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Abstract

The use of digital hydraulics (DH) has many ad-
vantages for aerospace applications, for instance
safety, due the intrinsic redundancy, and energy
saving on the control surfaces actuators. The en-
ergy saving is obtained by having the hydraulic
valves completely opened or closed, avoiding the
throttling as it happens in a regular proportional
valve. It is also important to reduce the amount
of unnecessary switchings while controlling DH,
which reduces the system lifespan and increases
the power waste, cutting off the main reasons
for using this technology. Since the available
forces in digital hydraulics are quantized, when
the system trajectory crosses the limit between
two force levels, a sliding mode phenomena may
occur, which is relevant for the control design.
When the system trajectory reaches an attractive
sliding surface, successive switchings will occur
until the trajectory reaches the desired equilib-
rium point. For performing different maneuver-
ing and flying under different conditions, the de-
sired equilibrium points for the aircraft control
surfaces must belong to a continuous set. As long
the forces available for the DH belongs to a dis-
crete set, the desired equilibrium point is only
reached in sliding mode. In this paper it is pro-
posed a linear matrix inequality (LMI) design ap-
proach for defining the control gain and reducing
the amount of unnecessary valve switches using
optimal control and sliding mode theory.

1 Introduction

Despite of the intense effort in using electric ac-
tuator in aircrafts, hydraulics actuators are vastly
used in its control surfaces [3]. Digital fluid
power is a technology focusing the use of low-
cost on/off valves instead of a servo valves in or-
der to reduce the power losses due the throttling,
avoid internal leakage and recover the mechani-
cal power. It can be done a correspondence be-
tween a power electronics and hydraulics, where
a rheostat relates to the conventional proportional
valve and the digital hydraulic are related to solu-
tions based on thyristors [7]. For more informa-
tion on digital hydraulics, please refer to [1, 8, 9]

In regular flight conditions, the reaction force
on the aircraft’s control surfaces acts like a
spring, increasing the force as its angle is in-
creased. As the angle of the control surface in-
creases, the power is transferred from the system
to the control surface. In other hand, when the
control surfaces moves back to its neutral posi-
tion, due the reaction force, the power is trans-
ferred from the control surface back to the sys-
tem, see Figure 1, and if it is not used in any
other device, it must be wasted. With digital hy-
draulics, this power may be transferred from dif-
ferent supply lines through the cylinders, as when
the control surface returns to its neutral position,
the cylinder acts like a pump, recovering part of
the energy spent on the control [7].

The hydraulic power is the product of flow
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(a)

(b)

Fig. 1 : Power flow on the actuation of an aircraft
control surfaces

and pressure difference (Hhydr = qv ·∆p). In hy-
draulic valves, there is no power loss when the
valve has no resistance to the flow, resulting zero
pressure drop (∆p = 0) or when the valve com-
pletely blocks the fluid, resulting in zero flow
(qv = 0). As long the valve commutation is not
instantaneous, there is a region between com-
pletely open and completely close, where the
valve itself consumes power. Another source of
power waste in this system is the fluid compress-
ibility on the cylinder and pipes. For this rea-
son, among others, one important aspect when
controlling this kind of system is reducing the
amount of unnecessary switchings.

Sliding mode is a mode of some discontin-
uous dynamic system, when the its trajectory
reaches the set of the discontinuous points, called
sliding surface, and gets trapping into this set,
sliding along this surface, refer to [10, 11] on
sliding mode theory. Due the quantization char-
acteristics of the digital hydraulics, in the general
case, the trajectory reaches the equilibrium point
only in sliding mode, meaning that the hydraulic
valves should be switching between two force
levels in order to keep the trajectory around the
equilibrium point. Even when the systems trajec-
tory is moving towards the equilibrium point, it
might crosses the boundary between two differ-
ent quantization levels, this boundary can be an
attractive surface, producing a sliding mode, re-
sulting in successive unnecessary switching, in-

creasing the energy wasting. More details on this
point will be further discussed.

Most of the solutions for controlling quan-
tized systems minimizes the error caused by the
quantization [4, 5], regardless to the sliding mode
effect. In [14] a previous control gain is defined
before designing the sliding mode surface, i.e.
the system should be stabilized before design-
ing the sliding surface. When minimizing the
whole state variables, the resulting sliding sur-
face may be such that the system trajectory is at-
tacked to the sliding surface far from the equi-
librium point, using the switchings to lag the tra-
jectory in reaching the desired equilibrium point.
An example of this problem is shown in the Fig-
ure 2 with the plot in red, where the equilibrium
point is xeq = [1.0,0.0] and the initiation condi-
tion is x0 = [0.0,0.0]. On the same Figure 2, in
blue, a new sliding surface was designed in order
to be attractive only near the equilibrium point.
In this case, the trajectory crosses the sliding sur-
face at x = [0.7,12.5], meaning that the sliding
surface is not attractive at this point. When the
trajectory meets the sliding surface near the equi-
librium point, the trajectory actually enters in
sliding mode and reaches the desired equilibrium
point.
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Fig. 2 : Reducing the amount of switches using a
different sliding surface

On this paper a new approach to dealing with
quantization input is presented in such manner
that the goal is to have the system trajectory
reaching the equilibrium as fast as possible, in-
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stead of reducing the effect of the quantization
on the system output. On the proposed designing
method, the quantization is seen as both sliding
mode, when the desired equilibrium point is on
the discontinuity between two quantization lev-
els, and deadband control, when the desired equi-
librium point is inside a quantization level. The
paper is organized as follows: On the Section
3 is described the link between the quantization
and sliding mode and how the sliding mode is
inevitable on the equilibrium point. On the Sec-
tion 4 the system is modeled, considering simpli-
fications from the original non-linear system and
convenient definitions for the Section 5, where
the main result is given. On the Section 6 it is
presented the numeric example and simulations
where the results are compared with [7]. On the
last Section 7 it is presented the conclusions and
final remarks.

2 Nomenclature

Along the paper the time dependence is omitted
for simplicity, when it is understood by the con-
text. A′ represents the transpose of a matrix A.
Q > 0 or Q < 0 represents that all the eigenval-
ues are positive or negative respectively. ‖ · ‖ is
the vector norm. Tr(A) is the trace of the matrix
A. The symbol ? represents the matrix entry that
preserves the symmetry. Curly brackets {·} are
used to define sets, and square brackets for matri-
ces or continuous intervals.

3 Sliding Mode Effect of Quantized Systems

For simplicity, it is considered on this paper sys-
tems with scalar inputs, but the presented results
are easily extended for vector inputs. Consider
the state space system model (1).

ẋ(t) = Ax(t)+Bq(u(t)), (1)

where x(t) and u(t) are the state variables and the
input, respectively, and the system matrices are
A ∈ Rn×n and B ∈ R1×n. The function q(u) is
the quantization function defined as (2), where
round(·) rounds a number to the nearest integer
and ∆ is the quantization interval.
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Fig. 3 : Deadband of quantized control

q(u) = ∆ · round(u/∆). (2)

The system model (1) represents a time-
invariant linear system with quantized input. By
changing the equilibrium point xeq of (1), the
function q(·) may express itself as two two dif-
ferent effects on the control:

i. Deadband control: the equilibrium point
xeq is such that the input u(t) lays inside any of
the quantization intervals, causing the system (1)
to be in open-loop, while the control input in con-
stant, performing no stabilization. This situation
is called deadband non-linearity. See Figure 3
where the red line represents u(t) and the blue
line its quantization q(u(t)).

ii. Sliding mode control: the equilibrium
point xeq is such that the input u(t) lays in the bor-
der between two quantization intervals. In this
case (2) can be written as

q(u) = ∆

(
1
2

sign
(

u
∆
− k− 1

2

)
+ k+

1
2

)
,

for u ∈ B(k∆+
∆

2
), k ∈ Z, (3)

where B(p) is a (small) open ball centered in p.
Note that the therm ∆

(
k+ 1

2

)
of q(u) in (3) only

shifts the equilibrium point xeq and the control is
governed by the sign function. An example of
this is shown in the Figure 4 for k = 0. If the
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Fig. 4 : Sliding modes in quantized control

surface u
∆
−k− 1

2 = 0 is attractive, the system en-
ters in sliding mode when the trajectory crosses
the surface. Please refer to [10] regarding to the
Sliding Mode Theory.

4 System Modeling

The basic concept of the of the digital hydraulic
connected to a aircraft control surface can be seen
in Figure 5. Note the multi-chamber cylinder,
with four chambers and the two pressure lines
(Power Supply 1 and 2). With properly switching
on and off each of the valves 1V1PA, 1V1PB, 1V1PC,
. . . , 1V3PD it can be obtained the number of possi-
ble forces is given by NM , where N is the number
of pressures and M is the number of areas. The
circuit proposed on [9] considers gas accumula-
tors, check valves and the use of two reservoirs,
which is out of the scope of this paper.

The control strategy involves two approxi-
mations of the original hydraulic system, which
implies some conservativeness on the solution.
The first approximation is neglecting the valve
throttling, which is justified by the fact that digi-
tal hydraulics uses conventional on/off valves of
simple construction, designed to be used com-
pletely closed or completely opened having as lit-
tle throttling as possible, resulting to be highly
efficient. A second approximation is time delays,
which is part of the valve dynamics and it is nec-
essary in order to avoid hydraulic “short circuit”

Fig. 5 : Digital hydraulic concept [9]

between lines, as long the opening time and clos-
ing time are not the same and changes depending
on the working conditions.

The result for four chamber cylinder and ne-
glecting the valve throttling is shown as a lin-
ear system in (4), where AA, AB, AC and AD are
the cylinder areas and pA, pB, pC and pD are the
pressure for each cylinder chamber, chosen from
available pressures.

md̈(t) =−kd(t)−bḋ(t)+
+AA pA(t)−AB pB(t)+AC pC(t)−AD pD(t),

(4)

where d(t) is the displacement.
Defining the control input by u(t) =

AA pA(t) − AB pB(t) + AC pC(t) − AD pD(t) with
pA,B,C,D ∈ P , where P is the set of avail-
able pressures, the state variables by x(t) =[
d(t) ḋ(t)

∫
d(t)dt

]T and rewriting (4) in a
matrix form, the result is state space model (5),
where it was included an extra state variable∫

d(t)dt to ensure zero zero steady state error of
d(t).

ẋ(t) = Ax(t)+Bq(u(t)), (5)

where the function q(u) is the quantization func-
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tion defined as (2). The matrices are

A =

 0 1 0
−k
m

−b
m 0

1 0 0

 and B =

0
1
m
0

 .
From (5) considering the two possible behav-

ior of the quantization input as described on the
Section 3, the following two models are defined:

i. Deadband control: For deadband con-
trol input, once the trajectory enters the region
where the control input u(t) constant, the system
is on open loop. Without loss of generality, the
model considers the equilibrium in zero, so the
control law should design a positive invariant set
O , {x ∈ Rn |‖u(t)‖< γ}, i.e. once the system
trajectory enters O, implies that it stays inside O.
The role of γ will be discussed on the Section 5.
In this case the model (5) is described as

ẋ(t) = Ax(t)+Bφ(u(t)), (6)

where φ(·) is defined in (7).

φ(u) =

{
0, for ‖u‖< ∆/2[2

3u;2u
]
, for ‖u‖ ≥ ∆/2

(7)

The definition (7) is convenient to be used for
control design on the Section 5, because it is con-
vex for all x(t) /∈ O.

ii. Sliding mode control: With the definition
(3) and as described on the Section 3, the con-
stant therms in q(t) only shifts the equilibrium
point. Modeling the system around the equilib-
rium point, (5) is rewritten as

ẋ(t) = Ax(t)+B
∆

2
sign(u(t)),

for ‖u(t)‖ ≤ ∆

2
, (8)

for all ‖u(t)‖ 6= 0 the function sign is defined as

sign(u) =
u
‖u‖

, ∀‖u‖ 6= 0. (9)

Considering that (8) is valid only for ‖u(t)‖≤
∆/2, (9) can be written as

sign(u) =
u
‖u‖

= u ·α(u),

where α(u) =
1
‖u‖
∈ [2/∆;∞) . (10)

The definition (10) will be used as an approx-
imation of the function sign for the control de-
sign on the Section 5, for the cases where the
equilibrium point xeq is such that u(t) lays near
the boundary between two different quantization
levels.

5 Main Result

The goal is to design a linear state feedback con-
trol u(t) = Kx(t) to be used in quantized con-
trol output, considering the different effects of
the control as described on the Section 3 using
the models of the Section 4. The design of the
control gain K is based on the optimization ap-
proach to achieve fast convergence, with the well
known H2 control, subjected to the following two
restrictions: i. positively invariance in case of
u(t) lays inside the quantization interval and ii.
sliding mode stability in case of u(t) lays between
two quantization levels. The optimization is done
with the performance signal z(t) ∈ Rnz given by

z(t) =Czx(t). (11)

Without loss of generality ∆ is set to ∆ = 1,
as long it can be directly multiplied by the input
matrix B and posteriorly adjusted on the gain ma-
trix K. With this considerations, we enunciate the
following theorem:

Theorem 1 Given the system (5), suppose that
exists symmetric matrices Q = Q′ ∈ Rn×n and
N = N′ ∈ Rnz×nz , and a matrix X = KQ ∈ R1×n,
where γ = 1 for open-loop stable systems and
γ = 2 for open-loop unstable systems, satisfying
the LMI conditions (12, 13, 14) for α = {1/2, ᾱ}
with sufficiently large ᾱ and β = {1/2, 3/2}, then
the control law u(t) = Kx(t) minimizes the H2
norm of the system, under the control input (2)
with quantization step ∆ = 1.

min
Q,N,X

Tr(N)[
N CzQ
? Q

]
> 0, Q > 0

AQ+QA′+βBX +βX ′B′+BB′ < 0

(12)
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AQ+QA′+βBX +βX ′B′ B βX ′

? −γI 0
? ? −γI

< 0

(13)
AQ+QA′+αBX +αX ′B′ < 0 (14)

Proof. The LMI (12) is the usual H2 norm
minimization of a linear time-invariant sys-
tem [12]

‖h(t)‖2
2 =

∫
∞

0 Tr(h′(t)h(t))dt

= Tr
(

Cz

(∫
∞

0 eAtBB′eA′tdt
)

C′z
)

= Tr
(
CzQcC′z

)
,

(15)
where H(s) is the Laplace transform of the
closed loop of (5) and h(t) = CzeAtB =
L−1 {H(s)} its inverse. The matrix Qc is the
controllability Gramian. An approximatin of
Qc is obtained by the following LMI (16).

min
Q,K

Tr
(
CzQC′z

)
(A+BK)Q+Q(A+BK)′+BB′ < 0,

(16)

where Tr
(
CzQC′z

)
> Tr

(
CzQcC′z

)
.

Using Schur Complement[13] and the
fact that N > CzQC′z implies Tr(N) >
Tr(CzQC′z), (16) is easily transformed into
(12) with the change of variable X =KQ. The
inclusion of β = {1/2, 3/2} covers the variation
of u(t) based on the definition (7). In the Fig-
ure 3, β can be seen as the change on the slope
of u between the two cyan lines.

For the case i. deadband control, consider
the following inequality:

d
dt

V (x(t))+u′(t)u(t)−w′(t)w(t)< 0, (17)

where V (x(t)) = x′(t)Px(t), with P = P′ > 0
and w(t) = q(u(t))− u(t) is the quantization
error.

Integrating (17) leads to

lim
t→∞

V (x(t))−V (x(0))+

+
∫

∞

0
u′(t)u(t)dt <

∫
∞

0
w′(t)w(t)dt, (18)

for ∆ = 1 it is true that
∫

∞

0 w′(t)w(t)dt <∫
∞

0
1
4dt, because ‖w(t)‖ ≤ 1

2 . If the system is

stable and considering zero initial conditions
(18) implies∫

∞

0
u′(t)u(t)dt <

∫
∞

0

1
4

dt, (19)

which means that exists a finite T1, such that
‖u(t)‖ < 1/2 for all t > T1. In other words,
the condition (17) implies that the trajectory
is such that u(t) enters the ball O, previously
defined, and it stays for all t→ ∞.

Note that the condition (17) is only
valid for open-loop stable system, because
‖u(t)‖ < 1/2 implies u(t) = 0 due the quanti-
zation. For open-loop unstable system, once
the trajectory is such that ‖u(t)‖< 1/2, u(t) is
set to zero, causing the trajectory to leave O.
This problem is fixed by considering a scaling
factor of γ on O to include the limit cycle of
the trajectories entering and leaving the orig-
inal O. For open-loop unstable systems, by
defining γ = 2, the trajectory is such that the
control assumes values of u(t) ∈ {−∆,0,∆}.
From (17), including the scaling factor γ and
u(t) = Kx(t) the result is

2x′(t)P(Ax(t)+BβKx(t))+

+
1
γ

x′(t)K′Kx(t)− γw′(t)w(t)< 0. (20)

The inequality (20) is easily transformed
into (13), using Schur Complement and pre
and post multiplying by Q=P−1 and with the
change of variable X = KQ. The scalar β is
included to cover the variation of u(t) based
on the definition of (7).

The last LMI (14) is the result form
the Lyapunov candidate function V (x(t)) =
x′(t)Px(t) for the system (8) considering the
approximation of the function sign as de-
scribed in (10) with α = {1/2, ᾱ}, where α is
a sufficiently large scalar, to be interpreted by
LMI solvers.

With this, we conclude the proof covering
the following consideration: i. ensuring that
the system trajectory enters in the positively
invariant set O, ii. sliding mode stability, in
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case of u(t) be in the border between two
quantization interval when the system is in
equilibrium; and finely, H2 norm minimiza-
tion of the system (1).

6 Numeric Example

Using the model (5), based on the works [9, 7],
the numeric values are k = 150kN/m, b = 2.5kNs/m

and mass 50kg. The quantization step ∆= 1010N
is included on the matrix B for designing pro-
poses. The performance signal z(t) in (11) is de-
fined with Cz as in (21), where the values have
been chosen to stronger penalize the integral of
the position error. As long the system is not open-
loop asymptotically stable, β = 2.

Cz =

[
0.01 0 0

0 0 3

]
. (21)

The problem has been solved using the
solver SDPT3 [15] in Matlab environment with
ᾱ = 104. The result is the gain matrix K =[
−61 −1.6 −2729

]
without rescaling by ∆.

The simulation has been performed on Hop-
san [6], which offers a rich modeling, including
for example, the valves and cylinder dynamics of
both hydraulic and mechanic characteristics. On
this model it has been considered force distur-
bances and viscous, static and kinematic fictions.
The simulation results are compared to the previ-
ous work [7].

The simulation result on the cylinder position
can be seen in the Figure 6, where the plot a is the
result form our previous work [7] and b the result
from the proposed methodology. The red line is
the position set-point and the blue line is the mea-
sured position of the cylinder. The methodology
used on the previous work [7] was based on [5].
The objective of [5] is to minimize effect of the
quantization error on the output. It can be seen on
Figure 6a, that the method considerably reduced
the lag between 3s and 5s, but it has induced
some unstable sliding mode regimes around 4s.
As predicted on the development of the proposed
method, as the system is not open-loop stable,
there is a limit cycle between 1.5s and 3s in the

Figure 6b, where the trajectory crosses the de-
sired position successively.

In the Figure 7 the control output u(t) is pre-
sented in blue and the red line its quantization
q(u(t)), i.e. the force chosen from the avail-
able combination of pressures and cylinder diam-
eters. The control output from previous work [7]
is shown in the Figure 7a. There is both stable
sliding mode at 3.5s and unstable sliding modes
at 4s. In our proposed method 7b, does not show
any unstable sliding mode, as expected.

The main advantage of the proposed method
is reducing the waste the energy by reducing the
amount of switchings. In the Figure 8 it is shown
the waste of energy using the both methods, with
significant reduction on the energy waste. The
energy waste shown in the Figure 8 has been cal-
culated as

Ewaste(t) =
∫ t

0
Hhydr(τ)dτ−

∫ t

0
Hmech(τ)dτ,

(22)
where Ewaste(t) is the energy waste over time.
The hydraulic power Hhydr is the sum of
the power from each individual power supply
Hhydr = ps1qv1 + ps2qv2 + ps3qv3. The mechan-
ical power Hmech is calculated using the velocity
v and the force F measured on the cylinder rod
Hmech = F · v. As expected, the energy is mostly
wasted when the valve is switched on and off, as
seen around 4s or 5s, which are regions of unsta-
ble sliding mode. When the cylinder is not mov-
ing, the energy waste is very small, as seen by
the flats around 6s and after 8s. It is important to
mention that for regular proportional valves, the
waste of energy occurs mostly when the valve is
positioned on the center, as it imposes more re-
striction to the flow and internal leakage. On this
situation the cylinder is stopped, without produc-
ing mechanical power.

7 Conclusions

It has been presented a new methodology for
designing a control gains for digital hydraulic,
focusing on aircrafts applications, the proposed
method leads to significant reducing of valve
switchings, which is important for both energy
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(a) Method [7] (b) Proposed Method

Fig. 6 : Position of a digital hydraulic actuator in blue and its set-point in red

(a) Method [7] (b) Proposed Method

Fig. 7 : Control output in blue u(t) and its quantization q(u(t)) in red

Fig. 8 : Energy waste where red is using the
method [7] and blue is the proposed method

efficiency and devices lifespan.
The proposed method considers the possible

sliding mode effect that exists between two quan-
tization levels, in order to have stable sliding sur-
faces, in contrast with the common approach for
this kind of problem. Most of the available re-
sults found on the literature for quantized control
consider that the error between the the actual con-
trol output to its quantization is a disturbance to
be minimized. This comes out as a hight con-
trol gain that forces the system trajectory to the
equilibrium regardless how the trajectory moves
inside a quantization interval. This kind of ap-
proach leads to an excessive switchings, which is
not desired in digital hydraulics.

8
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It has been presented a simulation in Hopsan,
which offers a rich modeling for all hydraulic and
mechanical components, including disturbance
and friction.

Remark 1 Note that the LMIs (12), (13) and
(14), are linear in A, so the Theorem 1 can be
used for designing the control gain for uncertain
matrix A, i.e. robust on A. This is not true for the
matrix B. For the example on the Section 6, it is
possible to design the gain in order to be robust
for variations of the spring k and dumping b.
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