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Abstract  

During the past three decades, various 

multidisciplinary design optimization (MDO) 

architectures have been developed, using 

different ways of dealing with interactions 

between disciplines, which can be solved by 

optimization algorithms. In the field of aircraft 

design optimization, as the complexity of system 

increases, conventional optimization algorithms 

applied in MDO architecture exhibit many 

drawbacks, such as low efficiency, poor 

robustness or easily getting trapped in a local 

extra. In this paper, a newly developed 

surrogate-based optimization (SBO) method is 

applied to replace traditional optimization 

algorithms in the MDO architectures so that the 

efficiency of solving MDO problems can be 

dramatically improved. To demonstrate its 

effectiveness, a benchmark MDO test case and 

Speed Reducer MDO case are employed. It 

shows that the efficiency of SBO is two-order 

higher than that of genetic algorithm and the 

optimization results are better than that obtained 

by gradient-based algorithm. Besides, SBO is 

applied to the aerodynamic/structural integrated 

design of a transport wing in MDF architecture. 

The weight of the wing is reduced by 30.32% 

while its aerodynamic performance is retained at 

a cruise condition. 

1 Introduction 

Multidisciplinary Design Optimization (MDO) 

in aircraft engineering is a research field that 

studies the application of numerical optimization 

techniques to the design of aircraft systems 

involving multiple disciplines, while exploring 

how different disciplines work collaboratively to 

optimize the comprehensive performance in 

system level[1][2]. As aircraft design is a 

complicated multistage progress involving so 

many disciplines, such as aerodynamics, 

structural, propulsion and flight control, MDO 

not only considers the performance of these 

individual disciplines, but also takes their 

interactions into account. These interactions can 

be analyzed and fully utilized through a sound 

optimization strategy according to the 

mathematic formulation of a specified MDO 

problem. Hence, in order to reach the true 

optimum of the whole coupled complex system, 

several MDO architectures have been proposed, 

for instance, multidiscipline feasible (MDF), 

individual discipline feasible (IDF), all-at-

once(AAO), simultaneous analysis and design 

(SAND), concurrent subspace optimization 

(CSSO), collaborative optimization (CO), bi-

level integrated system synthesis (BLISS), 

analytical target cascading (ATC), exact and 

inexact penalty decomposition (EPD and IPD), 

MDO of independent subspaces (MDOIS), 

quasi-separable decomposition (QSD) and 

asymmetric subspace optimization (ASO)[2]. 

Instead of treating each individual discipline as 

an isolated island, these architectures reorganize 

them in a more reasonable coupled way and cut 

down time and cost of the design cycle, so that 

the optimization efficiency can be dramatically 

improved. 

During the past three decades, MDO 

architecture has achieved great development and 

been successfully applied to engineering design 

problems[3][4]. Although MDO architecture 

provides the framework of solving a specific 

optimization problem, it doesn’t participate in 
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searching the design space directly. Optimization 

algorithms are still used to search for the optimal 

design. At present, optimization algorithms 

applied to MDO architecture can be classified 

into two types[5]. One is gradient-based 

optimization algorithm, such as sequential 

quadratic programming (SQP), quasi-Newton 

method, etc. These algorithms are very efficient 

with the gradient inexpensively computed by 

adjoint method[6], but the solution optimality can 

be sensitive to the start point and the method 

often becomes trapped into a local minimum. 

The other one is gradient-free optimization 

algorithm, also known as heuristic optimization 

algorithm, including genetic algorithm (GA), 

simulated annealing (SA), etc. These algorithms 

are capable of finding a global optimum. 

However, the computational cost associated with 

global optimization methods could easily 

become prohibitive with the increase of the 

number of design variables, if a high-fidelity, 

thus expensive computational fluid dynamics 

(CFD) is employed for functional evaluation. 

According to these drawbacks of above 

optimization algorithms, another type of 

optimization method, surrogate-based 

optimization (SBO) method has been developed 

recently[7][8][9]. 

A surrogate model is essentially an 

approximation model for the cost function or 

state function, which is built from the limited 

information obtained by sampling the design 

space[8]. In the early development stage of MDO 

architecture, it was used to replace the expensive 

disciplinary analysis model such as CFD 

simulation. Once a sound surrogate model was 

built, it no longer got updated and the responses 

of cost functions could be directly predicated by 

the surrogate model during the optimization 

process. However, when using this strategy of 

simply replacing CFD simulations with the 

surrogate models, the optimization results 

heavily rely on the global accuracy of the 

surrogate models. A remedy way is to search for 

the minimum of current surrogate model and 

select it as a new sample point for an expensive 

simulation so that the accuracy of the model can 

be improved in each iteration. Nevertheless, the 

practice shows that this method can only find the 

local optimum in normal conditions. That is to 

say, it is unable to reach the global optimum of 

the multidisciplinary system via an optimization 

mechanism. 

In contrast, the core mechanism of SBO is 

to build surrogate models and solve sub-

optimization problems corresponding to the 

infill-sampling criteria[7][10], whose role is the 

same as any of conventional gradient-based 

methods or heuristic optimization algorithms[7], 

leading to an automatic clustering of sample 

points near the optimum[8]. Some of the infill-

sampling criteria, such as EI (expected 

improvement), can both improve the current 

optimal design (exploitation) or the global 

accuracy of the model (exploration). This paper 

proposes to use SBO in conjunction with several 

monolithic MDO architectures by replacing the 

conventional gradient-based or gradient-free 

optimizers, so that the global optimum could be 

found efficiently. 

2 MDO architectures  

The MDO architecture is regarded as a 

combination of problem formulation and 

organization strategy, considering nonlinear 

couplings between disciplines and ways of 

transferring information among different 

modules[2]. For a given optimization problem, the 

architecture combines its disciplinary knowledge 

with optimization software and defines how the 

discipline analysis models or surrogate models 

are truly organized so that the overall problem 

can be solved more easily. The architecture can 

be either monolithic or distributed according to 

the existence of discipline optimizer[2]. In a 

monolithic approach, the MDO problem is 

considered as a single optimization problem with 

only one system optimizer. At present, the widely 

used monolithic architectures include MDF, IDF 

and SAND. In a distributed approach, an 

optimization problem is partitioned into several 

sub-optimization problems containing small 

scales of variables and constraints according to 

disciplines or demands. The installed discipline 

level optimizer will optimize variables obtained 

by discipline analysis first before they are 

returned to system level optimizer. In current 

distributed architectures, CO is widely applied in 

practice because it is quite similar to the structure 

of engineering-design environment presently. In 
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this paper, SBO method is applied to three 

monolithic architectures (MDF, IDF, and SAND). 

More details about MDO architectures can be 

found in reference [2]. 

3 Surrogate-based optimization method  

The framework of a typical SBO for solving an 

optimization problem is sketched in Figure 1[7]. 

It begins by constructing a surrogate with an 

uncertainty model upon initial sample points, 

which are determined by design of experiment 

(DoE) and evaluated by expensive analysis codes 

like CFD. Once the initial surrogate model is 

built, we sample the model by solving the sub-

optimization problem defined by the infill-

sampling criteria, which produce new points and 

drive them towards a global or local optimum. 

We proceed this step iteratively until the 

convergence condition is satisfied.  

From the above procedure, one can see that 

the main ingredients of such a SBO process are: 

DoE method, surrogate modeling, infill-

sampling criteria and sub-optimization[7]. 

 
Fig. 1. Framework of SBO-type optimization[7] 

3.1 Design of Experiment 

Before constructing a surrogate model, SBO 

selects several initial sample points by design of 

experiment (DoE) method throughout the design 

space. DoE is a procedure with the general goal 

of maximizing the amount of information 

obtained from a limited number of sample points. 

Among current DoE methods[7][8], Latin 

hypercube sampling (LHS) is widely used in the 

areas of simulation, optimization and reliability 

computing for it is easy to implement and has 

high uniformity. Figure 2 shows an example of 

selecting 20 sample points by LHS for a two-

dimensional problem. 

 
Fig. 2. Schematics of 20 sample points selected by 

Latin hypercube sampling 

3.2 Surrogate modeling  

For an m-dimensional problem, suppose we are 

concerned with the prediction of the output of a 

high-fidelity and expensive simulation code, 

which corresponds to an unknown function

: my → . By running the code, y  is observed 

at n  sites: 

  (1) ( ) T
1[ ,..., ] , ,..., ,n n m n

mx x=  = S x x x   (1) 

with the corresponding responses: 

 (1) ( ) T (1) ( ) T
s [ ,..., ] [ ( ),..., ( )] .n n ny y y y= = y x x   (2) 

Surrogate modeling is such a procedure to 

build an approximation model ( )ŷ x  based on the 

sampled dataset s( , )S y . There are a variety of 

surrogate models at present such as polynomial 

response surface model, polynomial chaos 

expansion, kriging and its variants (e.g. gradient-

enhanced kriging[11], variable-fidelity 

kriging[12][13]), radial-basis functions, support-

vector regression[8]. Among them, kriging is 

widely used in the field of aerodynamic 

design[14][15] because it can effectively represent 

highly nonlinear and multidimensional functions. 

In this paper, we focus on the kriging model.  

The kriging model is a kind of interpolation 

model via linear weighted known responses. 

Assume response as a statistical process as: 

 0( ) ( ),Y Z= +x x    (3) 

where 0  is an unknown constant and ( )Z   

represents the deviation which is a stochastic 

variable subject to normal distribution 2(0 , )N  . 

Then, the covariance matrix of ( )Z x  is given by 
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   2Cov ( ), ( ) ( , ).Z Z R =x x x x   (4) 

Here, ( , )R x x  is the spatial correlation 

function, which only depends on the Euclidean 

distance between two sites, x and x . Assuming 

that the response can be approximated by a linear 

combination of the observed data sy , the 

predictor of ( )y x  at an untried x  is formally 

defined as: 

 T
sˆ( ) ,y =x w y    (5) 

where (1) ( ) T[ ,..., ]nw w=w  is a vector of weight 

coefficients associated with sampled data. Then, 
(1) ( ) T

s [ ,..., ]ny y=y  is replaced by its corresponding 

random quantities (1) ( ) T
s [ ,..., ]nY Y=Y . Once 

(1) ( ) T[ ,..., ]nw w=w  are obtained[8][9], the predictor 

for any untried x  is given by: 

 T 1
0 S 0

:

ˆ( ) ( ) ( ) ,

krig

y  −

=

= + −

V

x r x R y F   (6) 

where T 1 1 T 1
0 S( ) − − −= F R F F R y  is a scaling factor. 

Besides, the kriging model also gives the MSE of 

the predictor ˆ( )y x : 

 
 

2 T 1 T 1 2 T 1

ˆMSE ( )

{1.0 ( 1) },

y

 − − −

=

− + −

x

r R r r R F F R F
  (7) 

which can be used to guide us to add new sample 

points in the optimization. 

In this paper, the correlation function 
( , )R x x  we used is a cubic spline correlation 

function in the form of: 

2 3

3

1 15 30       for  0 0.2

( , ) 1.25(1 )           for  0.2< <1 ,

0                           for  1

k k k

k k k k k k

k

R x x

  

  



 − +  


− = −
 


 (8) 

where k k k kx x  = −  and the unknown hyper 

parameters 1( ,..., )m  =  can be obtained by 

maximum likelihood estimation. 

3.3 Infill-sampling criteria 

Once a surrogate model is built, the next step is 

to select new sample points from the model by 

solving sub-optimization problems defined by 

infilling-sampling criteria. The function of infill-

sampling criteria is to guide the generation of 

new sample points which are supposed to be 

better than any of existing ones. According to 

infill-sampling criteria, a mathematical sub-

optimization problem is defined, which can be 

solved by conventional numerical optimization 

methods cheaply, and we finally obtain the new 

sample point when the sub-optimization loop 

converges. At present, several matured infill-

sampling criteria have been developed[7][8][10][16]. 

Among them, EI[17] criterion is regarded as an 

efficient and global method, which takes both the 

exploration and exploitation into consideration. 

Its theory and constraint handling are introduced 

as follows. 

Assume that the best observed object 

function as far is miny  and the prediction of a 

kriging model obeys a Gaussian normal 

distribution with mean of ˆ( )y x
 
and standard 

deviation of ( )s x , i.e. 2ˆ ˆ( ) ( ),Y N y s 
 

x x . The 

probability density function is  

 2ˆ1 1 ( ) ( )ˆ( ( )) exp ( ) .
2 ( )2  ( )

Y y
P Y

ss

 −
= − 

 

x x
x

xx
  (9) 

For a minimization problem, the 

improvement function is 

 ( )min
ˆ( ) max ( ),0 .I y Y= −x x   (10) 

Hence, the expectation of the improvement 

function is 

 

min min
min

ˆ ˆ
ˆ( ) ( ) ( )  if  s>0

[ ( )] ,

0                                                         if  s=0

y y y y
y y s

E I s s


− −
−  +

= 



x (11) 

where ( )  and ( )  are cumulative distribution 

and probability density functions of a standard 

normal distribution, respectively. Then we obtain 

the sub-optimization problem, which is defined 

as 

 
 .     ( )

. .        l u

Max E I

s t  

x

x x x
   (12) 

For a constrained optimization problem, one 

can deal with it by multiplying the possibility of 

a design being feasible behind [ ( )]E I x [18]. 

Considering a situation that we have an 

inequality constraint ( ) 0g x , we build a kriging 

model for it, and assume that the corresponding 

random variable ( )G x  is normally distributed, 
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with mean of ( )ĝ x  and standard derivation of 

( )gs x . Thus the probability of satisfying the 

constraint at any site is 

  
ˆ( )

( ) 0 .
( )g

g
P G

s

 
 =  − 

 
 

x
x

x
  (13) 

Then we multiply Eq.(19) by Eq.(17), and obtain 

the new formulation of our sub-optimization 

problem, which is defined as 

 
( )  .    0

. .        l u

Max E I P G

s t

   

 

x

x x x
  (14) 

If there exist more than one inequality constraint, 

we just need to multiply their possibilities one by 

one for they are all independent of each other. For 

the equality constraint, we transform it into two 

inequality constraints, and give a quite small 

tolerance. We build two kriging models for them 

and multiply them at the same way. We use a 

hybrid method of combing GA, Hooke&Jeeves 

pattern search and gradient-based method[7] to 

solve the above sub-optimization, and then a new 

optimum *
x  is obtained, which is supposed to be 

our next sample point and will be evaluated by 

the expensive analysis code.  

4 Example verification 

In this section, two examples are employed to 

exhibit the validity and efficiency of SBO 

method in MDO architectures, compared with 

gradient-based algorithm SQP, and heuristic 

optimization algorithm GA. The SBO method is 

implemented by an in-house code called  

“SurroOpt”[7]. 

4.1 Benchmark MDO test case 

An analytical test case by Sellar[19] is employed 

to verify the application of SBO to different 

MDO architectures. The optimization problem is 

defined as  

 

   

22
2 3 1

1 2 3

1 1

2 2

2
1 1 2 3 2

2 1 1 3

1 2 3

.       

. . .      , ,  

. .         8 0

             10 0

              0.2

              

             10,10 ,    , 0,10 .

y
Min f x x y e

w r t x x x

s t g y

g y

y x x x y

y y x x

x x x

−
= + + +

= − 

= − 

= + + −

= + +

 − 

  (15) 

This problem has a local optimum
* 8.986721,localf =  and a global optimum
* 8.002860.f =  There are two coupled disciplines 

in the above formulation. Their relationship can 

be illustrated as Figure 3. 

 
Fig. 3. Schematics of two coupled disciplines for an 

analytical MDO test case 

Firstly, we reconstruct its mathematical 

formulation via MDF, IDF and SAND 

architectures respectively. There are two coupled 

disciplines in the above formulation. Their 

relationship is illustrated as Figure 3. 

MDF: 

 

22
2 3 1

1 2 3

1 1

2 2

2
1 1 2 3 2

2 1 1 3

.       

. . .      , ,  

. .         8 0

             10 0

              0.2

              

y
Min f x x y e

w r t x x x

s t g y

g y

y x x x y

y y x x

−
= + + +

= − 

= − 

= + + −

= + +

  (16) 

IDF: 

 

22
2 3 1

1 2 3 4 5

1 1

2 2

1 4 1

2 5 1

2
1 1 2 3 5

2 4 1

.       

. . .      , , , ,

. .         8 0

             10 0

             0

             0

              0.2

              

y
Min f x x y e

w r t x x x x x

s t g y

g y

h x y

h x y

y x x x x

y x x x

−
= + + +

= − 

= − 

= − =

= − =

= + + −

= + + 3

  (17) 

SAND: 

 

( )

( )

52
2 3 4

1 2 3 4 5

1 1

2 2

2
1 4 1 2 3 5

2 5 4 1 3

.       

. . .      , , , ,

. .         8 0

             10 0

             0.2 0

             0

x
Min f x x x e

w r t x x x x x

s t g y

g y

h x x x x x

h x x x x

−
= + + +

= − 

= − 

= − + + − =

= − + + =

  (18) 

Secondly, SBO method and SQP are used to 

solve the above three problems respectively. 

Disciplinary 1 Disciplinary 2 
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When using SBO, we generate 10 initial sample 

points randomly by LHS and build a kriging 

model. The infill-sampling criteria are MSP and 

EI, which means two sample points are selected 

at each updating cycle. In order to reduce the 

randomness, the SBO method is repeated for 30 

times and the average value is considered as the 

final optimum. For SQP, its start points are given 

by Table 1. 

Table 1. Different start points for an analytical MDO 

test case 

Start point 1x  2x  3x  

A  1.0 5.0 2.0 

B  2.0 2.0 4.5 

C  -2.0 1.0 1.5 

Table 2 shows results obtained by these two 

methods. We can see that in the three monolithic 

architectures, when using SBO, the optimization 

processes converge to the global optimum, and 

the number of function evaluations is fewer than 

that of SQP, especially when using MDF, the 

discipline analyses of SBO decreases more than 

50% and the efficiency of optimization is 

improved dramatically. Additionally, when we 

use SQP with start point C, the results are all 

trapped in the local optimum through three MDO 

architectures, which is avoid in using SBO for all 

30 results do converge to the global optimum. 

Table 2. Comparison of gradient-based algorithm 

(SQP) and SBO method for a benchmark MDO test 

case 

Method 
MDO 

Arch. 

Objective and constraint 

Final results 

Number of function  

evaluations  

Obj. 1g  2g  MDA Dis.1 Dis.2 

SBO 

MDF 8.00286024 -1.10e-8 -4.1432 22 95 95 

IDF 8.00286033 -9.27e-6 -4.1431 0 33 33 

SAND 8.00286022 -8.8e-10 -4.1431 0 35 35 

SQP 

A  

MDF 

8.00286376 -3.54e-6 -4.1431 50 574f+38g 574f+38g 

B  8.00307043 -2.10e-4 -4.1432 39 476f+30g 476f+30g 

C  8.98672051 -1.25e-10 -9.8708 47 539f+38g 539f+38g 

A  

IDF 

8.00286023 -2.0e-15 -4.1431 0 79f+62g 79f+62g 

B  8.00286023 -2.4e-12 -4.1431 0 119f+97g 119f+97g 

C  8.98672051 -2.0e-15 -9.8708 0 69f+58g 69f+58g 

A  

SAND 

8.00286020 -7.50e-8 -4.1431 0 73f+58g 73f+58g 

B  8.00291526 -5.50e-5 -4.1431 0 58f+48g 58f+48g 

C  8.98672051 -4.52e-9 -9.8709 0 56f+48g 56f+48g 

f: function evaluation; g: gradient evaluation 

4.2 Speed Reducer MDO case 

This case is from reference [20] and the structure 

of gearbox speed reducer is illustrated as Figure 

4. It is one of the NASA’s ten benchmark cases 

for evaluating MDO methods, which represents 

the design of a simple gearbox and is posed as an 

artificial multidisciplinary problem comprising 

the coupling between gear design and shaft 

design disciplines. The objective is to minimize 

the weight of gearbox, subject to the bending and 

contact stresses of gear and torsional deformation 

and stress of shaft. The theoretical optimum of 

this problem is * 2994.341316,f = and the 

optimization model is defined as: 

( )

( ) ( )

( )

2 2
1 2 3 3

2 2 3 3
1 6 7 6 7

2 2
4 6 5 7

1 2 3 4 5 6 7

1 2 1
1 1 2 3

.     0.7854 3.3333 14.9334 43.0934

                 1.508 7.477

                 0.7854

. . .    , , , , , ,    

. .       27 1 0

Min f x x x x

x x x x x

x x x x

w r t x x x x x x x

s t g x x x− − −

= + −

− + + +

+ +

= − 

( )

( )

1 2 2
2 1 2 3

1 1 3 4
3 2 3 4 6

1 1 3 4
4 2 3 5 7

2
3 1 1 7

5 6 2 3 4

2
3 1 1

6 7 2 3 5

           397.5 1 0

           1.93 1 0

           1.93 1 0

           10 745 1.69 10 1100 0

           10 745 1.575

g x x x

g x x x x

g x x x x

g x x x x

g x x x x

− − −

− − −

− − −

− − −

− − −

= − 

= − 

= − 

= +  − 

= + 

( )

( )

     

8

1
7 4 6

1
8 5 6

9 2 3

1
10 1 2

1
11 1 2

1 2 3

10 850 0

           1.5 1.9 1 0

           1.1 1.9 1 0

           40 0

           5 0

           12 0

           2.6,3.6 ,  0.7,0.8 ,  17, 28

           

g x x

g x x

g x x

g x x

g x x

x x x

x

−

−

−

−

− 

= + − 

= + − 

= − 

= − 

= − 

  

     4 5 6 7, 7.3,8.3 ,  2.9,3.9 ,  5.0,5.5x x x  

 (19) 

 
Fig. 4. Model of Speed Reducer[21] 

Here, 1x  is the width of gear surface, 2x  is gear 

modulus, 3x  is the number of pinion teeth, 4x  

and 5x  are bearing spacing, 6x  and 7x  are the 

diameter of the shaft, respectively. 

Although this case can be divided into two 

disciplines: gear and bearing by their physical 

meaning, there is no coupling between these two 

disciplines. Thus, we can just recognize it as an 

individual disciplinary optimization problem and 

Bearing 2 

Bearing 1 

Shaft 2 

Shaft 1 



 

7  

SURROGATE-BASED OPTIMIZATION METHOD APPLIED TO MULTIDISCIPLINARY DESIGN 

OPTIMZIATION ARCHITECTURES 

only use MDF architecture. SBO, SQP and GA 

are implemented to solve this problem. For SBO, 

initial sample points are chosen by LHS, and a 

kriging model is built based on them. The infill-

sampling criteria are MSP and EI. Also, the 

optimization process is repeated for 30 times and 

the results are averaged. For SQP, its three start 

points are given by NASA in Table 3. For GA, 

its pop size is 200 and crossover probability 

factor is 0.8. Table 4 compares results of three 

optimization methods for speed reducer MDO 

case. It shows that SBO method uses the least 

number of analysis model calls, only 28, to 

converge, and that of SQP is more than 28 from 

all three start points. For GA, the computation 

cost is much more than SBO and SQP.  

Table 3. Different start points for Speed Reducer 

MDO case 

Start 

point 
1x  

(cm) 

2x  

(cm) 

3x  

(cm) 

4x  

(cm) 

5x  

(cm) 

6x  

(cm) 

7x  

(cm) 

A  2.80 0.71 25.0 7.90 7.599 3.00 5.099 

B  3.50 0.75 22.0 7.80 8.300 3.35 5.500 

C  3.50 0.70 17.0 7.30 7.715 3.35 5.287 

Table 4. Comparison of three optimization methods 

for Speed Reducer MDO case 

Method 
Start 

point 

Number of 

function  

evaluations 

Objective finial 

results 

SBO / 28 2994.341316 

SQP 

A  85f+76g 2994.341315 

B  71f+61g 2994.341284 

C  56f+52g 2994.341315 

GA / 28400 2994.355204 

It is important to note that the results 

obtained by SQP are a little bit lower than the 

average result by SBO. That is due to the 

relaxation of SQP algorithm when handling with 

constraints. Table 5 gives the finial values of 11 

constraint functions at the optimum sample point 

obtained by SBO and SQP (from start point A), 

respectively. We can see that for SQP, the eighth 

constraint value is slightly violated, 8 0g  , while 

for SBO, it strictly satisfies all the constraints. 

Table 5. Results of constraint functions with SQP(A) 

and SBO for Speed Reducer MDO case 

Constraint SQP( A ) SBO 

1g  -7.3915e-2 -7.3915e-2 

2g  -0.1979990 -0.1979990 

3g  -0.4991723 -0.4991723 

4g  -0.9046439 -0.9046439 

5g  -2.2700e-13 -5.7515e-10 

6g  -3.7998e-5 -1.6743e-10 

7g  -5.1328e-2 -5.1326e-2 

8g  1.1232e-8 -9.4791e-10 

9g  -28.100000 -28.100000 

10g  0.0000000 -1.0840e-10 

11g  -7.0000000 -7.0000000 

5 Aerodynamic/structural multidisciplinary 

design of a transport wing 

The aerodynamic/structural multidisciplinary 

design optimization with strong disciplinary 

coupling is the most typical problem of aircraft 

MDO problems. In the traditional design process 

of a transport wing, designers firstly design a 

wing with the best aerodynamic performance at a 

cruise condition. Then they carry on the jig-shape 

design of another wing and try their best to make 

this wing configuration close to the previous one 

after static aeroelastic modification. In this way, 

the designed wing can maintain the cruise 

performance. However, this two-step design 

method breaks up the coupling between 

aerodynamics and structure. In order to avoid this 

and consider all the interactions of different 

disciplines, this paper directly regards the 

transport wing as an elastic body and apply SBO 

method to the jig-shape design. During the 

optimization process, we use MDF architecture 

to perform multidisciplinary analysis (MDA) and 

take both aerodynamic performance and 

structural performance of the cruise shape 

obtained after deformation as design indexes. 

5.1 Mathematical optimization model 

This paper uses SBO method to conduct 

aerodynamic/structural integrated design of a 

transport wing based on MDF architecture. The 

design condition is cruise condition, with an 

altitude of 10000m and Mach number of 0.76. 

The analysis object of aerodynamics discipline is 

a wing-body configuration (Figure 5). The 

fuselage data is maintained during the 

optimization. Taking into account factors such as 

engine hoisting and landing gear retraction, the 

length of inner wing is fixed. The structure 

discipline only carries on the stress-strain 

analysis of the wing and the thickness of wing 

ribs and spar webs are fixed to 2mm in the 
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optimization. The detailed parameters can be 

found in Table 6. 

 
Fig. 5. Configuration of wing-body combination 

Table 6. Model parameters for wing aerostructural 

multidisciplinary design optimization case 

Parameter Value 

Cruise altitude 10000m 

Cruise Mach number 0.76 

Fuselage length 35.0m 

Root chord 6.7m 

Half span of inner wing 11.8m 

Incidence angle 4.0° 

Dihedral angle 7.0° 

Wing rib thickness 0.002m 

Front spar web 0.002m 

Back spar web 0.002m 

We choose 5 aerodynamic design variables 

and 20 structural design variables. Here, we 

divide the wing into 10 segments along the 

spanwise direction. The ranges of these variables 

are given in Table 7. 

Table 7. The ranges of design variables for wing 

aerostructural multidisciplinary design optimization 

case 

Structural design variables Number Range 

Upper skin thickness 10 [2mm, 10mm] 

Lower skin thickness 10 [2mm, 10mm] 

Aerodynamic design 

variables 
Number Range 

Half span of wing 1 [28m, 34m] 

Taper ratio, 1 [0.2, 0.3] 

Twist angle 1 [-3.0°, -1.0°] 

Leading edge swept angle 1 [26°, 32°] 

Angle of attack 1 [0°, 2°] 

Total 25 0.002m 

The final optimization model is defined as 

Eq.(28). The objective is to minimize the weight 

of the wing and maintain its aerodynamic 

performance after aeroelastic deformation. 

 

 

max [ ]

          [ ]

          

          

          

wing

tip

baseline

L L
D D baseline

wing wing baseline

Min.    Weight

s.t.      

L L

S S

 

 









   

  (20) 

Here, max  is the maximum equivalent stress, 

tip  is tip deformation, L  is the lift of the wing, 

/L D  is lift-to-drag ratio, wingS  is the wing area. 

The safety factor of structure is 1.5, allowable 

stress   82.7467 10 Pa =  , allowable deformation 

[ ] 1m. =  

5.2 Optimization process based on MDF 

architecture 

Due to the existence of coupled design variables, 

we use MDF to solve the problem. Its flow chart 

is illustrated as Figure 6. The aerodynamic 

analysis is performed by solving full velocity 

potential equation, and we don’t consider viscous 

effect of fuselage during the optimization so as to 

guarantee its robustness. When the optimization 

is finish, we carry on viscous correction of 

fuselage for both baseline and optimum wing 

respectively. ANSYS is used in the structural 

analysis. Loosely coupled method is employed 

when conducting static aeroelastic analysis. 

 
Fig. 6. Flow chart of surrogate-based optimization 

based on MDF architecture (wing aerostructural 

multidisciplinary optimization) 
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5.3 Result and discussion 

Figure 7 shows that at the beginning most sample 

points, including all the initial sample points, are 

infeasible. With the optimization proceeding, 

more and more sample points newly added are 

feasible. After about 400 MDA, the objective 

function almost converges. Figure 8 gives 

pressure contours of baseline and optimum wing-

body configuration, along with 6 pressure 

distribution curves of cross sections. Figure 9 

shows the jig and cruise shape of baseline and 

optimum wing respectively. Table 8 gives a 

comparison of performances of the baseline and 

optimum configurations. It can be seen that all 

the constraints are strictly satisfied at the 

optimum design, and the weight of the wing is 

reduced by 30.32%, which demonstrates the 

effectiveness and efficiency of SBO method. 

Figure 10 shows the comparison of skin 

thickness of baseline and optimum wings. The 

optimized skin thickness is cut down which 

makes the overall weight of the wing decrease. 

 
Fig. 7. Convergence history of the wing MDO problem 

 
(a) wing-body combination pressure contour 

 

 
(b) wing pressure distribution 

Fig. 8. Comparison of wing-body combination 

pressure contours and wing pressure distributions for 

baseline and optimum configurations 

 
Fig. 9. Comparison of the undeformed and deformed 

wings (baseline and optimum) 

Table 8. Comparison of performances of the baseline 

and optimum configurations 

Wing performance Baseline Optimum 

Wing weight /kg 2263.28 1577.06(-30.32%) 

Half span of wing /m 31.48 31.45 

Taper ratio 0.266 0.236 

Twist angle /° -2.66 -2.50 

Leading edge swept angle /° 27.1 26.0 

Angle of attack /° 0.93 0.81 

Wing area /m2 115.41 115.58 

Lift /N 649582.6 651350.3 

Lift-to-drag ratio 20.26 20.28 

Maximum equivalent stress /108Pa 2.36 2.49(<2.76) 

Maximum wingtip deformation /m 0.871 0.999(<1) 

 
Fig. 10. Comparison of skin thickness of baseline and 

optimum wings 

6 Conclusion 

In this paper, the newly developed SBO method 

is applied to monolithic MDO architectures, 

which overcomes drawbacks like expensive 

computation cost and being trapped at local 
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optimums of traditional optimization algorithms. 

Some conclusions can be drawn as below: 

1) SBO method is a global optimization method, 

and ensures that the optimization converges to 

the global optimum.  

2) Compared with gradient-based or heuristic 

optimization algorithm, using SBO method 

decreases the number of both system and 

discipline analysis calls, and optimization 

efficiency is dramatically improved. 

3) From optimization results, the optimal design 

obtained by SBO method can satisfy all the 

constraints strictly. 

In the future work, we hope to expand the 

application of SBO in more MDO architectures 

such as CO distributed architecture. 

References 
[1] Sobieszczanski-Sobieski J, “Optimization by 

Decomposition: A Step from Hierarchic to Non-
Hierarchic System,” NASA Langley Research Center, 
1988. 

[2] Martins J R R A, and Lambe A B, “Multidisciplinary 
Design Optimization: A Survey of Architectures,” 
AIAA Journal, Vol. 51, No. 51, pp 2049-2075, 2013. 

[3] Long T, Liu J, and Wang G G, et al, “Discuss on 
Approximate Optimization Strategies Using Design 
Experiments and Metamodels for Flight Vehicle 
Design,” Journal of mechanical engineering, Vol. 52, 
No. 14, pp 79-105, 2016. 

[4] Luo S B, “Research on Airframe/Engine Integration 
Issues and Multidisciplinary Design Optimization 
Methods for Air Breathing Hypersonic Vehicle,” A 
Dissertation, Graduate School, National University of 
Defense Technology, Changsha, 2004. 

[5] Tedford N, “Comparison of MDO Architectures 
within a Universal Framework,” A Dissertation, 
University of Toronto, Toronto, 2006. 

[6] Jameson A, “Aerodynamic Design via Control 
Theory,” Journal of Scientific Computing, Vol. 3, No. 
3, pp 233-260, 1988. 

[7] Han Z H, “SurroOpt: A Generic Surrogate-based 
Optimization Code for Aerodynamic and 
Multidisciplinary Design,” 30th Congress of the 
International Council of the Aeronautical Sciences, 
Daegu, 2016. 

[8] Han Z H, “Kriging Surrogate Model and Its 
Application to Design Optimization: A Review of 
Recent Progress,” Acta Aeronautica et Astronautica 
Sinica, Vol. 37, No. 11, pp 3197-3225, 2016. 

[9] Liu J, “Efficient Surrogate-Based Optimization 
Method and Its Application in Aerodynamic Design,” 
Ph.D. Dissertation, School of Aeronautics, 
Northwestern Polytechnical University, Xi’an, 2015. 

[10] Liu J, Han Z H, and Song W P, “Comparison of Infill-
Sampling Criteria in Kriging-Based Aerodynamic 
Optimization,” 28th Congress of the International 
Council of the Aeronautical Sciences, Brisbane, 2012. 

[11] Han Z H, Zhang Y, Song C X, and Zhang K S, 

“Weighted Gradient-Enhanced Kriging for High-

Dimensional Surrogate Modeling and Design 

Optimization,” AIAA Journal, Vol. 55, No.12, 2017, 

pp.4330-4346. 

[12] Han Z H., Görtz S, and Zimmermann R, “Improving 

Variable-Fidelity Surrogate Modeling via Gradient-

Enhanced Kriging and a Generalized Hybrid Bridge 

Function,” Aerospace Science and technology, Vol. 25, 

No. 1, pp. 177-189, 2013. 
[13] Han Z H, and Goertz S, “Hierarchical Kriging Model 

for Variable-Fidelity Surrogate Modeling,” AIAA 
Journal, Vol. 50, No. 5, pp. 1285-1296, 2012. 

[14] Han Z H, “Improving Adjoint-Based Aerodynamic 
Optimization via Gradient- Enhanced Kriging”, 50th 
AIAA Aerospace Sciences Meeting including the New 
Horizons Forum and Aerospace Exposition, 2012. 

[15] Han Z H., Chen J, Zhang K S, Zhu Z, and Song W P, 
“Aerodynamic Shape Optimization of Natural-
Laminar-Flow Wing Using Surrogate-Based 
Approach,” AIAA Journal, Pages. 1-15，Publication 
Date (online): 04 Jun 2018, https://doi.org/10.2514 
/1.J056661. 

[16] Zhang Y, Han Z H, and Zhang K S, “Variable-Fidelity 
Expected Improvement for Efficient Global 
Optimization of Expensive Functions,” Structural and 
Multidisciplinary Optimization, 2018, https://doi.org 
/10.1007/ s00158-018-1971-xss. 

[17] Jones D R, Schonlau M, and Welch W J, “Efficient 
Global Optimization of Expensive Black-Box 
Functions,” Journal of Global Optimization, Vol. 13, 
pp. 455–492, 1998. 

[18] Parr J M, Keane A J, Forrester A I J, and Holden C M 
E, “Infill-Sampling Criteria for Surrogate-Based 
Optimization with Constraint Handling,” Engineering 
Optimization, Vol. 44, No. 10, pp. 1147-1166, 2012. 

[19] Sellar R S, “Multidisciplinary Design Using Artificial 
Neural Networks for Discipline Coordination and 
System Optimization,” Ph.D. Dissertation, Notre 
Dame University, Indiana, 1997. 

[20] Azarm S, and Li W C, “Multi-Level Design 
Optimization Using Global Monotonicity Analysis,” 
Journal of Mechanisms Transmissions & Automation 
in Design, Vol. 111, No. 2, pp 259-263, 1989. 

[21] Zhang K S, “Multidisciplinary Design Optimization 
Method and Its Application in Aircraft Design,” Ph.D. 
Dissertation, School of Aeronautics, Northwestern 
Polytechnical University, Xi’an, 2006. 

Archiving  
This research was sponsored by the National Natural Science 
Foundation of China (NSFC) under grant No. 11772261 and 
Aeronautical Science Foundation of China under grant No. 
2016ZA53011. 
The author would like to thank Dr. Jun Liu and Hao Wang for 
providing technical support of the optimization code. 
Contact Author Email Address 
Prof. Dr. Zhong-Hua Han 

Mailto:hanzh@nwpu.edu.cn 

Copyright Statement 
The authors confirm that they, and/or their company or 
organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they have 
obtained permission, from the copyright holder of any third 
party material included in this paper, to publish it as part of 
their paper. The authors confirm that they give permission, or 
have obtained permission from the copyright holder of this 
paper, for the publication and distribution of this paper as part 
of the ICAS proceedings or as individual off-prints from the 
proceedings. 


