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Abstract  

Multiple crack propagation scenarios are 

onerous to predict and calculate. Aircraft 

operation must be safe and damage tolerance 

design ensures residual resistance of structure 

by fracture mechanics analyses. There are 

commercial tools able to calculate simple 

scenarios but complex geometries are not 

covered by them, like simultaneous crack 

propagation in cooperative lugs. This scenario 

was studied using finite element method to 

obtain the geometric factor (β) and understand 

structural behavior. 

1  Introduction 

There are design methods used on 

aeronautic structures that must guarantee the 

absence of catastrophic failures during operating 

life. Safe life method orders replacement of 

components after an established life based on 

fatigue studies, and damage tolerance approach 

accepts the presence of a defect until a planned 

maintenance action can find and repair it, based 

on fracture mechanics that ensures residual 

resistance of structure [1]. 

Linear elastic fracture mechanics is used to 

prevent cracks to grow to a critical size, which 

usually nucleate in regions with stress 

concentration, like holes or notches [2]. One of 

factors that determine crack growth is the stress 

distribution on the crack tip, which depends of 

the stress intensity factor (K) that is presented 

on Eq. (1). 

 

𝐾 =  𝛽𝜎𝑟𝑒𝑓√𝜋𝑎 (1) 

 

Where “a” is the crack length, “σref” is the 

reference stress (value outside of stress 

concentration influence zone) and “β” is the 

geometric factor. The geometric factor (β) is a 

function that depends of geometry, failure mode 

and load path, and because of that it is a 

complex parameter to obtain [2]. 

A calculation method to obtain the stress 

intensity factor (K) is based on the strain energy 

release rate, presented in Eq. (2). In finite 

element models the crack length (a) is increased 

by uncoupling of nodes along the crack line. 

Experience has shown that an acceptable 

accuracy can be obtained without the necessity 

to go to an extremely fine mesh [3]. 

 

𝑑𝑈

𝑑𝑎
 =  

𝐾2

𝐸
 

(2) 

 

Several damage scenarios are analyzed 

using fracture mechanics for aircraft 

development. There are commercial tools that 

can be used to calculate simple scenarios but 

complex geometries or multiple crack scenarios 

are not covered by them. That is the case of the 

component with two cooperative lugs (or clevis) 

with damage present in both lugs and influence 

of the crack in one lug on the crack of the other 

one. 

A method to find the geometric factor (β) 

is obtained using Eq. (1) and Eq. (2) that results 

on Eq. (3). 
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To study the simultaneous crack 

propagation in different cooperative lugs, which 

share the same loading a finite element model 

was developed, using Hypermesh [4] as pre-

processor, Hyperview [4] as post-processor and 

Nastran [5] as solver. 

2 One lug model  

The first step was simulating crack 

propagation in only one lug. As the main goal is 

evaluate a method for obtain the geometric 

factor (β), lug’s dimension are smaller than the 

usually adopted on service. They are presented 

in Figure 1 and Table 1. 

 

 

Figure 1: Geometry 

 

Table 1: Dimensions 

D 6.35 mm 

W 15 mm 

L 30 mm 

 

Boundary conditions of finite element 

model are presented in Figure 2. Table 2 

presents thickness of model, material properties 

(from a general aluminum), considered elastic 

and linear. Lug was modeled with shell 

elements, its base was restricted on the six 

degrees of freedom and the unidirectional load 

(P = 500 daN) was applied with a rigid element 

that represents a pin with 130° of contact, to 

avoid influence on nodes near to crack 

representation.  

 

 

Figure 2: Boundary conditions – one lug model 

 

Table 2: Model properties 

Thickness (t) 2.4mm 

E 7200 daN/mm² 

ν 0.33 

 

The initial crack and its propagation were 

represented by nodes separation on the model, 

on line mesh highlighted on Figure 2. The nodes 

were constrained through Multi-Point Constrain 

(MPC) and each pair was unrestricted in one 

increment of the analysis. 

 

 

 

Figure 3: Finite element model, Von Mises stress, one 

lug: closed  
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Figure 4: Finite element model, Von Mises stress, one 

lug: crack of 2.21 mm 

 

 

 

Figure 5: Finite element model, Von Mises stress, one 

lug: crack of 3.67 mm 

 

From this model, the outputs were strain 

energy (U) and crack length (measured from the 

disconnected elements). Reference stress is 

presented in Eq. (4).  Using these values, curve 

for the geometric factor was built using Eq. (3). 

It was compared with Nassif [6] curve, using 

same input data. Results are presented on Figure 

6. 

 

𝜎𝑟𝑒𝑓  =  
𝑃

𝐷𝑡
 (4) 

 

 

Figure 6: Geometric factor, one lug model 

 

The result of model has the same behavior 

of results from Nassif [6]. Nominally, the new 

solution TC27 has the same geometry and 

loading condition as TC04, but TC27 employs 

nonlinear stress variation and contact between 

the pin and the lug, so presents different results 

[6]. The difference between the curves, besides 

the module, is the moment that the derivate 

changes.  

3 Two lugs model 

The mesh presented on Figure 2 was 

duplicated and boundary conditions were 

adapted for the model of two cooperative lugs, 

presented on Figure 7. The model is still linear 

elastic, its base is restricted on the six degrees of 

freedom and the unidirectional load (P = 1000 

daN) was applied with a rigid element that 

represents a pin. 

 

 

Figure 7: Boundary conditions – two lugs model 
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Again, initial crack and its propagation 

were represented by nodes separation on the 

model, but now with two cracks simultaneously, 

one in each lug, on lines highlighted on Figure 

7. Thereby it was possible to verify 

component’s behavior and the influence on the 

geometric factor (β). 

Several simulations were done with 

different scenarios, in which the crack is always 

propagating in one lug and in the other the 

condition varied according to Table 3.  

 

Table 3: Scenarios for two lugs model 

Lug 1 Lug 2 Figure 

Crack growth 

on increments 

Open Figure 8 

Closed, without crack Figure 9 

Crack growth on 

increments 
Figure 10 

Fixed crack of 0.54 mm -  

Fixed crack of 0.99 mm - 

Fixed crack of 1.41 mm Figure 11 

Fixed crack of 2.21 mm - 

Fixed crack of 2.58 mm - 

Fixed crack of 2.96 mm - 

Fixed crack of 3.34 mm - 

Fixed crack of 3.67 mm - 

Fixed crack of 4.02 mm - 

 

 

Figure 8: Finite element model, Von Mises stress, two 

lugs – Lug 1: crack of 3.34 mm, Lug 2: open 

 

 

Figure 9: Finite element model, Von Mises stress, two 

lugs – Lug 1: crack of 3.34 mm, Lug 2: closed 

 

 

Figure 10: Finite element model, Von Mises stress, two 

lugs – Lug 1: crack of 3.34 mm, Lug 2: crack of 3.34 

mm 

 

 

Figure 11: Finite element model, Von Mises stress, two 

lugs – Lug 1: crack of 3.34 mm, Lug 2: fixed crack of 

1.41 mm 

 

The curves for geometric factor obtained 

from those models are presented in Figure 12 

and Figure 13.  
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Figure 12: Geometric factor, two lugs model – Lug 1: 

crack growth on increments, Lug 2: fixed crack 

 

 

Figure 13: Geometric factor, two lugs model – Lug 1: 

crack growth on increments, Lug 2: variable condition 

4 Conclusions 

 The “one lug model” geometric factor 

presented the same behavior of geometric 

factors from Nassif [6]. If mesh refinement was 

done, the values could match to TC04 results, 

but it is not true on TC27 case, because “one lug 

model” has linear behavior and do not represent 

contact between lug and pin.  

 The “two lugs model” was evaluated in 

many situations, all of them with crack 

propagation on Lug 1, considering the same 

reference stress and variable condition for Lug 

2. Geometric factor curves obtained from “one 

lug model” and “two lugs model – lug 2 closed” 

would match, but in the end of curve the model 

concentration had influenced. 

This method based on the strain energy 

release rate using finite element models could 

generate geometric factors for a large number of 

scenarios, with a simple approach and an 

acceptable accuracy [3], as seen in this study of 

lug in comparison with a commercial tool. 

For the case of two cooperative lugs the 

conclusion is that the lugs can be evaluated 

separately. The influence of one crack in the 

other one could be neglected since the reference 

stress considers the redistribution of the load, 

because the shape of curves was not affected so 

a factor on reference stress is enough to 

guarantee the integrity of structure. 
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