

Abstract

This paper analyses the "Development of system

architecture and allocation of systems

requirements to items" steps of the SAE ARP

4754, discusses the engineering

challenges associated. After a theoretical

discussion three vectors of research are defined

to apply practice theory concepts: Knowledge

mapping, requirements management and testing

strategies.

1 Introduction

Developing modern aircraft systems is a

challenging task and as stated by

‘coping with the resulting design complexity

while maintaining time to market and

profitability is the latest challenge to hit the

engineering industry.’. New appearing

technologies allow pushing the boundaries

creating more efficient products but the

drawback is an ever increasing complexity of

the on board systems. Such complexity creates

the need for engineering practices to avoid

design errors and the SAE document

consolidates guidelines with that goal. Still the

need exists to improve safety margins and

reduce design cycles. This paper proposes to

analyze the steps “Development of system

architecture and allocation of systems

requirements to items", shown in

System Development Process [2], using practice

theory concepts. Those steps were chosen

because as stated by Leveson [3

software-related accidents can be traced back to

flaws in the requirements specifications and not

to coding errors…", and from the system

standpoint, this is where the number of

requirements and their complex relations begins

A PRACTICAL ANALYSIS

AIRCRAFT SYSTEMS ARC

REQUIREMENTS DEVELOP
Felipe Magno da Silva Turetta

Keywords: Systems Engineering, Complexity,

This paper analyses the "Development of system

architecture and allocation of systems

tems" steps of the SAE ARP

4754, discusses the engineering reality and

After a theoretical

discussion three vectors of research are defined

to apply practice theory concepts: Knowledge

mapping, requirements management and testing

veloping modern aircraft systems is a

and as stated by Johnson [1]

‘coping with the resulting design complexity

while maintaining time to market and

profitability is the latest challenge to hit the

. New appearing

technologies allow pushing the boundaries

fficient products but the

drawback is an ever increasing complexity of

the on board systems. Such complexity creates

the need for engineering practices to avoid

gn errors and the SAE document ARP 4754

consolidates guidelines with that goal. Still the

improve safety margins and

reduce design cycles. This paper proposes to

Development of system

architecture and allocation of systems

, shown in blue Fig. 1

, using practice

theory concepts. Those steps were chosen

3] "Almost all

related accidents can be traced back to

ifications and not

from the system

standpoint, this is where the number of

requirements and their complex relations begins

to grow rapidly. This indicates that these are

crucial steps to search for improvements in

order to avoid future accidents.

Fig. 1 System Development Process [

The development of system architecture is

initiated with the inputs marked in green on

1 System Development Process [

functions the system is supposed to perform and

safety goals for each function.

proposed architecture will generate specific

failure conditions and architectural safety

requirements, as well as derived requirements.

Later, each system requirement will be allocated

to one or more system components and safety

A PRACTICAL ANALYSIS ON THE COMPLEXITY OF

AIRCRAFT SYSTEMS ARCHITECTURE AND

REQUIREMENTS DEVELOPMENT
Felipe Magno da Silva Turetta, EMBRAER

Systems Engineering, Complexity, Validation and Verification, Requirements

Engineering

1

to grow rapidly. This indicates that these are

crucial steps to search for improvements in

ure accidents.

System Development Process [2]

The development of system architecture is

initiated with the inputs marked in green on Fig.

System Development Process [2]; the

functions the system is supposed to perform and

safety goals for each function. Then each

architecture will generate specific

failure conditions and architectural safety

ments, as well as derived requirements.

Later, each system requirement will be allocated

to one or more system components and safety

ON THE COMPLEXITY OF

HITECTURE AND

MENT

Validation and Verification, Requirements

Felipe Magno da Silva Turetta

2

process will generate additional requirements

for those components that may in turn, prompt

changes in the previously defined architecture

or requirements. From [2] "In practice, system

architecture development and the allocation of

requirements are tightly-coupled, iterative

processes. With each iteration cycle, the

identification and understanding of the

requirements increases and the allocation of the

system-level requirements to hardware or

software items becomes clearer". Here it already

becomes clear that the engineers do not have all

the knowledge about the system when the

design process is started. “Designing and

assessing architecturally complex computer

systems is a classic but still open challenge” [6]

and the goal of this paper is to identify how to

increase the knowledge of the engineers earlier

in the design process to avoid excessive re-work

and, most importantly, not leaving residual

unknown emergent behaviors in the system.

In chapters 2 and 3 a theoretical discussion is

made on complexity, communication and

knowledge in a development process. Chapter 4

defines the three vectors to apply practice theory

concepts and chapter 5 presents the final

conclusions.

2 Complexity and Emergent behaviors

There are several definitions for complexity in

the literature and one of the most used is that

complexity is related to “degree of difficulty in

predicting the properties of a system if the

properties of the system's parts are given” [12].

For engineers a practical definition that we can

include is that a “system is complex when it

becomes impossible to test all the combinations

of different system inputs”. Fig. 2 Sample

Engine/Bleed Air/Anti Ice systems Architecture

shows a simplified architecture diagram of a

hypothetic Aircraft Engine/Bleed Air/Wing Anti

Ice System that would be considered complex

by anyone not familiar with those technologies.

Still it could be considered “quite simple” for an

experienced aerospace systems engineer.

But that same engineer even considering the

design “simple”, would recognize that it is

almost certain that he and a team of other

experienced engineers would make mistakes

when designing such a system, or that some

system behaviors would only be captured later

in the development cycle, during the testing

phase. This statement serves as an illustration of

one recurrent definition of complexity, which is

that complex systems are those that present

emergent behaviors [1, 4]. It is a convenient

definition because it removes a portion of the

subjectivity of the evaluation, since even an

experienced engineer that comprehends the

system very well, will admit this property in

“his” system.

Fig. 2 Sample Engine/Bleed Air/Anti Ice

systems Architecture

Emergent behaviors are those that stem from a

system, in an unexpected manner, from the

interaction of its multiple components between

themselves and the environment. Some state

that those properties cannot be identified

through functional decomposition [1] and this

idea challenges various engineering methods

such as FMEAs and FTAs, heavily based on this

kind of decomposition. This is also a problem

for most traditional requirements engineering

practices, since natural language text

requirements do not interact with each other.

Still this specific problem could theoretically be

solved using model based techniques that can be

simulated.

Bedeau [7] differentiates between strong and

weak emergences, in where the weak events

could be predicted using powerful modeling

3

A PRACTICAL ANALYSIS ON THE COMPLEXITY OF AIRCRAFT

SYSTEMS ARCHITECTURE AND REQUIREMENTS DEVELOPMENT

techniques and the strong events would be those

so complex that they are really “out of our

grasp”, like the emergence of life from

inanimate matter. Strong events are

characterized by what he calls ‘downwards

causation’, meaning that the low level behavior

is constrained by the higher level in what an

engineer would understand as a constant ‘closed

loop feedback’ dependence.

Johnson [1] also states that some authors deny

this concept of emergence, saying that those

behaviors have nothing special and are just

manifestations of our knowledge gaps. This

view may indeed be correct, but it is of no

practical use, since in reality we do have

knowledge gaps and even when we close them,

as technology progresses new gaps are created

and it is impossible to keep up because the

process of innovation involves learning. Thus

in practice, it does not matter if the emergent

behavior is really undetectable or if it is “only a

problem with our current knowledge”, it is an

issue that must be dealt with.

Although not explicitly stated in the documents,

one of the main goals of the processes

documented on SAE ARP 4754 and 4761 [2, 5]

is exactly to prevent unwanted emergent

behaviors to remain hidden in the systems.

From ARP 4754: “Aircraft/System integration is

the task of ensuring all the aircraft systems

operate correctly individually and together as

installed on the aircraft. This provides the

means to show that intersystem requirements,

taken as a group, have been satisfied. It also

provides an opportunity to discover and

eliminate undesired unintended functions.”

(emphasis added). Those “unintended

functions” are exactly emergent behaviors, as

they were not included “by design”, but

emerged from the complexity of the systems

integration. One of the most difficult tasks in

systems integration is to find and evaluate those

unintended functions, since there is no place to

start looking for them. Requirement testing is

not effective to capture those behaviors since no

requirement exists to implement them. Usually a

combination of engineering analysis and use

cases based testing is done to search for them,

but there is no accepted test coverage criteria to

guarantee all those functions have been exposed

and eliminated (or proven to be harmless). This

is fertile ground for new research and is exactly

the target of this initial research. From this point

on in the paper, the terms “Emergent Behavior”

and “Unintended Function” are used as

synonyms.

3 Potential Source of Unintended Functions:

Communication and lack of knowledge

To be able to uncover those functions it is

necessary to know (or at least have a general

idea) of the reasons why those behaviors ended

up in the system. Although it is impossible to

perfectly point out the reasons, it is possible to

learn from previous experiences and target at

least those sources. In this section and overview

of a traditional development will be briefly

shown, and then concepts related to

communication and tacit knowledge are

discussed. Those concepts will later be used to

propose methods of minimizing potential

unintended functions.

3.1 Development process

A traditional development process can be seen

on Fig. 3 Traditional development with NL

requirements. Simply put it consists in a first

cycle where the requirements are elicited from

the stakeholders and a requirement base is

created and validated. As we will be explained

later, this validation is limited since it is usually

based on natural language requirements, and

communication issues exist. For this reason it

will be called “weak validation”.

Fig. 3 Traditional development with NL

requirements

Felipe Magno da Silva Turetta

4

The second cycle consists of software and

hardware engineers building the first prototypes,

based on the written requirements. In this cycle

several issues start to surface like completeness

of the requirement base (lack of information for

implementation), consistency (conflicting

requirements) ambiguous requirements and

other. This allows for a better validation, since

there is a “reification” of the written

requirements and many communication issues

surface. At this point the prototypes are usually

far from the final configuration and final

customer involvement is little in traditional

processes and although agile methodologies

advocate for customer involvement in all

phases, even under those methods it may not be

practical to call the costumer to see an electronic

box controlling a prototype valve controlling the

pressure of a manifold, when the real interface

with him, (the air conditioning in this example)

is not really there yet.

The third cycle consists of the test experts

building a test base and exercising the prototype

with those tests. This is where the

implementation is verified to meet the

requirements, and another communication

barrier exists here, since the test engineers will

have to interpret the requirements in order to

design the tests.

Finally the cycle 4 is where the “true validation”

occurs, since the prototype is near the final

configuration and both the costumers and

regulatory agencies specialists are largely

involved. At this point a greater understanding

of the requirements and system behavior is

achieved due to extensive use of the prototypes

and clarification of the requirements. Of course,

problems found at this point in the development

are much more expensive to solve than the ones

that were found during cycle 1, where no

material had been bought, no prototype was

constructed and so on.

3.2 Communication and Sub-System

Perspectives

As it became clear in the previous section,

development of a complex system is about

integrating knowledge, thus its success is highly

dependent on good communication. And the

more complex the system is, more different

engineering specialties will be required, causing

communication issues to not be restricted only

between costumer/designer, but largely between

designers of different parts of the whole system.

It is not possible for a single person to have the

knowledge from all the integrated system. Thus

considering each person involved in the process

has mastery over one portion of the system

(which is still not complete mastery), they will

all have a different perspective from the

“complete system”.

Figures 4 and 5 show possible perspectives of

the system from Fig. 2, as viewed by different

specialists. Another possible perspective would

be the one from an engine system engineer,

where the whole Air Management System

would be a black box (Anti-Ice plus Bleed).

Also even inside the same specialty different

views may arise due to different backgrounds

(historical bodies) or development tasks

assignment.

Fig. 4 Sub-System perspective from the Bleed

System engineer

5

A PRACTICAL ANALYSIS ON THE COMPLEXITY OF AIRCRAFT

SYSTEMS ARCHITECTURE AND REQUIREMENTS DEVELOPMENT

Fig. 5 Sub-System perspective from the Anti

Ice System engineer

The System engineering Book of Knowledge

present several types of complexity, and one of

them is called structural complexity, with is

related to the number of components of a

system. This is directly related to the concept

we are discussing here. In order to further

illustrate the concept, for a system with N

components, the total number of possible sub-

system perspectives is given by equation (1).

Where it is possible to combine N in groups of

‘g’ components, with g varying from 2 to N-1

(because g=1 means only one component, thus

not a sub-system, and g=N means the whole

system).

����� = � �!
�! 	� − ��!

�
���

�
�
																										1�

Equation (1) shows that for the simple system

from Fig. 2 Sample Engine/Bleed Air/Anti Ice

systems Architecture which has 19 components,

more than half a million potential perspectives

are possible (and real aerospace systems usually

have hundreds of components). Although not all

those views are “plausible”, the equation

(plotted in Fig. 6 Growth of possible sub-system

perspectives with increasing number of system

components) serves as a powerful illustration of

that growing complexity, and how even

engineers from the same sub-system could

easily have different system perspectives by

missing just a single component. It also serves

as an illustration of how quickly it becomes

impossible to test all possible combinations of

system malfunctions (thus classifying the

system as complex by some definitions).

Those different perspectives can have no direct

impact on how the person understands the

system´s operation under normal conditions, but

might have an enormous impact in specific

abnormal conditions, that will appear to the

team as an emergent behavior during testing or

even real world operation.

Fig. 6 Growth of possible sub-system

perspectives with increasing number of

system components

Those different perspectives may create issues

during the development process that will

emerge later during testing or even during

operation. Below are two examples of design

errors that could occur due to this lack of

knowledge.

3.2.1 Sample design error 1 – Potential

incorrect assembly

Note from the figures that both the BLEED

system and the A-I system have Pressure and

Temperature Sensors that are connected to the

Air Management Electronic Controller. There is

a possibility that the components are physically

identical and thus have similar contactors that

could theoretically be incorrectly connected in

the controller. In this case, even if the system

has “out of range” monitoring for the sensors, it

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Number of components in the systemP
o
s
s
ib

le
 n

u
m

b
e

r
o
f

s
u

b
-s

y
s
te

m
 p

e
rs

p
e

c
ti
v
e
s

Felipe Magno da Silva Turetta

6

would not be able to detect the incorrect

assembly unless a power up test is executed and

the associated valves are exited (because

without pneumatic pressure both sensors would

be indicating ambient pressure). Thus the hazard

being described here is an “Incorrect assembly

of the pressure/temperature sensors”. In this

case, the issue could be resolved easily by

including a power up test that opens each valve,

and checks the pressure and temperature of its

associated sensors. An incorrect assembly

would be detected because of the lack of

pressure/temperature rise once the valve is open.

But the only way to include this hazard in the

FHA is for an engineer to have an insight of this

potential interaction of the components. And in

order to have this insight, the system

perspective of that engineer would need to

include both the Bleed and A-I systems. The

insights are limited by the engineer´s

perspective. Unfortunately we know that due to

the huge complexity, it is not possible for a

single person to have the complete perspective,

then the question is; how do we identify the

relevant components from one system to be

made explicit for the others? This dilemma is

discussed by Ribeiro in [8] when he comments

that in knowledge transfer between an expert

and a novice, “the novice does not know what to

ask and the expert does not know what to

teach”.

3.3.2 Sample design error 2 – Dynamic

coupling of pressure controls laws: Bleed and

Anti-Ice with states from FADEC

The pressure in the wing anti ice ducts is

controlled by modulating the wing anti ice valve

(A-Ice VLV in the figures), that uses air from

the bleed manifold. The bleed manifold pressure

is controlled by bleed pressure valve (PR VLV

in the figures), that extracts air from the high or

low pressure compressors from the engine,

depending on bleed clients (typically anti ice,

pressurization and air conditioning buy may

include others) demand and engine current trust

rating (takeoff, climb cruise or descend) and

thrust lever angle.

The paragraph above illustrates that the two

control laws for each valve are tightly coupled

and depend on various external factors. Thus it

is a challenge by itself to define under which

conditions the laws should be tested considering

normal and abnormal conditions. Which failures

outside those systems may affect the dynamics

of the system? Certainly the engine has controls

and failures of its own that are also coupled to

that dynamic.

It is possible for example that the engine

specialists use the exhaust gas temperatures in

some control law that influences the

compressors pressure, but for the bleed engineer

that characteristic is transparent (since he uses

in his control law, the direct pressures in the

compressors). Is the failure of the exhaust gas

temperature sensor a relevant failure for the

bleed control? It may not be relevant under

certain conditions, for example with anti ice on

but air conditioning off. This is an example of

how it can quickly become impossible to test all

possible system inputs. Then how should the

tests be designed?

3.4 The types of tacit knowledge

In the introduction of [8] Ribeiro starts with a

quote from Polanyi: “we know more than we

can possibly say”. He is referring to a type of

knowledge that cannot be transferred through

explicit instructions. This type of knowledge is

described as tacit knowledge, as opposed to an

“explicit” knowledge that could be transferred

more easily.

One concept that helps understanding this kind

of knowledge is “the regression of the rules”

described by Wittgenstein in [9]. He states that

the rules do not contain the rules for their own

application, suggesting that in order to be able

to adequately follow a strict rule, previous

knowledge is always required and the only way

to acquire that previous knowledge is by

socializing in what he calls a “form of life”. In

our engineering world, each engineering branch

could be understood as a different form of life

(but the branches being far more detailed than

just “mechanical”, “electrical” or “industrial”)

and this generates the Sub-system perspectives

described earlier. In our example it is clear that

an anti ice system engineer would not be able to

design an aircraft engine even with the most

7

A PRACTICAL ANALYSIS ON THE COMPLEXITY OF AIRCRAFT

SYSTEMS ARCHITECTURE AND REQUIREMENTS DEVELOPMENT

complete books and procedures from the engine

specialists. What is considered “obvious” inside

one form of life (and thus omitted from

procedures) is clearly not obvious to the other.

Ribeiro distinguishes three different types of

tacit knowledge: somatic, contingency and

collective.

Somatic tacit knowledge refers closely to

physical skills like riding a bicycle (that could

never be really taught in the classroom for

example) and needs to be experienced with its

own body in order to be learned. This is not the

point of interest of this research.

Contingency tacit knowledge are usually

captured in the “out of the normal” situations.

Since normal procedures address only a limited

amount of scenarios, deviations from those

scenarios may be intuitive to deal for someone

experienced at that specialty, but very difficult

for others. An example is the design of a

overtemperature monitor that could be inside

the controller software of the Anti Ice System of

Fig. 2 Sample Engine/Bleed Air/Anti Ice

systems Architecture. The novice engineer

would simply program (in pseudo code):

 if temperature > 100 degC

 overtemp=true

 Elseif temperature <= 100 degC

 overtemp =false

But an experienced engineer with this kind of

application would quickly recognize the need to

treat intermittent transmissions issues, and

would include the need for a “persistence” of

for example 5 seconds, and would program the

following:

 if temperature > 100 degC

 if persist > 5

overtemp=true

 Elseif

 persist=persist+1

 Elseif temperature <= 100 degC

 overtemp=false

 persist=0

This kind of knowledge is, in principle

transferable, although it is impractical due to

time constraints and the difficulty the experts

will have in delimiting it. Lessons learned

databases, mentoring and other methods are

used to deal with that contingency tacit

knowledge.

Collective tacit knowledge is the one that allows

the individual to stop Wittgenstein´s regress of

rules, or in other words to interpret and correctly

apply a set of rules from a specific form of life.

Developing this kind of knowledge means

joining a form of life; in our case, acquiring the

skills of that engineering branch being able to

“see” that sub-system perspective. The next

section discusses collective tacit knowledge in

more detail, as it is the trickier to deal with.

3.4.1 Collective tacit knowledge

Detailing the idea that collective tacit

knowledge allows to stop the regress of rules,

Ribeiro describes three types of judgment that

only experts from a specific form of life are able

to do; similarity / differences, relevance /

irrelevance and risk / opportunity.

They are usually intertwined in engineering, and

can be closely related to design trade-offs or

safety analysis. Back to the monitor example in

the previous section; is the temperature of 100

degrees C adequate for this situation? Imagining

that the concern is damage to the wing structure

(aluminum with a fusion point of 660 deg C),

the limit seems far too conservative (with only

this information we could judge that 100 or 150

is the “same”). But is fatigue a problem? There

are any other system components that might be

damaged installed nearby? Even with the

temperature being far lower than the fusion

point, might this temperature affect the material

properties in the long term? What is the

precision of the temperature sensor? In addition

to the temperature, is the persistence time

adequate? What if the system stays around 100

deg C for a long time never staying above that

value for more than 5 seconds?

Some of those questions would never be asked

by an experienced engineer, because they are

irrelevant, other could never be asked by anyone

other than an experienced engineer, because it

would be impossible to have that insight. Some

would come only from someone with a specific

sub-system perspective. This illustrates the need

not only of several engineering branches

knowledge, but also of a necessary mix of

experiences (The fatigue issue for example is

Felipe Magno da Silva Turetta

8

far from a systems engineer expertise, on the

structures field).

4 Practice theory and epistemology for

dealing with design complexity: Three

research vectors

With the discussion done in chapters 2, 3 and 4

and epistemology we will define three main

research vectors.

Epistemology is the branch of philosophy that

studies knowledge itself. Ratcliff discusses in

[10] potential applications of epistemology in

systems engineering and even the Systems

Engineering Book of Knowledge mentions that

it is “one of the foundations of integrative

systems science”. After the discussion done here

in section 2 on complexity and emergent

behaviors and how this may be seen by some

authors as a “lack of knowledge”, the

connection between epistemology and systems

engineering should be quite clear.

The three vectors will be briefly addressed here,

but not exhausted. Further studies shall be made

to stress the subjects. They are: knowledge

mapping, requirements management and testing

strategies.

4.1 Knowledge Mapping

In [8] Ribeiro studies the startup process of a

complex industrial plant, having to deal with a

considerable amount of new employees with no

experience on the plant processes and a limited

number of experienced personnel. To manage

the formation of the teams for each part of the

plant he proposes a process called “Tacit

knowledge management and similarity levels

mapping”. A similar process could be used in

the formation of aircraft systems development

teams, or at least, to guide the need of

participants in design review meetings.

The idea consists (in a simplified manner), to

consider in addition to the time of experience

each specific has, the “level of similarity” of the

task he is to perform. For example, if an

engineer has 10 years of experience with engine

systems, but most of those years have been

spent working on turboprop engines, he has a

considerable experience on engine systems, but

if he is working on an aircraft with turbofan

engines, his similarity level would be only

medium. If he is working on aircraft with a

scram jet engine, the similarity level would be

low. This means that he has limited tacit

knowledge on those projects, and is not as fluent

in making the judgments described in section

3.4.1. This may have a considerable impact on

the decision making capabilities of an

engineering team, especially in very

multidisciplinary ones. Imagine that a team of

ten engineers is making a decision about the

design of the system in Fig. 2 Sample

Engine/Bleed Air/Anti Ice systems Architecture

There are three engineers for each sub-system

(with their different sub-system- perspectives)

and a integration systems engineer. Each one of

them has more than 15 years of experience in

aviation, some in more than one system. It is

expected that they would feel very comfortable

in making design decisions since there is a lot of

experience and knowledge gathered. What may

be hidden is the fact that, for example, no one in

that room has ever worked with a specific

technology contained in one of the systems. It

would be normal to assume that “somebody

here knows about that”. The problem may be

even hidden in some subsystem that is not

depicted in the architecture under study, for

example the electrical system that feeds energy

to all the components in all those systems.

The previous paragraph illustrates the need for

an active knowledge management during system

design. The experience and similarities levels

mapping proposed by Ribeiro in [8] might

provide a good starting point to develop that

kind of management procedures.

4.2 Requirements Management

Ratcliff discusses in [10] how different cultures

(or even engineering disciplines) may have

different definitions for certain terms resulting

in different or conflicting requirements, or even

(potentially the worst case) one requirement

being understood completely differently by two

different stakeholders. He mentions the United

States DoDAF document [11] that maps

different stakeholders viewpoints that should

necessarily be considered when designing a

system architecture. Still he points out that

simply having iterative discussions and

9

A PRACTICAL ANALYSIS ON THE COMPLEXITY OF AIRCRAFT

SYSTEMS ARCHITECTURE AND REQUIREMENTS DEVELOPMENT

“translations” of the requirements between the

different viewpoints, may instead of solving the

issue, exacerbate it to a point where no

viewpoint is actually represented and

traceability of the requirements may be lost.

(Those viewpoints may be compared to the

concept of “sub system perspectives” presented

here, but in reality it is a much broader concept,

considering the complete lifecycle of that

system or activity, and the sub system

perspective aims to map only the understanding

of that specific system architecture.)

At the end of his work he proposes a step by

step process to try to avoid those pitfalls, and

one of the steps is actually to model the

requirements into petri nets and simulate them.

This appears to be a very efficient solution and

we discuss it further in the following section,

model based design.

4.2.2 Model based design

Although model based design is not a discipline

from practice theory, many of its foundations

match very well with intents identified during

the discussion of tacit knowledge. The idea of

having executable models as requirements

instead of natural language text removes

communication barriers as the model behavior

can be directly observed. Text requirements do

not interact and thus present no possibility for

emergent behaviors to appear.

Ratcliff asks in [10], “How can one know, or

even can one know, if the requirement

statements purportedly regarding the same

phenomena, as stated in two separate

viewpoints, actually refer to the same

concept?”. This issue can be solved by

modeling the requirements, because the

phenomena can be “seen” through the behavior

of the model.

Fig. 7 Model Based Development shows a

sample development cycle with MBD, and it

becomes clear in comparison with the process

from Fig. 3 Traditional development with NL

requirements a stronger validation is possible is

cycle 1 due to the possibility of exercising the

model with the stakeholders. Also weak

emergent behaviors might be detected on cycle

1, even those that could not be anticipated by

the costumer/stakeholders. Also the task of

creating the test cases and even constructing the

first prototypes is much easier since the testers

and other engineers are allowed an early

“socialization” with the modeled system

behavior.

Fig. 7 Model Based Development

4.3 Testing Strategies: An “epistemological

loop” in the search for unintended functions.

Ratcliff illustrates typical epistemological

questions with “how do we know this?”, “is this

fully know; can it be fully known?”. This brings

us back to the point of emerging behaviors and

that fact that apparently, complex systems

cannot be fully known, at least not until later in

its lifecycle, where it has been largely exited in

different situation. This brings up the question:

If the system is not fully known, how do we test

it? This appears to be an “epistemological

loop”, since it is impossible to design a test to

search for something you not know what it is.

This also strongly questions the validity of

requirement based testing in order to search for

unintended functions. If a function is

unintended, there is no requirement to

implement it, thus it may be impossible to find

it with tests designed from requirements. Since

complexity theory explains that emergent

behaviors cannot be uncovered through

functional decomposition, it appears that it may

be indeed impossible to uncover all unintended

functions hidden in a complex system.

With this rationale it appears that the best way

to look for unintended functions is to exercises

the system in the largest possible combination

of use cases scenarios and analyze the system

response. Note that those tests will need to come

directly from the use cases, without taking into

account low level requirements. If those low

Felipe Magno da Silva Turetta

10

level requirements are considered they may

“contaminate” the test procedures with

operational sequences that were already

considered during the design.

It still can be argued that it is impossible to

uncover all unintended functions until a full

factorial test is performed, and this is potentially

true for complex systems, but the goal here is to

uncover at least the unusual but plausible

situations. Thus we will introduce a new

concept of test coverage criteria the Operational

coverage criteria. It will be divided into

‘theoretical’ and ‘practical’ operational

coverage. A system is said to have 100%

theoretical operational coverage when all

possible operational scenarios have been

exercised. This is of course impossible, which is

why we need the “practical” operational

coverage concept, which we will define as:

‘A system is said to have 100% practical

operational coverage when a full factorial

design of the use case scenarios has been

performed, but not of the input variables.’

Even the practical definition may generate an

impractical number of tests, but it will at least

provide some insight and measurement on how

well the operational scenarios have been

explored (and thus the likelihood that new

unintended functions may appear).

The concept is included here for the aviation

community evaluation (as this is a preliminary

research article), but it will need to be detailed

in a later article.

5 Conclusions

This paper is but the first step in a marathon to

apply more practice theory into the design of

complex systems, but it has been able to show

that there are fertile grounds for applying

practice theory into systems engineering.

Further works include defining a procedures for

Tacit knowledge and similarity levels mapping

for engineering teams (from section 4.1),

detailing the concept of operational coverage

and how the design and manage the tests to

attain it and evaluation the state of the art

requirements capture and model based design

techniques with practice theory to search for

improvements. Studies on top of real cases are

mandatory in the next phases of this research.

References

[1] Johnson, Christopher W. What are emergent

properties and how do they affect the engineering of

complex systems? Reliability Engineering and

System Safety 91 pp 1475–1481 (2006) .

[2] Society of Automotive Engineers. ARP 4754

Guidelines for Development of Civil Aircraft and

Systems. REV. A, SAE, 2010.

[3] Leveson, N. G. Systemic Factors In Software-Related

Spacecraft Accidents. Conference: AIAA Space 2001

Conference and Exposition • August 2001.

[4] Dekker, S. Ciliers, P. and Hofmeyr, JH. The

complexity of failure: Implications of complexity

theory for safety investigations. Safety Science, Vol.

49, pp 939–945, 2011.

[5] Society of Automotive Engineers. ARP4761

Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and

Equipment. Original, SAE, 1996.

[6] Iacono, M. Gribaudo, M. and Pop, F. Modeling and

evaluation of highly complex computer systems

architectures. Journal of Computational Science. Vol.

22. pp 126–130, 2017.

[7] Bedau M. Weak emergence. Philosophical

perspectives: mind,causation, and world. Vol 11 pp

375–399, 1997.

[8] Ribeiro, R. Tacit knowledge management.

Phenomenology and the cognitive sciences. 2012.

[9] Wittgenstein, L. Philosophical investigations.

Oxford: Blackwell (1976 [1953]).

[10] Ratcliff, R. Applying epistemology to system

engineering: an illustration. Procedia Computer

Science 16, pp 393 – 402, 2013.

[11] DoD. (2010, August) DoD Architecture Framework

Version 2.02. [Online].

http://dodcio.defense.gov/Library/DoD-Architecture-

Framework/.

[12] BKCASE. Guide to the Systems Engineering Body

of Knowledge (SEBoK) v1.8.

8 Contact Author Email Address

If you desire to contact the authors please

mailto:felipeturetta@gmail.com

Copyright Statement

The authors confirm that they, and/or their company or

organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they

have obtained permission, from the copyright holder of

any third party material included in this paper, to publish

it as part of their paper. The authors confirm that they

give permission, or have obtained permission from the

copyright holder of this paper, for the publication and

distribution of this paper as part of the ICAS proceedings

or as individual off-prints from the proceedings.

