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Abstract  

Ground operations are an essential part of the 
4D aircraft trajectory. The ground trajectory of 
an aircraft primarily consists of the handling 
processes at the stand, defined as the aircraft 
turnaround, which are mainly controlled by 
operational experts. Only the aircraft boarding, 
which is on the critical path of the turnaround, 
is driven by the passengers’ experience and 
willingness or ability to follow the proposed 
procedures. 

1 Introduction  

From an air transportation system view, a flight 
could be seen as a gate-to-gate or an air-to-air 
process. Whereas the gate-to-gate is more 
focused on the aircraft trajectory flown, the air-
to-air process concentrates more on airport 
ground operations. Typical standard deviations 

for airborne flights are 30 s at 20 minutes before 
arrival [1], but could increase to 15 min when 
the aircraft is still on the ground [2]. The 
average time variability (measured as standard 
deviation, see Fig. 1) is in the flight phase (5.3 
min) higher than the variability of both 
departure (16.6 min) and arrival (18.6 min) [3]. 
If the aircraft is departing from one airport, 
changes with regards to arrival time at the next 
are comparatively small [4]. This is why current 
research in the field of flight operations 
addresses economic, operational and ecological 
efficiency [5-16]. To evaluate these operational 
deviations in the economic context, reference 
values are provided for the cost of delay to 
European airlines [17]. The aircraft turnaround 
on the ground consists of five major ground 
handling operations at the stand: deboarding, 
catering, cleaning, fueling and boarding as well 
as the parallel processes of (un-) loading [18]. 

 

 
 

Fig. 1 Variability of ground and flight phases on intra-European flights from 2008-2015 [3] 
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All these handling processes follow clearly 
defined procedures and are mainly controlled by 
ground handling, airport or airline staff [19, 20]. 
But in particular, aircraft boarding is driven by 
passengers’ experience and willingness or 
ability to follow the proposed procedures and is 
disturbed by individual events, such as late 
arrivals, no-shows, specific (high) numbers of 
hand luggage items, or priority passengers 
(privileged boarding). To provide reliable 
values for the target off-block time, which is 
used as a planning time stamp for the 
subsequently following departure procedures, 
all critical turnaround processes are subject to 
prediction. In this context, complex, stochastic, 
and passenger-controlled boarding makes it 
difficult to reliably predict turnaround times, 
even if boarding is already in progress. 

1.1 Status Quo 

The research presented is connected to three 
different topics: aircraft turnaround, passenger 
behavior, and machine learning. Comprehensive 
overviews are provided for aircraft turnaround 
[21], for boarding [21], and for the 
corresponding economic impact [17, 23, 24]. 
Relevant studies include, but are not limited to, 
the following current examples. 

The aircraft turnaround, as part of the 
aircraft trajectory over the day of operations, has 
to be part of optimization strategies for 
minimizing flight delays [25] and ensuring 
flight connection considering operational 
uncertainties [26, 27]. In this context, 
turnaround absorbs inbound delay [20] and 
could enhance slot adherence at airports [28] or 
mitigate problems of push-back scheduling [29]. 
A microscopic turnaround model provides an 
open and closed-loop process control for higher 
automation levels in turnaround management 
[30]. The inter-aircraft propagated delay is 
focused at [31], since individual delays could 
result in parallel demand of turnaround 
resources (personnel, space, and equipment). 
Furthermore, delayed use of infrastructure may 
cause excessive demand in later time frames, 
and both turnaround stability and resource 
efficiency will provide significant benefits to 
airline and airport operations [20, 32]. The 

compatibility with airline operations, existing 
ground handling procedures and airport 
infrastructure requirements were analyzed in the 
context of alternative energy concepts [33]. 

With a focus on efficient aircraft boarding, 
Milne and Kelly [34] develop a method that 
assigns passengers to seats so that their luggage 
is distributed evenly throughout the cabin, 
assuming a less time-consuming process for 
finding available storage in the overhead bins. 
Qiang et al. [35] propose a boarding strategy 
that allows passengers with a large amount of 
hand luggage to board first. Milne and Salari 
[36] assign passengers to seats according to the 
number of hand luggage items and propose that 
passengers with few pieces should be seated 
close to the entry. Zeineddine [37] emphasizes 
the importance of groups when traveling by 
aircraft and proposes a method whereby all 
group members should board together, 
assuming a minimum of individual interferences 
in the group.  

Fuchte [38] addresses aircraft design and, 
in particular, the impact of aircraft cabin 
modifications with regard to the boarding 
efficiency. Schmidt et al. [39, 40] evaluate 
novel aircraft layout configurations and seating 
concepts for single- and twin-aisle aircraft with 
180–300 seats. The innovative approach to 
dynamically changing the cabin infrastructure 
through a Side-Slip Seat is evaluated [41]. 
Gwynne et al. [42] perform a series of small-
scale laboratory tests to help quantify individual 
passenger boarding and deplaning movement 
considering seat pitch, hand luggage items, and 
instructions for passengers. Schultz [43, 44] 
provides a set of operational data including 
classification of boarding times, passenger 
arrival times, time to store hand luggage, and 
passenger interactions in the aircraft cabin as a 
fundamental basis for boarding model 
calibration.  

1.2 Scope and Structure of the Document  

The paper provides a general overview 
about aircraft boarding with a specific focus on 
a stochastic approach to cover both individual 
passenger behavior and operational constraints. 
This stochastic approach and the simulation 
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environment are briefly introduced, followed by 
a description of field trials to provide reliable 
input data for calibration and validation. 
Furthermore, the Side-Slip Seat shows 
operational benefits due to innovative 
adaptation of the aircraft cabin infrastructure. 
The prototype of a connected cabin is 
represented to emphasize the potential of future 
digital infrastructures. 

2. Boarding Model 

The proposed dynamic model for the boarding 
simulation is based on an asymmetric simple 
exclusion process (ASEP, cf. [45, 46]). The 
ASEP was successfully adapted to model the 
dynamic passenger behavior in the airport 
terminal environment [47-49]. In this context, 
passenger boarding is assumed to be a 
stochastic, forward-directed, one-dimensional 
and discrete (time and space) process. To 
provide both an appropriate set of input data and 
an efficient simulation environment, the aircraft 
seat layout is transferred into a regular grid with 
aircraft entries, the aisle(s) and the passenger 
seats as shown in Fig. 2 (reference: Airbus 320, 
29 rows, 174 seats). This regular grid consists of 
equal cells with a size of 0.4 x 0.4 m, whereas a 
cell can either be empty or contain exactly one 
passenger. The boarding progress consists of a 
simple set of rules for the passenger movement: 

a) enter the aircraft at the assigned door (based 
on the current boarding scenario), b) move 
forward from cell to cell along the aisle until 
reaching the assigned seat row, and c) store the 
baggage (aisle is blocked for other passengers) 
and take the seat. The movement process only 
depends on the state of the next cell (empty or 
occupied). The storage of the baggage is a 
stochastic process and depends on the individual 
amount of hand luggage. The seating process is 
stochastically modelled as well, whereas the 
time to take the seat depends on the already 
used seats in the corresponding row.  

The stochastic nature of the boarding 
process requires a minimum of simulation runs 
for each selected scenario in order to derive 
reliable simulation results. In this context, a 
simulation scenario is mainly defined by the 
underlying seat layout, the number of 
passengers to board (seat load factor), the 
arrival frequency of the passengers at the 
aircraft door, the number of available doors, the 
specific boarding strategy and the compliance of 
passengers in following the current strategy. 
Further details regarding the model and the 
simulation environment are provided in [50-52]. 
To model different boarding strategies, the grid-
based approach enables the individual 
assessment of seats as well as classification/ 
aggregation according to the intended boarding 
strategy. 

 

 

 

 
 

Fig. 2 Grid-based model environment using single aisle reference layout [53] 
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Furthermore, the operational airline/ airport 
constraints are implemented in the stochastic 
boarding model. In particular, these constraints 
consist of priority boarding (e.g. first/business 
class), conformance of passengers to follow 
boarding strategy (e.g. late arrivals), seat load 
factor (ratio of booked to available seats), and 
group patterns (e.g. families). 

3 Simulation Environment 

The stochastic boarding model is 
implemented in a simulation environment (see 
Fig. 3), which allows for evaluating specific 
boarding scenarios with different procedures 
and technologies. In the simulation 
environment, the boarding process is 
implemented as follows. Depending on the seat 
load, a specific number of randomly chosen 
seats are used for boarding. For each seat, a 
passenger (agent) is created. The agent contains 
individual parameters, such as number of hand 
luggage items, maximum walking speed in the 
aisle, seat coordinates, time to store the hand 
luggage and arrival time at the aircraft door. 
Further on, several process characteristics could 
be saved during the simulation runs (e.g. 
waiting times, number of interactions). To 
create the time needed to store the hand 
luggage, a Weibull distribution provides a 
stochastic time value depending on the number 

of items [43, 44]. The agents are sorted with 
regard to their seats and the current boarding 
strategy. From this sequence, a given percentage 
of agents (conformance rate) are taken out of the 
sequence and inserted into a position, which 
contradicts the current strategy (e.g. inserted 
into a different boarding block). According to 
the arrival time distribution (e.g. linear or 
exponential) and the boarding sequence, each 
agent gets a timestamp to appear on the aircraft 
door queue.  

When the simulation starts, the first agent 
of the queue always enters the aircraft by 
moving from the queue to the entry cell of the 
aisle grid (aircraft door), if this cell is free. In 
each simulation step, all agents located in the 
row are moved to the next cell, if possible (free 
cell and not arrived at the seat row), using a 
shuffled sequential update procedure (emulate 
parallel update behavior [46, 47]. If the agent 
arrives at the assigned seat row, he waits on the 
cell according to the time needed to store the 
hand luggage. Depending on the seat row 
condition (e.g. blocked aisle or middle seat or 
both), an additional time is stochastically 
generated to wait in the aisle to perform the seat 
shuffle. During the whole waiting process, no 
other agent can pass. If the waiting process 
finally finishes, the agent is set to the seat and 
the aisle cell is set free. 

 

 
 

Fig. 3 Visualization of the boarding process, using a random strategy with two doors as an example and indicating 
passenger interaction during the seating process (color coded from red (many interactions) to green (no interactions).
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The develop boarding model does not 
address unruly passenger or system behavior or 
counterflow passenger movements, which may 
arise from individual problems in finding the 
assigned seat or blocked overhead 
compartments. In particular, the problem of 
blocked overhead compartments could not be 
solved by operational strategies, but with 
increased compartment capacity or a more 
restrictive airline policy regarding the amount of 
allowed hand luggage. If the airline does not 
react to high numbers of hand luggage items, an 
adopted boarding approach could result in 
evenly distributed hand luggage throughout the 
aircraft cabin [34, 52, 54]. 

The model was primarily developed to 
analyze the A320 reference layout in an 
efficient way, by means of calculation times and 
consideration of relevant operational 
constraints. Nevertheless, the model was 
extended to be used for twin-aisle configuration 
[51], implementation of infrastructural changes 
such as the Side-Slip Seat [55], development 
and optimization of appropriately adapted 
boarding strategies [41, 52], to derive a 
complexity metric to predict boarding progress 
[56, 57], and to predict the aircraft boarding 
progress (real-time) [58, 59]. An additional 
visualization module is developed to 
demonstrate the working principle of the 
analyzed boarding scenarios (see Fig. 3).  

4 Model Validation - Field Trials 

In the context of input data for boarding models, 
there are only limited datasets available to 
provide reliable input for boarding models. 
These datasets are from experimental mock-ups 
[60], observations during boarding operations 
[61, 62], and small scale experiments [42, 63]. 
Thus, to calibrate and validate the stochastic 
boarding model, data from more than 400 
flights were manually recorded in recent years 
with a different focus and level of details: 
passenger processes (e.g. time to store hand 
luggage or time needed to take the seat), arrival 
rates at the aircraft, and boarding time using 
different boarding strategies.  

The data were recorded at several field 
measurements during actual aircraft turnarounds 

of Airbus A320 and Boeing B737/B738. Each 
measurement campaign aimed at different 
aspects of the individual boarding behavior of 
passengers and realized in close cooperation 
with the corresponding airlines, ground 
handling agents, and airport operators. While 
passenger arrival/departure rates could be 
measured from outside the cabin by recording 
the individual time stamps of passengers 
passing the aircraft door, the hand luggage 
storage time and passenger interactions during 
the seating (seat shuffle) were recorded from 
positions inside the narrow aircraft cabin. 
Particularly, the specific seat shuffles are 
required special attention and a close 
observation position, which results only in a 
limited number of measurements. 

The first field measurements aimed to 
record the passenger boarding time and 
determine the correlation to the number of 
passengers boarded, which should be used as an 
input for an aircraft turnaround model [30]. The 
boarding time was defined as time between first 
passengers enters the aircraft (pass the aircraft 
door) and last passenger is seated. The boarding 
times were recorded at different German 
airports with different airlines during the 
summer periods 2010-2015. The observer 
cooperates closely with the ground handling 
companies and stands near the aircraft door, 
where the (inter-arrival) times between the 
passengers during boarding and deboarding 
could be additionally measured. The analysis of 
the boarding times shows a positive correlation, 
but different categories of boarding speed exists 
(slow, medium, fast boarding), which are not 
indicated by the number of passengers. In the 
context of the aircraft turnaround, the boarding 
time consists of additional dependencies, which 
are mainly driven by the individual passenger 
behavior. 

To cover this expected individual behavior 
during the passenger boarding process, the 
existing stochastic aircraft boarding model was 
planned to be calibrated with data from 
additional field trial measurements. Since inter-
arrival times of passengers are already covered 
by the prior measurements passenger 
interactions are focused, particularly the time to 
store the hand luggage and time for the seating 
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process. The measurements were taken in the 
summer period of 2012. For each flight, two 
observers were positioned inside the cabin to 
separately cover the front and rear part of the 
aircraft cabin. Therefore the observers stand 
near the first and the last seat row or used not 
booked seats. 

To proof the reliability of the calibrated 
stochastic model, a third field measurement with 
a German airline was setup, to compare 
simulated boarding times with the actual 
boarding times of newly introduced boarding 
strategies. Thus the airline prepared an 
operational test phase in summer 2014 with the 
developed boarding strategies and recorded both 
the boarding time and the number of passengers. 
The latest airline trials in 2015 and 2016 mainly 
focusses on the impact boarding strategies, 
operational configurations (one door and two 
doors), seat load factor, transfer mode (walk, 
bus shuttle, gate), and destination. Finally, the 
calibrated boarding model was used for 
validation. The simulation of different boarding 
scenarios showed deviations of ±5% between 
simulation results and boarding times measured 
in the field [43, 44]. 

5. Adaptive Infrastructure 

Standard approaches to accelerating the 
boarding process mainly address the 
management of passenger behavior by 
providing airline-specific boarding sequences 
(e.g., boarding by zones) or reducing the 
amount of hand luggage (only one piece per 
passenger). The most prominent negative effect 
on the boarding time is a blocked aisle due to 
passengers storing their hand luggage or 
entering their seat row. With the innovative 
Side-Slip Seat, the available infrastructure could 
be dynamically changed to support the boarding 
process by providing a wider aisle, which 
allows two passengers to pass each other in a 
convenient way (see Fig. 4). Two additional 
benefits come with this new technology: the 
wider aisle allows airlines to offer full-size 
wheelchair access down the aisle and the middle 
seat is two inches wider than the aisle and 
window seats (aisle and window seats retain 
their standard width). Fig. 4 demonstrates the 
staggered seat approach: the aisle seat is initially 
positioned over the middle seat and will be 
moved into flight position if a passenger wants 
to use the middle or aisle seat [41, 55]. 
 

 

 
 

Fig. 4 Side-Slip Seat provides a wider aisle and enables a faster aircraft boarding: passengers could pass each other in the 
aisle or people with reduced mobility could easily reach their seat row (https://www.airlineseats.biz/). 
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The stochastic boarding model is adapted 
to allow a parallel movement of two passengers 
along the aisle. Furthermore, the dynamic status 
of the seat row (folded/unfolded) is 
implemented to enable/disable this parallel 
movement. The implementation of these new 
dynamic aircraft seats demand for an 
appropriate adapted boarding strategy. To 
identify an optimal boarding sequence, the 
stochastic simulation model was used as a 
reliable basis for an evolutionary algorithm, 
which continuously improves an initial set of 
boarding sequences. The evolutionary algorithm 
leads stepwise to a boarding strategy, where 
passengers on one side of the aisle should be 
boarded first. A detailed description of the 
method and results is provided at [41]. The 
evolutionary algorithm demonstrates that a 
boarding sequence which differentiates between 
the left and the right side of the aircraft will 
benefit most from the innovative Side-Slip Seat 
technology. Using a reference A320 layout, a 
random boarding strategy results in a 19% faster 
boarding accompanied with a more reliable 
progress (10% smaller standard deviation (SD) 
of boarding time). 

6 Connected Aircraft Cabin 

A hardware prototype environment of a 
connected aircraft cabin was developed and 
used in field trials in close cooperation with 
Eurowings at Cologne/Bonn airport. This 
prototype was used to proof the concept of 
boarding time prediction (during active 
operations) and the potential of a dynamic seat 
allocation. In Fig. 5, the field test setup is shown 
with seat sensors from the automotive industry. 
This sensor network was successfully tested in a 
mockup environment previously. The individual 
seat sensors efficiently indicate the seat status 
(free, occupied). During the field trial the 
current seat conditions were sent to a central 
processing unit, which shows aircraft-wide 
status information to the airline operator. 
Furthermore, a sensor floor was installed in the 
aircraft aisle to additionally detect specific 
passenger positions (density, congestion) and 
walking speeds in the aisle (free flow, jam). As 
a result, the average unconstrained (maximum) 
walking speed of passengers results in 0.78 m/s 
(0.31 m/s SD) during boarding and 0.99 m/s 
(0.24 m/s SD) during deboarding [53, 64]. 

 

     
 

Fig. 5 Installation of sensor network in the aircraft cabin to detect passenger positions and cabin status (e.g. passengers 
seated, congested areas in the aisle).  
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7 Outlook 

This paper provides a brief overview of the 
status quo of aircraft turnaround, with a specific 
focus on aircraft boarding. A stochastic 
boarding model is introduced that considers 
both individual passenger behavior and 
operational constraints. The input parameters of 
the boarding model are calibrated with data 
from field trials and the model finally shows 
deviations smaller than 5% between measured 
and simulated boarding times. The stochastic 
boarding model is implemented in a simulation 
environment to evaluate specific boarding 
scenarios using different boarding strategies and 
technologies. In particular, infrastructural 
changes, such as the innovative Side-Slip Seat, 
show additional potential to shorten the 
boarding time. 

It is assumed that future aircraft cabins will 
be designed as a sensor network (cyber physical 
system, connected cabin) to provide information 
on passenger convenience, communication 
devices, or maintenance planning. In the context 
of aircraft boarding, this information could be 
used to assess the current and future status of 
boarding progress. In combination with an 
integrated airline information management (e.g. 
sequence of boarding passengers), the boarding 
process could be transformed from a black box 
to a transparent process with the operator’s real-
time ability to react to significant deviations 
from the planned process. 
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