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Abstract

To stabilize a very flexible wing with a control
system it is necessary to feedback wing measure-
ments such as accelerations, deformations or dis-
placements. In a previous work, displacement
sensors were positioned at the wing tips and then
the gain matrix of the feedback control was opti-
mized. In this way, the performance of the con-
trol is restricted to the predetermined position
of the sensors. Hence, in this paper we apply
another methodology to simultaneously optimize
the sensors positioning and the gain matrix. The
results are compared in order to evaluate the ben-
efits of this methodology in the considered prob-
lem.

1 Introduction

In general aviation, airframe structures are get-
ting more efficient, decreasing weight and in-
creasing flexibility. This trend demands further
studies in non linear aeroelastic phenomena and
their consequences in flying qualities, handling
qualities, and automatic flight control. With this
aim, University of Michigan developed the X-
HALE aircraft, which has a replica being stud-
ied by the Instituto Tecnológico de Aeronáutica,
shown in Fig. 1.

Fig. 1 The high flexibility of the X-HALE wing.

One of the challenges of a very flexible wing
is the stabilization of the wing with control sys-
tems. In a previous work, this task was accom-
plished with displacement sensors at the wing
tips [1]. In this paper we adopt another algorithm
to optimize the sensor positioning together with
the feedback control gains.

2 Model Description

The flexible aircraft model considered in this
paper refers to the six-meter-span configuration
(“6m”) of the X-HALE aircraft [2]. This con-
figuration is known to be able to behave as a
very flexible aircraft in certain longitudinal or
lateral-directional maneuvers [3]. The physical-
mathematical formulation upon which the nu-
merical model is based was developed in Refs.
[4] and [5], and a brief description is provided
in section 2.1. Specific details about the aircraft
model are contained in section 2.2.
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2.1 Formulation

The equations of motion (EOMs) are derived
using Lagrange’s equation, and the flexible air-
craft is treated as a three-dimensional body with
discrete stiffness and inertia properties, using
geometrically-linear beam finite elements. The
elected set of 6+n generalized coordinates com-
prises: the components of the position vector
RO,b of the origin O of a body reference frame
(BRF) expressed in the body axes, b; the Eu-
ler angles providing the orientation of the BRF
with respect to the flat-Earth inertial reference
frame (IRF): ψ, θ, and φ; and n elastic de-
grees of freedom (DOFs) of the aircraft struc-
ture, constituting the displacement vector uG ={

u1 u2 · · · un
}T . The resulting EOMs read:

mV̇b +mω̃ωωbVb−ms̃CG,bω̇ωωb−mω̃ωωbs̃CG,bωωωb

+m˜̇ωωωbDCG,buG +2mω̃ωωbDCG,bu̇G (1)

+mω̃ωωbω̃ωωbDCG,buG +mDCG,büG = mgb +Fb +∆Fb,

JOω̇ωωb + ω̃ωωbJOωωωb +ms̃CG,b
(
V̇b + ω̃ωωbVb

)
+mD̃CG,buG

(
V̇b + ω̃ωωbVb

)
+∆J′Oω̇ωωb + ω̃ωωb∆J′Oωωωb +∆J̇′Oωωωb (2)

+ṀωωωGu̇G +MωωωGüG + ω̃ωωbMωωωGu̇G

= ms̃CG,bgb +mD̃CG,buGgb +MO,b +∆MO,b,

MGGüG +BGGu̇G +KGGuG

+mDCG,b
T (V̇b + ω̃ωωbVb

)
+MωωωG

T
ω̇ωωb

+2ṀT
ωωωGωωωb−

1
2

n

∑
g=1

en,gωωωb
T ∂∆JO

∂ug
ωωωb (3)

= mDCG,b
T gb +QG.

In Eqs. (1)-(3), ωωωb =
{

p q r
}T is the angu-

lar velocity vector of the BRF with respect to
the IRF; Vb =

{
u v w

}T is the velocity vec-
tor of the BRF origin O with respect to the IRF;
the skew-symmetric operator, (̃•) or skew(•), de-
notes the matrix-form of the vector cross prod-
uct; m is the aircraft total mass; sCG,b refers to
the CG position vector in the undeformed (un-
strained) condition; dCG,b = DCG,buG stands for

the change in sCG,b due to structural deforma-
tion; JO is the inertia matrix about O; ∆J′O is the
change in the inertia matrix due to structural de-
formation; MGG, BGG, and KGG are the finite-
element method (FEM) model mass, damping
and stiffness matrices, respectively; Fb and MO,b
are the net force and moment vectors, respec-
tively, associated with the rigid airframe; ∆Fb and
∆MO,b are the net incremental force and moment
vectors, respectively, due to elastic motion; gb is
the gravity vector expressed in the BRF; QG is
the column matrix of generalized aerodynamic
and propulsive forces; at last, MωωωG is the iner-
tia coupling matrix between the rotational rigid-
body and the elastic DOFs. The total number of
elastic DOFs is n. The notation eN,i represents
a column matrix equal to the ith column of the
identity matrix of order N, IN . All time deriva-
tives are taken in the BRF.

The FEM stiffness matrix, KGG, refers to
an unrestrained 3D structure and hence it is a
positive semi-definite matrix, with six linearly-
independent rigid-body motions allowed. This
rigid-body freedom of the FEM model is not de-
sired, since the coordinates of the origin O and
the Euler angles were already considered to be
the rigid-body DOFs of the flexible aircraft. The
six constraints needed to eliminate the rigid-body
motion from the elastic DOFs were proposed in
the the so-called dually-constrained axes (DCA)
[5], and are considered in this paper as well.

In this paper, the aerodynamic loads acting on
the flexible aircraft are obtained with the vortex-
[6] (VLM) and the doublet-lattice [7] (DLM)
methods. The XFOIL program [8] is coupled
with the VLM to yield the rigid-body aerody-
namic databank, which takes into account nonlin-
ear Reynolds number and angle of attack effects,
including stall. The incremental aerodynamic
loads that arise due to the airframe flexibility are
first calculated in the frequency domain with the
DLM and are then converted to the time domains
using rational function approximations [9]. The
incremental loads are corrected with multiplying
factors that vary with the Reynolds number and
the angle of attack [10]. At last, induced drag
disturbances are also taken into account, based
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on the methodology proposed in Ref. [11] and
adapted in Ref. [4].

2.2 The X-HALE model

The six-meter-span configuration of the X-HALE
comprises six wing panels of one-meter span and
twenty-centimeter chord each. The wing tip pan-
els have positive dihedral angle of 10 degrees.
The whole wing is built with an incidence of 5
degrees. The wing airfoil is a reflexed EMX-07
[2]. The aircraft also has five pods at the con-
nections between wing sections. The aircraft en-
gines, landing gears, electronics and some of the
sensors are installed at the pods.

Four boom-mounted, all-moving horizontal
stabilizers are installed at the connections be-
tween the wing panels, except at the central con-
nection, where a fifth boom-mounted tail is in-
stalled without variable incidence but with a flip-
up capability, allowing it to be positioned either
as a horizontal tail or as a vertical tail. However,
only the configuration with a horizontal central
tail (‘XH6h’) is analyzed in this paper. All tails
have NACA0012 airfoil as cross sections.

The aerodynamic model is based on the VLM
[6] and the DLM [7]. Both methods share the
same mesh, built considering the guidelines pro-
posed in Ref. [12], which result in a model with
the significant amount of 3327 boxes. The aero-
dynamic mesh is shown in Fig. 2.

Fig. 2 Isometric view of the VLM mesh for the
X-HALE XH6h configuration.

The XH6h configuration has six control sur-
faces with variable deflections: left and right

ailerons installed at the wing tip, dihedral sec-
tions, with deflections δlail and δrail , respectively;
and two outer and two inner left and right boom-
mounted elevons, with deflections δloelev , δroelev ,
δlielev and δrielev . The aircraft also has five pod-
mounted tractor electric motors, with throttle set-
tings represented by δlothr , δlithr , δcthr , δrithr , and
δrothr , for the left outer, left inner, central, right in-
ner and right outer motors, respectively. The con-
trol surfaces and motors are schematically repre-
sented in Fig. 3.

δlail
δloelev

δlielev

δrielev

δroelev

δrail

δlothr

δlithr

δcthr

δrithr

δrothr

Fig. 3 The X-HALE XH6h control surfaces and
electric motors.

The structural-dynamic model consists of
geometrically-linear beam finite elements for the
wing and booms and rigid bars for the tails. Ten
beam elements per wing section are used. Modal
superposition is used to reduce the size of the
problem, yielding a drastic reduction of the num-
ber of degrees of freedom implicit in Eq. (3),
from the original amount of 528 independent
FEM DOFs to 14 modes of vibration. Of the
set of fourteen modes of vibration, the first three
wing bending modes (aircraft first, third and fifth
modes) are the most relevant ones for the present
application, and are shown in Fig. 4.
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Fig. 4 First three wing bending modes of vibra-
tion of the XH6h configuration.

2.3 Linear model for control design

The nonlinear simulation model is trimmed in
level flight condition at an altitude of 650 me-
ters in the ISA, and the design flight speed of
14 m/s is considered in the studies developed in
this paper. The nonlinear equations of motion are
then linearized around the calculated equilibrium
condition, yielding a classical linearized model
as follows:

ẋ = Ax+Bu,
y =Cx+Du, (4)

where the vector of disturbances of the state vari-
ables around the equilibrium conditions is given
by x =

{
xrigid

T x f lex
T}T , with:

xrigid =
{

∆V ∆α ∆q ∆θ

∆β ∆φ ∆p ∆r
}T

, (5)

x f lex =
{

∆η1 · · · ∆η14

η̇1 · · · η̇14

η1,lag(1) · · · η14,lag(7)
}T

, (6)

for the 14-mode dynamics and the 14-mode, 7th-
order aerodynamic lag dynamics of the flexible
aircraft; u is the vector of disturbances of the con-
trol variables:

u =
{

∆δlail ∆δloelev ∆δlielev ∆δrielev ∆δroelev

∆δlothr ∆δlithr ∆δcthr ∆δrithr ∆δrothr

}T
, (7)

y is a vector containing a set of selected output
variables to be monitored; and A, B, C and D
are the matrices resulting from the numerical lin-
earization procedure.

Models with less than 14 modes of vibration
and without aerodynamic lag states can be ob-
tained applying the residualization technique de-
veloped in Ref. [4], in which the states with ne-
glected dynamics become linear algebraic func-
tions of the remaining states. In this context,
models without aerodynamic lag dynamics and
models with only the first two or the first three
wing bending modes, in addition to the rigid-
body states, were obtained and are used in the
following sections.

3 Control Problem Statement

In the following applications, the output y does
not depent directy on the control variables, there-
fore the matrix D is null, and the Eq. 4 is simply-
fied to:

ẋ = Ax+Bu (8)
y =Cx (9)

where x ∈ Rn is the state, u ∈ Rc is the control
input, and y ∈ Rm is the output.
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The control problem of interest is to drive the
system back to the operating point (x = 0) using
an output feedback control:

u =−Ky, (10)

with the gain matrix K that minimizes the follow-
ing quadratic performance index:

J =
1
2

∫
∞

0

(
xT Qx+uT Ru

)
dt, (11)

where Q and R are given symmetric and positive
semi-definite weighting matrices.

Stevens et al. [13] show that this optimal con-
trol problem can be transformed in the problem
of finding the K matrix that minimizes:

J =
1
2

tr(PX), (12)

where X = x(0)x(0)T , x(0) is a perturbed initial
condition, P is the solution of:

AT
c P+PAc +CT KT BKC+Q = 0, (13)

and Ac =A−BKC is the state matrix of the closed
loop system, obtained by replacing the control
law (Eq. 10) and the output equation (Eq. 9) in
the state equation (Eq. 8).

Then, to solve this problem numerically, a
minimization algorithm must be applied to a
function that outputs J (Eq. 12) for each in-
puted K matrix and the corresponding P matrix
(Eq. 13). The gradient of this minimization is
given by:

∂J
∂K

= RKCSCT −BT PSCT (14)

where S is the solution of:

AcS+SAT
c +x(0)x(0)T = 0 (15)

González et al. [1] applied this methodology
to find the optimal gain to stabilize the X-HALE
rigid body modes and the wing shape by feed-
backing an output composed by some rigid body
variables and the displacements at the wing tips.
In this study, another issue is posed: what would
be the optimal displacement sensor positioning?

One approach would be to calculate the matrix
gain for a given sensor positioning and then re-
peat this procedure for many different position-
ings and verify the lowest performance index. To
avoid a parametric optimization, a new method-
ology was applied, detailed in the next section.

4 Applied New Methodology For Optimal
Sensor Positioning

In a paper under consideration for publication in
Journal of Fluid Mechanics, Silvestre and Tis-
sot [14] developed a methodology to optimize si-
multaneously the gains of the feedback control
and the positions of the sensors in a flow con-
trol problem. We now apply this methodology
to the control problem described in the previous
section.

Let xs( j) be the position of the j-th sensor
along the wing span, and xs the array containing
the positions of all sensors. Then, output matrix
is now denoted C(xs) For this, the Lagrangian of
the system L is defined as:

L(x,xs,K,λ) = J (x,xs,K)

−
∫ T

0

(
λ,

dx
dt
−Ac(xs)x

)
dt, (16)

where λ is the vector of Lagrange multipliers and
Ac(xs) = A−BKC(xs) is the state matrix of the
closed loop system. Proceeding this way, it can
be shown [14] that the gradient of J with respect
to each element xs( j) of the vector xs is:

∂J
∂xs( j)

= tr
(

S
(
CT KT R−PT B

)
K

∂C
∂xs( j)

)
, (17)

and that the resulting system to be solved is given
by Eqs. 13, 14, 15, and 17.

5 Feedback Structure

The output feedback law (Eq. 10) permits to feed
back all the output variables in each of the control
variables. However, this is not necessary and nei-
ther practical. To give the controller more struc-
ture, some of the gains in the gain matrix K are
zeroed based on the flight physics [13] as follows.
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To augment the stability of an aircraft with
conventional control surfaces, the roll rate p is
typically fed back in the aileron control uail , the
pitch rate q in the elevon control uelev, and the
yaw rate r in the rudder urud:

uail =−kp p (18)
uelev =−kqq (19)
urud =−krr (20)

This is based on the physical fact that the
aileron, elevator and rudder deflections produce
rolling, pitching and yawing moments respec-
tively. The X-HALE has conventional ailerons,
then aileron control uail is distributed antisym-
metrically in the aileron deflections ∆δlail and
∆δrail :

∆δlail =−uail (21)
∆δrail =+uail (22)

To reproduce the elevator deflection in the X-
HALE, the inner elevons ∆δlielev and ∆δrielev were
deflected symmetrically:

∆δlielev = uelev (23)
∆δrielev = uelev (24)

And to reproduce the rudder deflection, the
outer motors ∆δlothr and ∆δrothr were commanded
antisymmetrically:

∆δlothr =−urud (25)
∆δrothr =+urud (26)

To control the wing shape, vertical transla-
tional structural displacements tz were fed back
in the outer elevons. For example, in the case of
two measurements in the left half-wing {tzl1 , tzl2}
and two measurements in the right half-wing
{tzr1, tzr2} they were all fed back in both left and
right outer elevons ∆δloelev and ∆δroelev:

∆δloelev =uloelev =−kloelev,l1
tzl1− kloelev,l2

tzl2

− kloelev,r1
tzr1− kloelev,r2

tzr2 (27)

∆δroelev =roelev =−kroelev,l1
tzl1− kroelev,l2

tzl2

− kroelev,r1
tzr1− kroelev,r2

tzr2 (28)

Neither the central motor (∆δcthr) nor the in-
ner motors (∆δlithr , ∆δlithr) were not considered in
this control struture because they were not neces-
sary to achieve the desired regulation.

6 Results For Optimal Sensor Positioning

As only vertical translational structural displace-
ments were considered in the feedback structure,
the adopted model included only the first three
wing bending modes of vibration, corresponding
to the η1, η3, and η5 degrees of freedom.

To weight each state variable individually
in the performance index J , the chosen state
weighting matrix Q was diagonal. This way,
the i-th element qi of the diagonal weights the
i-th state variable xi. The second and the third
bending modes are less pronounced than the first
bending mode, therefore they had to be more
weighted than the others. The assumed values
are in Tab. 1.

Table 1 Chosen diagonal elements of the state
weighting matrix Q

qi = 0.025, for i 6= {η3,η5, η̇3η̇5}
qη3 = 9qi qη̇3 = 9qi
qη5 = 900qi qη̇5 = 900qi

The control weighting matrix R was also cho-
sen diagonal, to penalize the use of each con-
trol variable individually. Different values were
adopted for each element based on their admitted
values, as shown in Tab. 2

Table 2 Chosen diagonal elements of the control
weighting matrix R

ruail = 0.5/(12) rloelev = 0.5/(0.22)
ruelev = 0.5/(0.52) rroelev = 0.5/(0.22)
rurud = 0.5/(0.12)

The positions of the sensors were constrained
to be mirrored with respect to the central pod. For
instance, the distance of the first left sensor that
measures tzl1 is the same of the first right sensor
that measures tzr1 with respect to the central pod.
Then, in the following results the sensor positions
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are shown only for one half-wing. The central
pod corresponds to 0 m and the wing tip corre-
sponds to 2.98 m.

Two types of optimizations were studied in
this paper, first with only 1 sensor in each half-
wing, and then with 2 sensors.

6.1 Optimizations with 1 sensor

Since the numerical optimization algorithm is not
global, it was initialized with 5 different sensor
positions. In this way, the performance indexes
could be compared to eliminate a suboptimal re-
sult. Table 3 shows, for each optimization case,
the initial position, the correponding optimal fi-
nal position and the resulting performance index.

Table 3 Optimizations with 1 sensor in each half-
wing, stating from different initial positions

optimization initial final
ID position position J
1s1 1.50 2.98 42.1069
1s2 1.87 2.98 42.1069
1s3 2.24 2.98 42.1069
1s4 2.61 2.98 42.1069
1s5 2.98 2.98 42.1069

All of them converged to the same final posi-
tion at the wing tip, confirming the choice made
by [1]. The reason for this may be the first bend-
ing mode, in which the wing tip presents the max-
imum displacement.

In Fig.5 the optimal sensor positioning can be
seen evolving along the iterations, starting from
different initial positions (0%) and arriving at the
wing tip (100%). It also can be seen in this figure
that the algorithm is able to explore great part of
the domain before converging, which is desirable
to ensure globality to the results.

0

50

100 1.5
2

2.5
3

50

100

iterations
[%]

position of the sensor - xs [m]

J

1s1 1s2 1s3 1s4 1s5

Fig. 5 Optimizations with 1 sensor in each half-
wing.

Figure 6 highlights the lasts iterations of
the positions and corresponding performance in-
dexes.

1.6 1.8 2 2.2 2.4 2.6 2.8 3

42.11

42.12

42.13

42.14

position of the sensor - xs
[m]

J

1s1
1s2
1s3
1s4
1s5

Fig. 6 Last iterations of the optimizations with 1
sensor in each half-wing.

For the sake of completeness, the optimal
gains are shown in Tab. 4, which resulted to be
the same for the 5 optimizations.
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Table 4 Optimal gains and sensor position for 1
sensor in each half-wing

kq =−0.0262 kloelev,r = 1.9016
kp =−0.3862 kroelev,l = 1.8688
kr =−0.0177 kroelev,r = 1.8393

kloelev,l = 1.8588 xs = 2.98

6.2 Optimizations with 2 sensors

In the same manner of the optimizations with 1
sensor, 5 different optimizations were made when
considering 2 sensors for each half-wing. Table
5 shows, for each optimization case, the initial
position, the correponding optimal final position
and the resulting performance index.

Table 5 Optimizations with 2 sensors in each half-
wing, stating from different initial positions
optimization initial final

ID positions positions J
2s1 {1.50,2.98} {2.00,2.98} 42.1062
2s2 {1.69,2.81} {2.00,2.98} 42.1062
2s3 {1.88,2.64} {2.00,2.98} 42.1062
2s4 {2.06,2.47} {2.98,2.00} 42.1062
2s5 {2.25,2.30} {2.00,2.98} 42.1062

All the optimizatins converged to one sensor
being positioned at 2 m and the other at the wing
tip. The position at 2 m is not intuitive because
in the first three bending modes it does not stand
out in terms of displacements (see Fig. 4), but it is
worth remembering that the displacements along
the wing result from the composition of the dif-
ferent modes.

In Fig.7 the optimal sensors positioning can
be seen evolving along the iterations, starting
from different initial positions (0%) and one ar-
riving at 2 m and the other at the wing tip (100%).
As in the cases with only one sensor, it also can
be seen in this figure that the algorithm is able to
explore great part of the domain before converg-
ing, which is desirable to increase globality to the
results.

0

50

100
1

2
3

0

500

iterations
[%]

position of the sensor - xs [m]

J

2s1 2s2 2s3 2s4 2s5

Fig. 7 Optimizations with 2 sensors in each half-
wing.

The lasts iterations of the positions and cor-
responding performance indexes are shown in
Fig 8.

1 1.5 2 2.5 3

42.11

42.12

42.13

42.14

position of the sensor - xs
[m]

J

2s1
2s2
2s3
2s4
2s5

Fig. 8 Last iterations of the optimizations with 2
sensors in each half-wing.

And the optimal gains are shown in Tab. 6,
which also resulted to be the same for the 5 op-
timizations. Actually, in the optimization “2s4”
some of the gains interchanged because in this
case the sensors changed positions, which can be
seen in Tab. 5.
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Table 6 Optimal gains and sensors positions for 2
sensors in each half-wing

kq =−0.0262 kroelev,l1 =−1.0714
kp =−0.3860 kroelev,l2 = 2.3948
kr =−0.0177 kroelev,r1 =−0.9477

kloelev,l1
=−0.6465 kroelev,r2 = 2.3136

kloelev,l2
= 2.2084 xs1 = 2.00

kloelev,r1
=−1.3985 xs2 = 2.98

kloelev,r2
= 2.5649

Finally, simulations were carried out to com-
pare the open-loop and the closed-loop re-
sponses, with 1 and 2 sensors. Figure 9 shows the
responses of the wing tip displacements when the
aircraft was initially perturbed in it’s flight speed.

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

time [s]

w
in

g
tip

di
sp

la
ce

m
en

t[
m
] open-loop

1 sensor
2 sensors

Fig. 9 Responses of the wing tip displacements
under an initially perturbed flight speed.

The closed loop responses are clearly more
damped than the open loop one. However, be-
tween 1 and 2 sensors there is little difference.
This was predictable since the obtained opti-
mized performance indexes were too similar (see
Tabs. 3 and 5).

7 Conclusions

In this paper, vertical translational displacements
at the wing of a flexible aircraft were feed back to
stabilize the wing shape. For the first time, a new

methodology was applied to simultaneously opti-
mize the spatial distribution of the sensors and the
feeback gains. When only one sensor was consid-
ered, the optimal position obtained was the wing
tip. And when two sensors were considered, they
converged to different positions, one at the wing
tip and other at 2/3 of the wing. Adding the sec-
ond sensor did not reduce significantly the per-
formance index, which was confirmed compar-
ing the responses over time. Maybe with other
weighting matrices the results between one and
two sensors could be different, this must be veri-
fied in further studies.

Only displacements along the elastic axis
were considered in this paper because the goal
was to control the bending modes. In fu-
ture work, displacements outside the elastic line
should be included to the control also torsion
modes.
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