wing tip vertical dis-
placement does not exceed 12% of the wing
semi-span. Small deformations can be assumed.

The same is not observed for the XH6 config-
uration. As seen in Fig. 7, there is disagreement
in the pitch rate between the GLL, GLR and GLC
formulations, particularly when the wing defor-
mation is near or at its maximum. According to
the methodology proposed in Ref. [!], this in-
dicates that geometrical nonlinearities are poten-
tially present. This is confirmed by the plots of
the GN formulation, with discrepancies observed
in how fast the wing tip recovers its equilibrium
deformation. Figure 7 also shows that the wing
tip vertical displacement reaches almost 14.7%
of the wing semi-span in the GL formulation.

The anti-symmetrical elevon doublet also
shows interesting results for the XH6 configura-
tion in Fig. 8. First, elevon roll reversal is ob-
served, as the elevons are initially deflected in
a sense that would result in a roll to the left in
a rigid aircraft, with the flexible aircraft rolling

10
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Fig. 6 XH4 response to symmetrical elevon dou-
blet at 20 m/s.

to the right. The wing tip pitch rates are ini-
tially positive in the left wing tip and negative
in the right one, confirming that significant wing
twist produces the reversal. Moreover, geomet-
rical nonlinearities occur, but another important
phenomenon is also present: because the lift-
ing surfaces have their boxes’ dihedral angles
constantly updated in the GN formulation, the
aircraft lateral-directional characteristics do not
only start different from those of the GL formula-
tion but are constantly changing during the sim-
ulation. This explains why the GN formulation
attains smaller roll rate in response to the anti-
symmetrical elevon doublet.

At last, the results for the symmetrical elevon
doublet for the XH8 configuration are presented
in Fig. 9. The disagreement in the pitch rate be-

8
60
5 40
)
S 20
g 0
5 20 —GLC]|
T -40 —GLL|
-60r :g:;jR
-8 . . . I
0 1 2 3 4 5
t[s]
T 05
20.4 /k
e
%03
2
g 02 —GLC
g —GLL
0.1 ---GLR]|
2 0 ‘ ‘ .—GN
0 1 2 3 4 5

t[s

Fig. 7 XH6 response to symmetrical elevon dou-
blet at 20 m/s.

tween the GLL, GLR and GLC formulations is
much more pronounced during and after the ap-
plication of the doublet. There is no agreement
at all with the GN formulation, demonstrating
that geometrically-linear structural dynamics is
not applicable to such a highly-flexible aircraft.

5 Conclusions

A self-contained methodology to assess the as-
sumption of small deformations in geometrically-
linear structural-dynamic models was applied to
aircraft with different levels of structural flex-
ibility. The methodology allegedly does not
depend on the availability of higher-fidelity,
geometrically-nonlinear models, because it is
based on the validity of the linear rigid-body

11
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Roll rate [deg/s]
o

Left wing tip pitch rate [deg/s]
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5
)
Fs)
(]
S g0
Q
® 40
c
2 20
o
> —GLC
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T — | :
6 0 1 2 3 4 5
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Fig. 8 XH6 response to anti-symmetrical elevon
doublet at 20 m/s.

modes of the structure, which, once violated, also
implies the violation of the assumption of small
deformations.

In order to validate the methodology, how-

Pitch rate [deg/s]

0 0.5 15 2

1
t[s]

NN

B o o n N s

L

R. wing tip vert. displacement [m]

15 2

PN
ol
ol

1
t[s]

Fig. 9 XHS response to symmetrical elevon dou-
blet at 14 m/s.

ever, geometrically-linear models were compared
with a geometrically-nonlinear one in this paper.
For any given aircraft, the same number of wing
nodes and the same undeformed aerodynamic
model, based on the quasisteady VLM, were em-
ployed for both the geometrically-linear and the
geometrically-nonlinear formulations. In the lat-
ter, the VLM mesh was consistently updated with
structural deformation. It remains to be investi-
gated whether including the aerodynamic mesh
update in the former would be worth the higher
computing cost implied in recalculating the AIC
and spline matrices in each time step.

Numerical results indicate that
geometrically-linear models do progressively
lose fidelity as wing tip displacements exceed
12% of the wing semi-span or relative differences

12
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of more than 5% in any wing tip displacement
occur for different support locations. Time-
marching simulations also allow us to infer that,
if large deformations are attained at some point
in time, the aircraft response from that instant on
may become unrealistic in geometrically-linear
models.

The self-contained methodology has proved
its value in that discrepancies in the results for
different support locations correspond to dis-
agreements between the geometrically-linear and
-nonlinear formulations. Despite structural nodes
at the two wing tips were considered as support
locations in this paper, the procedure can be di-
rectly simplified to consider only one of them.
Moreover, aircraft responses in time-marching
simulations show that the central support loca-
tion tends to have the highest correlation with the
geometrically-nonlinear formulation.
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