
 

Abstract  

This paper analyses the "Development of system 

architecture and allocation of systems 

requirements to items" steps of the SAE ARP 

4754, discusses the engineering

challenges associated. After a theoretical 

discussion three vectors of research are defined 

to apply practice theory concepts: Knowledge 

mapping, requirements management and testing 

strategies.    

1 Introduction 

Developing modern aircraft systems is a 

challenging task and as stated by 

‘coping with the resulting design complexity 

while maintaining time to market and 

profitability is the latest challenge to hit the 

engineering industry.’. New appearing 

technologies allow pushing the boundaries 

creating more efficient products but the 

drawback is an ever increasing complexity of 

the on board systems. Such complexity creates 

the need for engineering practices to avoid 

design errors and the SAE document 

consolidates guidelines with that goal. Still the 

need exists to improve safety margins and 

reduce design cycles. This paper proposes to 

analyze the steps “Development of system 

architecture and allocation of systems 

requirements to items", shown in

System Development Process [2], using practice 

theory concepts. Those steps were chosen 

because as stated by Leveson [3

software-related accidents can be traced back to 

flaws in the requirements specifications and not 

to coding errors…", and from the system 

standpoint, this is where the number of 

requirements and their complex relations begins 
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process will generate additional requirements 

for those components that may in turn, prompt 

changes in the previously defined architecture 

or requirements. From [2] "In practice, system 

architecture development and the allocation of 

requirements are tightly-coupled, iterative 

processes. With each iteration cycle, the 

identification and understanding of the 

requirements increases and the allocation of the 

system-level requirements to hardware or 

software items becomes clearer". Here it already 

becomes clear that the engineers do not have all 

the knowledge about the system when the 

design process is started. “Designing and 

assessing architecturally complex computer 

systems is a classic but still open challenge” [6] 

and the goal of this paper is to identify how to 

increase the knowledge of the engineers earlier 

in the design process to avoid excessive re-work 

and, most importantly, not leaving residual 

unknown emergent behaviors in the system.  

In chapters 2 and 3 a theoretical discussion is 

made on complexity, communication and 

knowledge in a development process. Chapter 4 

defines the three vectors to apply practice theory 

concepts and chapter 5 presents the final 

conclusions. 

2 Complexity and Emergent behaviors  

There are several definitions for complexity in 

the literature and one of the most used is that 

complexity is related to “degree of difficulty in 

predicting the properties of a system if the 

properties of the system's parts are given” [12]. 

For engineers a practical definition that we can 

include is that a “system is complex when it 

becomes impossible to test all the combinations 

of different system inputs”. Fig. 2 Sample 

Engine/Bleed Air/Anti Ice systems Architecture 

shows a simplified architecture diagram of a 

hypothetic Aircraft Engine/Bleed Air/Wing Anti 

Ice System that would be considered complex 

by anyone not familiar with those technologies. 

Still it could be considered “quite simple” for an 

experienced aerospace systems engineer. 

But that same engineer even considering the 

design “simple”, would recognize that it is 

almost certain that he and a team of other 

experienced engineers would make mistakes 

when designing such a system, or that some 

system behaviors would only be captured later 

in the development cycle, during the testing 

phase. This statement serves as an illustration of 

one recurrent definition of complexity, which is 

that complex systems are those that present 

emergent behaviors [1, 4]. It is a convenient 

definition because it removes a portion of the 

subjectivity of the evaluation, since even an 

experienced engineer that comprehends the 

system very well, will admit this property in 

“his” system. 

 

Fig. 2 Sample Engine/Bleed Air/Anti Ice 

systems Architecture 

Emergent behaviors are those that stem from a 

system, in an unexpected manner, from the 

interaction of its multiple components between 

themselves and the environment. Some state 

that those properties cannot be identified 

through functional decomposition [1] and this 

idea challenges various engineering methods 

such as FMEAs and FTAs, heavily based on this 

kind of decomposition.  This is also a problem 

for most traditional requirements engineering 

practices, since natural language text 

requirements do not interact with each other. 

Still this specific problem could theoretically be 

solved using model based techniques that can be 

simulated.  

Bedeau [7] differentiates between strong and 

weak emergences, in where the weak events 

could be predicted using powerful modeling 
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techniques and the strong events would be those 

so complex that they are really “out of our 

grasp”, like the emergence of life from 

inanimate matter. Strong events are 

characterized by what he calls ‘downwards 

causation’, meaning that the low level behavior 

is constrained by the higher level in what an 

engineer would understand as a constant ‘closed 

loop feedback’ dependence. 

Johnson [1] also states that some authors deny 

this concept of emergence, saying that those 

behaviors have nothing special and are just 

manifestations of our knowledge gaps. This 

view may indeed be correct, but it is of no 

practical use, since in reality we do have 

knowledge gaps and even when we close them, 

as technology progresses new gaps are created 

and it is impossible to keep up because the 

process of innovation involves learning.   Thus 

in practice, it does not matter if the emergent 

behavior is really undetectable or if it is “only a 

problem with our current knowledge”, it is an 

issue that must be dealt with.  

Although not explicitly stated in the documents, 

one of the main goals of the processes 

documented on SAE ARP 4754 and 4761 [2, 5] 

is exactly to prevent unwanted emergent 

behaviors to remain hidden in the systems. 

From ARP 4754: “Aircraft/System integration is 

the task of ensuring all the aircraft systems 

operate correctly individually and together as 

installed on the aircraft. This provides the 

means to show that intersystem requirements, 

taken as a group, have been satisfied. It also 

provides an opportunity to discover and 

eliminate undesired unintended functions.” 

(emphasis added). Those “unintended 

functions” are exactly emergent behaviors, as 

they were not included “by design”, but 

emerged from the complexity of the systems 

integration. One of the most difficult tasks in 

systems integration is to find and evaluate those 

unintended functions, since there is no place to 

start looking for them. Requirement testing is 

not effective to capture those behaviors since no 

requirement exists to implement them. Usually a 

combination of engineering analysis and use 

cases based testing is done to search for them, 

but there is no accepted test coverage criteria to 

guarantee all those functions have been exposed 

and eliminated (or proven to be harmless). This 

is fertile ground for new research and is exactly 

the target of this initial research. From this point 

on in the paper, the terms “Emergent Behavior” 

and “Unintended Function” are used as 

synonyms. 

3 Potential Source of Unintended Functions: 

Communication and lack of knowledge 

To be able to uncover those functions it is 

necessary to know (or at least have a general 

idea) of the reasons why those behaviors ended 

up in the system. Although it is impossible to 

perfectly point out the reasons, it is possible to 

learn from previous experiences and target at 

least those sources. In this section and overview 

of a traditional development will be briefly 

shown, and then concepts related to 

communication and tacit knowledge are 

discussed. Those concepts will later be used to 

propose methods of minimizing potential 

unintended functions. 

3.1 Development process 

A traditional development process can be seen 

on Fig. 3  Traditional development with NL 

requirements. Simply put it consists in a first 

cycle where the requirements are elicited from 

the stakeholders and a requirement base is 

created and validated. As we will be explained 

later, this validation is limited since it is usually 

based on natural language requirements, and 

communication issues exist. For this reason it 

will be called “weak validation”.  

 

Fig. 3  Traditional development with NL 

requirements 



Felipe Magno da Silva Turetta  

4 

The second cycle consists of software and 

hardware engineers building the first prototypes, 

based on the written requirements. In this cycle 

several issues start to surface like completeness 

of the requirement base (lack of information for 

implementation), consistency (conflicting 

requirements) ambiguous requirements and 

other. This allows for a better validation, since 

there is a “reification” of the written 

requirements and many communication issues 

surface. At this point the prototypes are usually 

far from the final configuration and final 

customer involvement is little in traditional 

processes and although agile methodologies 

advocate for customer involvement in all 

phases, even under those methods it may not be 

practical to call the costumer to see an electronic 

box controlling a prototype valve controlling the 

pressure of a manifold, when the real interface 

with him, (the air conditioning in this example) 

is not really there yet. 

The third cycle consists of the test experts 

building a test base and exercising the prototype 

with those tests. This is where the 

implementation is verified to meet the 

requirements, and another communication 

barrier exists here, since the test engineers will 

have to interpret the requirements in order to 

design the tests. 

Finally the cycle 4 is where the “true validation” 

occurs, since the prototype is near the final 

configuration and both the costumers and 

regulatory agencies specialists are largely 

involved. At this point a greater understanding 

of the requirements and system behavior is 

achieved due to extensive use of the prototypes 

and clarification of the requirements. Of course, 

problems found at this point in the development 

are much more expensive to solve than the ones 

that were found during cycle 1, where no 

material had been bought, no prototype was 

constructed and so on.  

3.2 Communication and Sub-System 

Perspectives  

As it became clear in the previous section, 

development of a complex system is about 

integrating knowledge, thus its success is highly 

dependent on good communication. And the 

more complex the system is, more different 

engineering specialties will be required, causing 

communication issues to not be restricted only 

between costumer/designer, but largely between 

designers of different parts of the whole system.  

It is not possible for a single person to have the 

knowledge from all the integrated system. Thus 

considering each person involved in the process 

has mastery over one portion of the system 

(which is still not complete mastery), they will 

all have a different perspective from the 

“complete system”. 

Figures 4 and 5 show possible perspectives of 

the system from Fig. 2, as viewed by different 

specialists. Another possible perspective would 

be the one from an engine system engineer, 

where the whole Air Management System 

would be a black box (Anti-Ice plus Bleed). 

Also even inside the same specialty different 

views may arise due to different backgrounds 

(historical bodies) or development tasks 

assignment. 

 

 

Fig. 4 Sub-System perspective from the Bleed 

System engineer 
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Fig. 5 Sub-System perspective from the Anti 

Ice System engineer 

The System engineering Book of Knowledge 

present several types of complexity, and one of 

them is called structural complexity, with is 

related to the number of components of a 

system. This is directly related to the concept 

we are discussing here. In order to further 

illustrate the concept, for a system with N 

components, the total number of possible sub-

system perspectives is given by equation (1). 

Where it is possible to combine N in groups of 

‘g’ components, with g varying from 2 to N-1 

(because g=1 means only one component, thus 

not a sub-system, and g=N means the whole 

system).  
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Equation (1) shows that for  the simple system 

from Fig. 2 Sample Engine/Bleed Air/Anti Ice 

systems Architecture which has 19 components, 

more than half a million potential perspectives 

are possible (and real aerospace systems usually 

have hundreds of components). Although not all 

those views are “plausible”, the equation 

(plotted in Fig. 6 Growth of possible sub-system 

perspectives with increasing number of system 

components) serves as a powerful illustration of 

that growing complexity, and how even 

engineers from the same sub-system could 

easily have different system perspectives by 

missing just a single component. It also serves 

as an illustration of how quickly it becomes 

impossible to test all possible combinations of 

system malfunctions (thus classifying the 

system as complex by some definitions). 

Those different perspectives can have no direct 

impact on how the person understands the 

system´s operation under normal conditions, but 

might have an enormous impact in specific 

abnormal conditions, that will appear to the 

team as an emergent behavior during testing or 

even real world operation. 

 

Fig. 6 Growth of possible sub-system 

perspectives with increasing number of 

system components 

Those different perspectives may create issues 

during the development process that will 

emerge later during testing or even during 

operation. Below are two examples of design 

errors that could occur due to this lack of 

knowledge. 

3.2.1 Sample design error 1 – Potential 

incorrect assembly 

Note from the figures that both the BLEED 

system and the A-I system have Pressure and 

Temperature Sensors that are connected to the 

Air Management Electronic Controller. There is 

a possibility that the components are physically 

identical and thus have similar contactors that 

could theoretically be incorrectly connected in 

the controller. In this case, even if the system 

has “out of range” monitoring for the sensors, it 
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would not be able to detect the incorrect 

assembly unless a power up test is executed and 

the associated valves are exited (because 

without pneumatic pressure both sensors would 

be indicating ambient pressure). Thus the hazard 

being described here is an “Incorrect assembly 

of the pressure/temperature sensors”. In this 

case, the issue could be resolved easily by 

including a power up test that opens each valve, 

and checks the pressure and temperature of its 

associated sensors. An incorrect assembly 

would be detected because of the lack of 

pressure/temperature rise once the valve is open. 

But the only way to include this hazard in the 

FHA is for an engineer to have an insight of this 

potential interaction of the components. And in 

order to have this insight, the system 

perspective of that engineer would need to 

include both the Bleed and A-I systems. The 

insights are limited by the engineer´s 

perspective. Unfortunately we know that due to 

the huge complexity, it is not possible for a 

single person to have the complete perspective, 

then the question is; how do we identify the 

relevant components from one system to be 

made explicit for the others? This dilemma is 

discussed by Ribeiro in [8] when he comments 

that in knowledge transfer between an expert 

and a novice, “the novice does not know what to 

ask and the expert does not know what to 

teach”. 

3.3.2 Sample design error 2 – Dynamic 

coupling of pressure controls laws: Bleed and 

Anti-Ice with states from FADEC 

The pressure in the wing anti ice ducts is 

controlled by modulating the wing anti ice valve 

(A-Ice VLV in the figures), that uses air from 

the bleed manifold. The bleed manifold pressure 

is controlled by bleed pressure valve (PR VLV 

in the figures), that extracts air from the high or 

low pressure compressors from the engine, 

depending on bleed clients (typically anti ice, 

pressurization and air conditioning buy may 

include others) demand and engine current trust 

rating (takeoff, climb cruise or descend) and 

thrust lever angle. 

The paragraph above illustrates that the two 

control laws for each valve are tightly coupled 

and depend on various external factors. Thus it 

is a challenge by itself to define under which 

conditions the laws should be tested considering 

normal and abnormal conditions. Which failures 

outside those systems may affect the dynamics 

of the system? Certainly the engine has controls 

and failures of its own that are also coupled to 

that dynamic.  

It is possible for example that the engine 

specialists use the exhaust gas temperatures in 

some control law that influences the 

compressors pressure, but for the bleed engineer 

that characteristic is transparent (since he uses 

in his control law, the direct pressures in the 

compressors). Is the failure of the exhaust gas 

temperature sensor a relevant failure for the 

bleed control? It may not be relevant under 

certain conditions, for example with anti ice on 

but air conditioning off. This is an example of 

how it can quickly become impossible to test all 

possible system inputs. Then how should the 

tests be designed? 

3.4 The types of tacit knowledge  

In the introduction of [8] Ribeiro starts with a 

quote from Polanyi: “we know more than we 

can possibly say”. He is referring to a type of 

knowledge that cannot be transferred through 

explicit instructions. This type of knowledge is 

described as tacit knowledge, as opposed to an 

“explicit” knowledge that could be transferred 

more easily.  

One concept that helps understanding this kind 

of knowledge is “the regression of the rules” 

described by Wittgenstein in [9]. He states that 

the rules do not contain the rules for their own 

application, suggesting that in order to be able 

to adequately follow a strict rule, previous 

knowledge is always required and the only way 

to acquire that previous knowledge is by 

socializing in what he calls a “form of life”. In 

our engineering world, each engineering branch 

could be understood as a different form of life 

(but the branches being far more detailed than 

just “mechanical”, “electrical” or “industrial”) 

and this generates the Sub-system perspectives 

described earlier. In our example it is clear that 

an anti ice system engineer would not be able to 

design an aircraft engine even with the most 
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complete books and procedures from the engine 

specialists. What is considered “obvious” inside 

one form of life (and thus omitted from 

procedures) is clearly not obvious to the other. 

Ribeiro distinguishes three different types of 

tacit knowledge: somatic, contingency and 

collective. 

Somatic tacit knowledge refers closely to 

physical skills like riding a bicycle (that could 

never be really taught in the classroom for 

example) and needs to be experienced with its 

own body in order to be learned. This is not the 

point of interest of this research. 

Contingency tacit knowledge are usually 

captured in the “out of the normal” situations. 

Since normal procedures address only a limited 

amount of scenarios, deviations from those 

scenarios may be intuitive to deal for someone 

experienced at that specialty, but very difficult 

for others. An example is the design of a 

overtemperature monitor that could be inside 

the controller software of the Anti Ice System of 

Fig. 2 Sample Engine/Bleed Air/Anti Ice 

systems Architecture. The novice engineer 

would simply program (in pseudo code): 
 

 if temperature > 100 degC 

  overtemp=true 

 Elseif temperature <= 100 degC 

  overtemp =false 
 

But an experienced engineer with this kind of 

application would quickly recognize the need to 

treat intermittent transmissions issues, and 

would include the need for a “persistence” of 

for example 5 seconds, and would program the 

following: 
 

 if temperature > 100 degC 

  if persist > 5 

overtemp=true 

  Elseif  

   persist=persist+1  

 Elseif temperature <= 100 degC 

  overtemp=false 

  persist=0 
 

This kind of knowledge is, in principle 

transferable, although it is impractical due to 

time constraints and the difficulty the experts 

will have in delimiting it. Lessons learned 

databases, mentoring and other methods are 

used to deal with that contingency tacit 

knowledge. 

Collective tacit knowledge is the one that allows 

the individual to stop Wittgenstein´s regress of 

rules, or in other words to interpret and correctly 

apply a set of rules from a specific form of life. 

Developing this kind of knowledge means 

joining a form of life; in our case, acquiring the 

skills of that engineering branch being able to 

“see” that sub-system perspective. The next 

section discusses collective tacit knowledge in 

more detail, as it is the trickier to deal with. 

3.4.1 Collective tacit knowledge  

Detailing the idea that collective tacit 

knowledge allows to stop the regress of rules, 

Ribeiro describes three types of judgment that 

only experts from a specific form of life are able 

to do; similarity / differences,  relevance / 

irrelevance and risk / opportunity. 

They are usually intertwined in engineering, and 

can be closely related to design trade-offs or 

safety analysis.  Back to the monitor example in 

the previous section; is the temperature of 100 

degrees C adequate for this situation? Imagining 

that the concern is damage to the wing structure 

(aluminum with a fusion point of 660 deg C), 

the limit seems far too conservative (with only 

this information we could judge that 100 or 150 

is the “same”). But is fatigue a problem? There 

are any other system components that might be 

damaged installed nearby? Even with the 

temperature being far lower than the fusion 

point, might this temperature affect the material 

properties in the long term? What is the 

precision of the temperature sensor? In addition 

to the temperature, is the persistence time 

adequate? What if the system stays around 100 

deg C for a long time never staying above that 

value for more than 5 seconds?   

Some of those questions would never be asked 

by an experienced engineer, because they are 

irrelevant, other could never be asked by anyone 

other than an experienced engineer, because it 

would be impossible to have that insight. Some 

would come only from someone with a specific 

sub-system perspective. This illustrates the need 

not only of several engineering branches 

knowledge, but also of a necessary mix of 

experiences (The fatigue issue for example is 
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far from a systems engineer expertise, on the 

structures field). 

4 Practice theory and epistemology for 

dealing with design complexity: Three 

research vectors  

With the discussion done in chapters 2, 3 and 4 

and epistemology we will define three main 

research vectors.  

Epistemology is the branch of philosophy that 

studies knowledge itself. Ratcliff discusses in 

[10] potential applications of epistemology in 

systems engineering and even the Systems 

Engineering Book of Knowledge mentions that 

it is “one of the foundations of integrative 

systems science”. After the discussion done here 

in section 2 on complexity and emergent 

behaviors and how this may be seen by some 

authors as a “lack of knowledge”, the 

connection between epistemology and systems 

engineering should be quite clear.  

The three vectors will be briefly addressed here, 

but not exhausted. Further studies shall be made 

to stress the subjects. They are: knowledge 

mapping, requirements management and testing 

strategies. 

4.1 Knowledge Mapping 

In [8] Ribeiro studies the startup process of a 

complex industrial plant, having to deal with a 

considerable amount of new employees with no 

experience on the plant processes and a limited 

number of experienced personnel. To manage 

the formation of the teams for each part of the 

plant he proposes a process called “Tacit 

knowledge management and similarity levels 

mapping”. A similar process could be used in 

the formation of aircraft systems development 

teams, or at least, to guide the need of 

participants in design review meetings.  

The idea consists (in a simplified manner), to 

consider in addition to the time of experience 

each specific has, the “level of similarity” of the 

task he is to perform. For example, if an 

engineer has 10 years of experience with engine 

systems, but most of those years have been 

spent working on turboprop engines, he has a 

considerable experience on engine systems, but 

if he is working on an aircraft with turbofan 

engines, his similarity level would be only 

medium. If he is working on aircraft with a 

scram jet engine, the similarity level would be 

low. This means that he has limited tacit 

knowledge on those projects, and is not as fluent 

in making the judgments described in section 

3.4.1. This may have a considerable impact on 

the decision making capabilities of an 

engineering team, especially in very 

multidisciplinary ones. Imagine that a team of 

ten engineers is making a decision about the 

design of the system in Fig. 2 Sample 

Engine/Bleed Air/Anti Ice systems Architecture 

There are three engineers for each sub-system 

(with their different sub-system- perspectives) 

and a integration systems engineer. Each one of 

them has more than 15 years of experience in 

aviation, some in more than one system. It is 

expected that they would feel very comfortable 

in making design decisions since there is a lot of 

experience and knowledge gathered. What may 

be hidden is the fact that, for example, no one in 

that room has ever worked with a specific 

technology contained in one of the systems. It 

would be normal to assume that “somebody 

here knows about that”. The problem may be 

even hidden in some subsystem that is not 

depicted in the architecture under study, for 

example the electrical system that feeds energy 

to all the components in all those systems.  

The previous paragraph illustrates the need for 

an active knowledge management during system 

design. The experience and similarities levels 

mapping proposed by Ribeiro in [8] might 

provide a good starting point to develop that 

kind of management procedures. 

4.2 Requirements Management  

Ratcliff discusses in [10] how different cultures 

(or even engineering disciplines) may have 

different definitions for certain terms resulting 

in different or conflicting requirements, or even 

(potentially the worst case) one requirement 

being understood completely differently by two 

different stakeholders.  He mentions the United 

States DoDAF document [11] that maps 

different stakeholders viewpoints that should 

necessarily be considered when designing a 

system architecture. Still he points out that 

simply having iterative discussions and 
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“translations” of the requirements between the 

different viewpoints, may instead of solving the 

issue, exacerbate it to a point where no 

viewpoint is actually represented and 

traceability of the requirements may be lost. 

(Those viewpoints may be compared to the 

concept of “sub system perspectives” presented 

here, but in reality it is a much broader concept, 

considering the complete lifecycle of that 

system or activity, and the sub system 

perspective aims to map only the understanding 

of that specific system architecture.) 

At the end of his work he proposes a step by 

step process to try to avoid those pitfalls, and 

one of the steps is actually to model the 

requirements into petri nets and simulate them. 

This appears to be a very efficient solution and 

we discuss it further in the following section, 

model based design. 

4.2.2 Model based design  

Although model based design is not a discipline 

from practice theory, many of its foundations 

match very well with intents identified during 

the discussion of tacit knowledge. The idea of 

having executable models as requirements 

instead of natural language text removes 

communication barriers as the model behavior 

can be directly observed. Text requirements do 

not interact and thus present no possibility for 

emergent behaviors to appear.  

Ratcliff asks in [10], “How can one know, or 

even can one know, if the requirement 

statements purportedly regarding the same 

phenomena, as stated in two separate 

viewpoints, actually refer to the same 

concept?”. This issue can be solved by 

modeling the requirements, because the 

phenomena can be “seen” through the behavior 

of the model. 

Fig. 7 Model Based Development shows a 

sample development cycle with MBD, and it 

becomes clear in comparison with the process 

from Fig. 3  Traditional development with NL 

requirements a stronger validation is possible is 

cycle 1 due to the possibility of exercising the 

model with the stakeholders. Also weak 

emergent behaviors might be detected on cycle 

1, even those that could not be anticipated by 

the costumer/stakeholders. Also the task of 

creating the test cases and even constructing the 

first prototypes is much easier since the testers 

and other engineers are allowed an early 

“socialization” with the modeled system 

behavior.  

 

Fig. 7 Model Based Development 

4.3 Testing Strategies: An “epistemological 

loop” in the search for unintended functions. 

Ratcliff illustrates typical epistemological 

questions with “how do we know this?”, “is this 

fully know; can it be fully known?”. This brings 

us back to the point of emerging behaviors and 

that fact that apparently, complex systems 

cannot be fully known, at least not until later in 

its lifecycle, where it has been largely exited in 

different situation. This brings up the question: 

If the system is not fully known, how do we test 

it? This appears to be an “epistemological 

loop”, since it is impossible to design a test to 

search for something you not know what it is. 

This also strongly questions the validity of 

requirement based testing in order to search for 

unintended functions. If a function is 

unintended, there is no requirement to 

implement it, thus it may be impossible to find 

it with tests designed from requirements. Since 

complexity theory explains that emergent 

behaviors cannot be uncovered through 

functional decomposition, it appears that it may 

be indeed impossible to uncover all unintended 

functions hidden in a complex system. 

With this rationale it appears that the best way 

to look for unintended functions is to exercises 

the system in the largest possible combination 

of use cases scenarios and analyze the system 

response. Note that those tests will need to come 

directly from the use cases, without taking into 

account low level requirements. If those low 
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level requirements are considered they may  

“contaminate” the test procedures with 

operational sequences that were already 

considered during the design.  

It still can be argued that it is impossible to 

uncover all unintended functions until a full 

factorial test is performed, and this is potentially 

true for complex systems, but the goal here is to 

uncover at least the unusual but plausible 

situations. Thus we will introduce a new 

concept of test coverage criteria the Operational 

coverage criteria. It will be divided into 

‘theoretical’ and ‘practical’ operational 

coverage. A system is said to have 100% 

theoretical operational coverage when all 

possible operational scenarios have been 

exercised. This is of course impossible, which is 

why we need the “practical” operational 

coverage concept, which we will define as: 

‘A system is said to have 100% practical 

operational coverage when a full factorial 

design of the use case scenarios has been 

performed, but not of the input variables.’  

Even the practical definition may generate an 

impractical number of tests, but it will at least 

provide some insight and measurement on how 

well the operational scenarios have been 

explored (and thus the likelihood that new 

unintended functions may appear). 

The concept is included here for the aviation 

community evaluation (as this is a preliminary 

research article), but it will need to be detailed 

in a later article. 

5 Conclusions 

This paper is but the first step in a marathon to 

apply more practice theory into the design of 

complex systems, but it has been able to show 

that there are fertile grounds for applying 

practice theory into systems engineering. 

Further works include defining a procedures for 

Tacit knowledge and similarity levels mapping 

for engineering teams (from section 4.1), 

detailing the concept of operational coverage 

and how the design and manage the tests to 

attain it and evaluation the state of the art 

requirements capture and model based design 

techniques with practice theory to search for 

improvements. Studies on top of real cases are 

mandatory in the next phases of this research. 
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